Packages

  • package root

    The Scala compiler and reflection APIs.

    The Scala compiler and reflection APIs.

    Definition Classes
    root
  • package scala
    Definition Classes
    root
  • package tools
    Definition Classes
    scala
  • package nsc
    Definition Classes
    tools
  • package backend
    Definition Classes
    nsc
  • package jvm
    Definition Classes
    backend
  • package analysis

    Summary on the ASM analyzer framework --------------------------------------

    Summary on the ASM analyzer framework --------------------------------------

    Value

    • Abstract, needs to be implemented for each analysis.
    • Represents the desired information about local variables and stack values, for example:
      • Is this value known to be null / not null?
      • What are the instructions that could potentially have produced this value?

    Interpreter

    • Abstract, needs to be implemented for each analysis. Sometimes one can subclass an existing interpreter, e.g., SourceInterpreter or BasicInterpreter.
    • Multiple abstract methods that receive an instruction and the instruction's input values, and return a value representing the result of that instruction.
      • Note: due to control flow, the interpreter can be invoked multiple times for the same instruction, until reaching a fixed point.
    • Abstract merge function that computes the least upper bound of two values. Used by Frame.merge (see below).

    Frame

    • Can be used directly for many analyses, no subclass required.
    • Every frame has an array of values: one for each local variable and for each stack slot.
      • A top index stores the index of the current stack top
      • NOTE: for a size-2 local variable at index i, the local variable at i+1 is set to an empty value. However, for a size-2 value at index i on the stack, the value at i+1 holds the next stack value. IMPORTANT: this is only the case in ASM's analysis framework, not in bytecode. See comment below.
    • Defines the execute(instruction) method.
      • executing mutates the state of the frame according to the effect of the instruction
        • pop consumed values from the stack
        • pass them to the interpreter together with the instruction
        • if applicable, push the resulting value on the stack
    • Defines the merge(otherFrame) method
      • called by the analyzer when multiple control flow paths lead to an instruction
        • the frame at the branching instruction is merged into the current frame of the instruction (held by the analyzer)
        • mutates the values of the current frame, merges all values using interpreter.merge.

    Analyzer

    • Stores a frame for each instruction
    • merge function takes an instruction and a frame, merges the existing frame for that instr (from the frames array) with the new frame passed as argument. if the frame changed, puts the instruction on the work queue (fixpoint).
    • initial frame: initialized for first instr by calling interpreter.new[...]Value for each slot (locals and params), stored in frames[firstInstr] by calling merge
    • work queue of instructions (queue array, top index for next instruction to analyze)
    • analyze(method): simulate control flow. while work queue non-empty:
      • copy the state of frames[instr] into a local frame current
      • call current.execute(instr, interpreter), mutating the current frame
      • if it's a branching instruction
        • for all potential destination instructions
          • merge the destination instruction frame with the current frame (this enqueues the destination instr if its frame changed)
        • invoke newControlFlowEdge (see below)
    • the analyzer also tracks active exception handlers at each instruction
    • the empty method newControlFlowEdge can be overridden to track control flow if required

    MaxLocals and MaxStack ----------------------

    At the JVM level, long and double values occupy two slots, both as local variables and on the stack, as specified in the JVM spec 2.6.2: "At any point in time, an operand stack has an associated depth, where a value of type long or double contributes two units to the depth and a value of any other type contributes one unit."

    For example, a method class A { def f(a: Long, b: Long) = a + b } has MAXSTACK=4 in the classfile. This value is computed by the ClassWriter / MethodWriter when generating the classfile (we always pass COMPUTE_MAXS to the ClassWriter).

    For running an ASM Analyzer, long and double values occupy two local variable slots, but only a single slot on the call stack, as shown by the following snippet:

    import scala.tools.nsc.backend.jvm._ import scala.tools.nsc.backend.jvm.opt.BytecodeUtils._ import scala.collection.convert.decorateAsScala._ import scala.tools.asm.tree.analysis._

    val cn = AsmUtils.readClass("/Users/luc/scala/scala/sandbox/A.class") val m = cn.methods.iterator.asScala.find(_.name == "f").head

    // the value is read from the classfile, so it's 4 println(s"maxLocals: ${m.maxLocals}, maxStack: ${m.maxStack}") // maxLocals: 5, maxStack: 4

    // we can safely set it to 2 for running the analyzer. m.maxStack = 2

    val a = new Analyzer(new BasicInterpreter) a.analyze(cn.name, m) val addInsn = m.instructions.iterator.asScala.find(_.getOpcode == 97).get // LADD Opcode val addFrame = a.frameAt(addInsn, m)

    addFrame.getStackSize // 2: the two long values only take one slot each addFrame.getLocals // 5: this takes one slot, the two long parameters take 2 slots each

    While running the optimizer, we need to make sure that the maxStack value of a method is large enough for running an ASM analyzer. We don't need to worry if the value is incorrect in the JVM perspective: the value will be re-computed and overwritten in the ClassWriter.

