Object-Oriented Meets Functional

Have the best of both worlds. Construct elegant class hierarchies for maximum code reuse and extensibility, implement their behavior using higher-order functions. Or anything in-between.

Learn More

 

Scala began life in 2003, created by Martin Odersky and his research group at EPFL, next to Lake Geneva and the Alps, in Lausanne, Switzerland. Scala has since grown into a mature open source programming language, used by hundreds of thousands of developers, and is developed and maintained by scores of people all over the world.
Download API Docs    
Spiral
Scala
2.11.8

Scala in a Nutshell

 click the boxes below to see Scala in action! 

Seamless Java Interop

Scala runs on the JVM, so Java and Scala stacks can be freely mixed for totally seamless integration.

Type Inference

So the type system doesn’t feel so static. Don’t work for the type system. Let the type system work for you!

Concurrency
& Distribution

Use data-parallel operations on collections, use actors for concurrency and distribution, or futures for asynchronous programming.

Traits

Combine the flexibility of Java-style interfaces with the power of classes. Think principled multiple-inheritance.

Pattern Matching

Think “switch” on steroids. Match against class hierarchies, sequences, and more.

Higher-Order Functions

Functions are first-class objects. Compose them with guaranteed type safety. Use them anywhere, pass them to anything.

Author.scala
class Author(val firstName: String,
    val lastName: String) extends Comparable[Author] {

  override def compareTo(that: Author) = {
    val lastNameComp = this.lastName compareTo that.lastName
    if (lastNameComp != 0) lastNameComp
    else this.firstName compareTo that.firstName
  }
}

object Author {
  def loadAuthorsFromFile(file: java.io.File): List[Author] = ???
}
App.java
import static scala.collection.JavaConversions.asJavaCollection;

public class App {
    public List<Author> loadAuthorsFromFile(File file) {
        return new ArrayList<Author>(asJavaCollection(
            Author.loadAuthorsFromFile(file)));
    }

    public void sortAuthors(List<Author> authors) {
        Collections.sort(authors);
    }

    public void displaySortedAuthors(File file) {
        List<Author> authors = loadAuthorsFromFile(file);
        sortAuthors(authors);
        for (Author author : authors) {
            System.out.println(
                author.lastName() + ", " + author.firstName());
        }
    }
}

Combine Scala and Java seamlessly

Scala classes are ultimately JVM classes. You can create Java objects, call their methods and inherit from Java classes transparently from Scala. Similarly, Java code can reference Scala classes and objects.

In this example, the Scala class Author implements the Java interface Comparable<T> and works with Java Files. The Java code uses a method from the companion object Author, and accesses fields of the Author class. It also uses JavaConversions to convert between Scala collections and Java collections.

Type inference
scala> class Person(val name: String, val age: Int) {
     |   override def toString = s"$name ($age)"
     | }
defined class Person

scala> def underagePeopleNames(persons: List[Person]) = {
     |   for (person <- persons; if person.age < 18)
     |     yield person.name
     | }
underagePeopleNames: (persons: List[Person])List[String]

scala> def createRandomPeople() = {
     |   val names = List("Alice", "Bob", "Carol",
     |       "Dave", "Eve", "Frank")
     |   for (name <- names) yield {
     |     val age = (Random.nextGaussian()*8 + 20).toInt
     |     new Person(name, age)
     |   }
     | }
createRandomPeople: ()List[Person]

scala> val people = createRandomPeople()
people: List[Person] = List(Alice (16), Bob (16), Carol (19), Dave (18), Eve (26), Frank (11))

scala> underagePeopleNames(people)
res1: List[String] = List(Alice, Bob, Frank)

Let the compiler figure out the types for you

The Scala compiler is smart about static types. Most of the time, you need not tell it the types of your variables. Instead, its powerful type inference will figure them out for you.

In this interactive REPL session (Read-Eval-Print-Loop), we define a class and two functions. You can observe that the compiler infers the result types of the functions automatically, as well as all the intermediate values.

Concurrent/Distributed
val x = future { someExpensiveComputation() }
val y = future { someOtherExpensiveComputation() }
val z = for (a <- x; b <- y) yield a*b
for (c <- z) println("Result: " + c)
println("Meanwhile, the main thread goes on!")

Go Concurrent or Distributed with Futures & Promises

In Scala, futures and promises can be used to process data asynchronously, making it easier to parallelize or even distribute your application.

In this example, the future{} construct evaluates its argument asynchronously, and returns a handle to the asynchronous result as a Future[Int]. For-comprehensions can be used to register new callbacks (to post new things to do) when the future is completed, i.e., when the computation is finished. And since all this is executed asynchronously, without blocking, the main program thread can continue doing other work in the meantime.

