Scala runs on...

  • JVM
  • JavaScript in your browser
  • Natively with LLVM beta

Scala in a Nutshell

click the boxes below to see Scala in action!

Seamless Java Interop

Scala runs on the JVM, so Java and Scala stacks can be freely mixed for totally seamless integration.

Type Inference

So the type system doesn’t feel so static. Don’t work for the type system. Let the type system work for you!

Concurrency & Distribution

Use data-parallel operations on collections, use actors for concurrency and distribution, or futures for asynchronous programming.

Author.scala
class Author(val firstName: String,
    val lastName: String) extends Comparable[Author] {

  override def compareTo(that: Author) = {
    val lastNameComp = this.lastName compareTo that.lastName
    if (lastNameComp != 0) lastNameComp
    else this.firstName compareTo that.firstName
  }
}

object Author {
  def loadAuthorsFromFile(file: java.io.File): List[Author] = ???
}
App.java
import static scala.collection.JavaConversions.asJavaCollection;

public class App {
    public List<Author> loadAuthorsFromFile(File file) {
        return new ArrayList<Author>(asJavaCollection(
            Author.loadAuthorsFromFile(file)));
    }

    public void sortAuthors(List<Author> authors) {
        Collections.sort(authors);
    }

    public void displaySortedAuthors(File file) {
        List<Author> authors = loadAuthorsFromFile(file);
        sortAuthors(authors);
        for (Author author : authors) {
            System.out.println(
                author.lastName() + ", " + author.firstName());
        }
    }
}

Combine Scala and Java seamlessly

Scala classes are ultimately JVM classes. You can create Java objects, call their methods and inherit from Java classes transparently from Scala. Similarly, Java code can reference Scala classes and objects.


In this example, the Scala class Author implements the Java interface Comparable<T> and works with Java Files. The Java code uses a method from the companion object Author, and accesses fields of the Author class. It also uses JavaConversions to convert between Scala collections and Java collections.

Type inference
scala> class Person(val name: String, val age: Int) {
     |   override def toString = s"$name ($age)"
     | }
defined class Person

scala> def underagePeopleNames(persons: List[Person]) = {
     |   for (person <- persons; if person.age < 18)
     |     yield person.name
     | }
underagePeopleNames: (persons: List[Person])List[String]

scala> def createRandomPeople() = {
     |   val names = List("Alice", "Bob", "Carol",
     |       "Dave", "Eve", "Frank")
     |   for (name <- names) yield {
     |     val age = (Random.nextGaussian()*8 + 20).toInt
     |     new Person(name, age)
     |   }
     | }
createRandomPeople: ()List[Person]

scala> val people = createRandomPeople()
people: List[Person] = List(Alice (16), Bob (16), Carol (19), Dave (18), Eve (26), Frank (11))

scala> underagePeopleNames(people)
res1: List[String] = List(Alice, Bob, Frank)

Let the compiler figure out the types for you

The Scala compiler is smart about static types. Most of the time, you need not tell it the types of your variables. Instead, its powerful type inference will figure them out for you.

In this interactive REPL session (Read-Eval-Print-Loop), we define a class and two functions. You can observe that the compiler infers the result types of the functions automatically, as well as all the intermediate values.

Concurrent/Distributed
val x = Future { someExpensiveComputation() }
val y = Future { someOtherExpensiveComputation() }
val z = for (a <- x; b <- y) yield a*b
for (c <- z) println("Result: " + c)
println("Meanwhile, the main thread goes on!")

Go Concurrent or Distributed with Futures & Promises

In Scala, futures and promises can be used to process data asynchronously, making it easier to parallelize or even distribute your application.

In this example, the Future{} construct evaluates its argument asynchronously, and returns a handle to the asynchronous result as a Future[Int]. For-comprehensions can be used to register new callbacks (to post new things to do) when the future is completed, i.e., when the computation is finished. And since all this is executed asynchronously, without blocking, the main program thread can continue doing other work in the meantime.

Traits

Combine the flexibility of Java-style interfaces with the power of classes. Think principled multiple-inheritance.

Pattern Matching

Think “switch” on steroids. Match against class hierarchies, sequences, and more.

Higher-order functions

Functions are first-class objects. Compose them with guaranteed type safety. Use them anywhere, pass them to anything.

Traits
abstract class Spacecraft {
  def engage(): Unit
}
trait CommandoBridge extends Spacecraft {
  def engage(): Unit = {
    for (_ <- 1 to 3)
      speedUp()
  }
  def speedUp(): Unit
}
trait PulseEngine extends Spacecraft {
  val maxPulse: Int
  var currentPulse: Int = 0
  def speedUp(): Unit = {
    if (currentPulse < maxPulse)
      currentPulse += 1
  }
}
class StarCruiser extends Spacecraft
                     with CommandoBridge
                     with PulseEngine {
  val maxPulse = 200
}

Flexibly Combine Interface & Behavior

In Scala, multiple traits can be mixed into a class to combine their interface and their behavior.