Traits
abstract class Spacecraft {
  def engage(): Unit
}
trait CommandoBridge extends Spacecraft {
  def engage(): Unit = {
    for (_ <- 1 to 3)
      speedUp()
  }
  def speedUp(): Unit
}
trait PulseEngine extends Spacecraft {
  val maxPulse: Int
  var currentPulse: Int = 0
  def speedUp(): Unit = {
    if (currentPulse < maxPulse)
      currentPulse += 1
  }
}
class StarCruiser extends Spacecraft
                     with CommandoBridge
                     with PulseEngine {
  val maxPulse = 200
}

Flexibly Combine Interface & Behavior

In Scala, multiple traits can be mixed into a class to combine their interface and their behavior.

Here, a StarCruiser is a Spacecraft with a CommandoBridge that knows how to engage the ship (provided a means to speed up) and a PulseEngine that specifies how to speed up.

Pattern matching
// Define a set of case classes for representing binary trees.
sealed abstract class Tree
case class Node(elem: Int, left: Tree, right: Tree) extends Tree
case object Leaf extends Tree

// Return the in-order traversal sequence of a given tree.
def inOrder(t: Tree): List[Int] = t match {
  case Node(e, l, r) => inOrder(l) ::: List(e) ::: inOrder(r)
  case Leaf          => List()
}

Switch on the structure of your data

In Scala, case classes are used to represent structural data types. They implicitly equip the class with meaningful toString, equals and hashCode methods, as well as the ability to be deconstructed with pattern matching.

In this example, we define a small set of case classes that represent binary trees of integers (the generic version is omitted for simplicity here). In inOrder, the match construct chooses the right branch, depending on the type of t, and at the same time deconstructs the arguments of a Node.

Go Functional with Higher-Order Functions

In Scala, functions are values, and can be defined as anonymous functions with a concise syntax.

Scala
val people: Array[Person]

// Partition `people` into two arrays `minors` and `adults`.
// Use the higher-order function `(_.age < 18)` as a predicate for partitioning.
val (minors, adults) = people partition (_.age < 18)
Java
List<Person> people;

List<Person> minors = new ArrayList<Person>(people.size());
List<Person> adults = new ArrayList<Person>(people.size());
for (Person person : people) {
    if (person.getAge() < 18)
        minors.add(person);
    else
        adults.add(person);
}

In the Scala example on the left, the partition method, available on all collection types (including Array), returns two new collections of the same type. Elements from the original collection are partitioned according to a predicate, which is given as a lambda, i.e., an anonymous function. The _ stands for the parameter to the lambda, i.e., the element that is being tested. This particular lambda can also be written as (x => x.age < 18).

The same program is implemented in Java on the right.

Upcoming Events

See more events or add one to our feed

What's New

blog
date icon Monday, May 23, 2016

We’re very happy to announce that the first 3 out of 4 courses in our Scala specialization have launched on Coursera! The courses available today include:

  • Functional Programming Principles in Scala: discover the elements of the functional programming style and learn how to apply them usefully in your daily programming tasks.
  • Functional Program Design in Scala: learn how to apply the functional programming style in the design of larger applications.
  • Parallel Programming: learn the fundamentals of parallel programming, from task parallelism to data parallelism.

As in the past, all courses feature the much-loved automatic grading of programming assignments!

The final course in the pipeline is Big Data Analysis with Scala and Spark, which we’re hoping will follow in a couple of months along with the Scala capstone project – a ~4 week long project designed to push you to build a larger, more challenging Scala application.

All courses are available both for free and as part of the Scala specialization, which is a verified mini-degree from Coursera.

Learn more about the Scala Specialization on Coursera!


Or to enroll in each course independently (for free, but without a certificate), you can visit each course’s landing page:

More info about each course can be found on the Scala Specialization page, or on the Scala Center’s website. Questions, or to join the discussion about the Scala Center, visit us in the Scala Center gitter channel!

Recently...

date-icon Friday, May 06, 2016 blog
I have been working recently on making equality tests using == and != safer in Scala. This has led to a Language Enhancement Proposal which...
date-icon Friday, April 29, 2016 blog
At Scala Days, the Scala Center will hold its first Advisory Board meeting. The Advisory Board comprises primarily of delegates from our sponsors. But, we...
date-icon Monday, April 11, 2016 announcement
We are happy to announce the availability of Scala 2.12.0-M4, which marks feature completeness for 2.12! Scala 2.12 is all about making optimal use of...
date-icon
For more, visit our
News archive or Blog

Scala on Twitter


 
See more tweets, or
Follow Scala on Twitter
white Twitter logo