Here, a StarCruiser is a Spacecraft with a CommandoBridge that knows how to engage the ship (provided a means to speed up) and a PulseEngine that specifies how to speed up.

Switch on the structure of your data

In Scala, case classes are used to represent structural data types. They implicitly equip the class with meaningful toString, equals and hashCode methods, as well as the ability to be deconstructed with pattern matching.


In this example, we define a small set of case classes that represent binary trees of integers (the generic version is omitted for simplicity here). In inOrder, the match construct chooses the right branch, depending on the type of t, and at the same time deconstructs the arguments of a Node.

Pattern matching
// Define a set of case classes for representing binary trees.
sealed abstract class Tree
case class Node(elem: Int, left: Tree, right: Tree) extends Tree
case object Leaf extends Tree

// Return the in-order traversal sequence of a given tree.
def inOrder(t: Tree): List[Int] = t match {
  case Node(e, l, r) => inOrder(l) ::: List(e) ::: inOrder(r)
  case Leaf          => List()
}

Go Functional with Higher-Order Functions

In Scala, functions are values, and can be defined as anonymous functions with a concise syntax.

Scala
val people: Array[Person]

// Partition `people` into two arrays `minors` and `adults`.
// Use the anonymous function `(_.age < 18)` as a predicate for partitioning.
val (minors, adults) = people partition (_.age < 18)
Java
List<Person> people;

List<Person> minors = new ArrayList<Person>(people.size());
List<Person> adults = new ArrayList<Person>(people.size());
for (Person person : people) {
    if (person.getAge() < 18)
        minors.add(person);
    else
        adults.add(person);
}

Run Scala in your browser

Scastie is Scala + sbt in your browser! You can use any version of Scala, or even alternate backends such as Dotty, Scala.js, Scala Native, and Typelevel Scala. You can use any published library. You can save and share Scala programs/builds with anybody.

Run Scala code interactively

Online Courses

Functional Programming Principles in Scala

  • Free (optional paid certificate)
  • New sessions starting every 2 weeks!

Functional Program Design in Scala

  • Free (optional paid certificate)
  • New sessions starting every 2 weeks!

Parallel Programming

  • Free (optional paid certificate)
  • New sessions starting every 2 weeks!

Big Data Analysis with Scala and Spark

  • Free (optional paid certificate)
  • New sessions starting every 2 weeks!

Functional Programming in Scala Capstone

  • Free (optional paid certificate)
  • New sessions starting every 2 weeks!

Programming Reactive Systems

  • Free (optional paid certificate)
  • 18 Feb 2019

Upcoming Training

Scala ecosystem

The Scala Library Index (or Scaladex) is a representation of a map of all published Scala libraries. With Scaladex, a developer can now query more than 175,000 releases of Scala libraries. Scaladex is officially supported by Scala Center.

The Scala Library Index

What’s New

BLOG

News from the Scala MOOCs

Tuesday, May 21, 2019

In this article, I want to share with you the current state of our online Scala courses (MOOCs) and introduce our plans for the future.

How it all started

We stepped into the world of MOOCs with the Functional Programming Principles in Scala course. It was launched in 2012 and was a success, with more than 100,000 participants in the first two years, and a notably high completion rate (Miller et. al.)!

We believe that we were able to manage this load of learners because our assignments grading system was an automated process: when a learner submitted his/her work, our grading infrastructure analyzed the submission’s source code, ran the tests and produced detailed feedback for each observed error. In addition to this automated infrastructure, our team of (human!) teaching assistants was present on the discussion forums to answer other requests.

Encouraged by this success, one year later we launched our second course: Principles of Reactive Programming.

Where we are

We currently have 6 running courses, ranging from the basics of the language to more specific programming techniques:

In practice, we are able to deploy our grading infrastructure on both the Open edX and the Coursera platforms. The benefits are twofold: we can test and improve our next courses internally at EPFL on an Open edX based platform before making them public, and we believe that by having more freedom on where we eventually publish our courses (edX or Coursera) you will be more likely to get the best online learning experience.

The content of our courses is available for free. In addition, a paid version allows you to receive a grade for the whole course as well as a certificate of completion. Statistics revealed that this paid version is mostly used by companies to train their employees. The MOOCs revenues allow us to pay one engineer (myself) and a team of teaching assistants.

What we plan to do

Our goal is to ease the adoption of Scala and, beyond the language, to turn new, innovative, programming techniques into familiar practices.

We will keep making our material accessible for free and we will continue selling certificates of completion to sustain our activity.

More concretely, the next steps in our roadmap are the following:

  • teach more advanced concepts (implicits, path-dependent types, etc.),
  • give ready-to-use recipes for common programming tasks (manipulate files, perform HTTP requests, etc.),
  • update the material to recent Scala versions and Dotty.

And you, what would be your expectations for our next MOOCs? Please share your thoughts on the following discussion thread.

Twitter Feed

See more tweets, or

Follow Scala on twitter

The Scala language is maintained by

  • Scala Center
  • Lightbend

Scala Center is supported by

EPFL IBM Verizon Goldman Sachs 47 Degrees SAP Twitter Your company