    Lessons learnt while benchmarking the alias tracking analysis -------------------------------------------------------------

    Profiling

    • Use YourKit for finding hotspots (cpu profiling). when it comes to drilling down into the details of a hotspot, don't pay too much attention to the percentages / time counts.
    • Should also try other profilers.
    • Use timers. When a method showed up as a hotspot, I added a timer around that method, and a second one within the method to measure specific parts. The timers slow things down, but the relative numbers show what parts of a method are slow.

    ASM analyzer insights

    • The time for running an analysis depends on the number of locals and the number of instructions. Reducing the number of locals helps speeding up the analysis: there are less values to merge when merging to frames. See also https://github.com/scala/scala-dev/issues/47
    • The common hot spot of an ASM analysis is Frame.merge, for example in producers / consumers.
    • For nullness analysis the time is spent as follows
      • 20% merging nullness values. this is as expected: for example, the same absolute amount of time is spent in merging BasicValues when running a BasicInterpreter.
      • 50% merging alias sets. i tried to optimize what i could out of this.
      • 20% is spent creating new frames from existing ones, see comment on AliasingFrame.init.
    • The implementation of Frame.merge (the main hot spot) contains a megamorphic callsite to interpreter.merge. This can be observed easily by running a test program that either runs a BasicValue analysis only, versus a program that first runs a nullness analysis and then a BasicValue. In an example, the time for the BasicValue analysis goes from 519ms to 1963ms, a 3.8x slowdown.
    • I added counters to the Frame.merge methods for nullness and BasicValue analysis. In the examples I benchmarked, the number of merge invocations was always exactly the same. It would probably be possible to come up with an example where alias set merging forces additional analysis rounds until reaching the fixpoint, but I did not observe such cases.

    To benchmark an analysis, instead of benchmarking analysis while it runs in the compiler backend, one can easily run it from a separate program (or the repl). The bytecode to analyze can simply be parsed from a classfile. See example at the end of this comment.

    Nullness Analysis in Miguel's Optimizer ---------------------------------------

    Miguel implemented alias tracking for nullness analysis differently [1]. Remember that every frame has an array of values. Miguel's idea was to represent aliasing using reference equality in the values array: if two entries in the array point to the same value object, the two entries are aliases in the frame of the given instruction.

    While this idea seems elegant at first sight, Miguel's implementation does not merge frames correctly when it comes to aliasing. Assume in frame 1, values (a, b, c) are aliases, while in frame 2 (a, b) are aliases. When merging the second into the first, we have to make sure that c is removed as an alias of (a, b).

    It would be possible to implement correct alias set merging in Miguel's approach. However, frame merging is the main hot spot of analysis. The computational complexity of implementing alias set merging by traversing the values array and comparing references is too high. The concrete alias set representation that is used in the current implementation (see class AliasingFrame) makes alias set merging more efficient.

    [1] https://github.com/scala-opt/scala/blob/opt/rebase/src/compiler/scala/tools/nsc/backend/bcode/NullnessPropagator.java

    Complexity and scaling of analysis ----------------------------------

    The time complexity of a data flow analysis depends on:

    • The size of the method. The complexity factor is linear (assuming the number of locals and branching instructions remains constant). The main analysis loop runs through all instructions of a method once. Instructions are only re-enqueued if a control flow merge changes the frame at some instruction.
    • The branching instructions. When a second (third, ..) control flow edge arrives at an instruction, the existing frame at the instruction is merged with the one computed on the new branch. If the merge function changes the existing frame, the instruction is enqueued for another analysis. This results in a merge operation for the successors of the instruction.
    • The number of local variables. The hot spot of analysis is frame merging. The merge function iterates through the values in the frame (locals and stack values) and merges them.

    I measured the running time of an analysis for two examples:

    • Keep the number of locals and branching instructions constant, increase the number of instructions. The running time grows linearly with the method size.
    • Increase the size and number of locals in a method. The method size and number of locals grow in the same pace. Here, the running time increase is polynomial. It looks like the complexity is be #instructions * #locals^2 (see below).

    I measured nullness analysis (which tracks aliases) and a SimpleValue analysis. Nullness runs roughly 5x slower (because of alias tracking) at every problem size - this factor doesn't change.

    The numbers below are for nullness. Note that the last column is constant, i.e., the running time is proportional to #ins * #loc^2. Therefore we use this factor when limiting the maximal method size for running an analysis.

    #insns #locals time (ms) time / #ins * #loc2 * 106 1305 156 34 1.07 2610 311 165 0.65 3915 466 490 0.57 5220 621 1200 0.59 6525 776 2220 0.56 7830 931 3830 0.56 9135 1086 6570 0.60 10440 1241 9700 0.60 11745 1396 13800 0.60

    As a second experiment, nullness analysis was run with varying #insns but constant #locals. The last column shows linear complexity with respect to the method size (linearOffset = 2279):

    #insns #locals time (ms) (time + linearOffset) / #insns 5220 621 1090 0.645 6224 621 1690 0.637 7226 621 2280 0.630 8228 621 2870 0.625 9230 621 3530 0.629 10232 621 4130 0.626 11234 621 4770 0.627 12236 621 5520 0.637 13238 621 6170 0.638

    When running a BasicValue analysis, the complexity observation is the same (time is proportional to #ins * #loc^2).

    Measuring analysis execution time ---------------------------------

    See code below.

    Definition Classes
    jvm
  • package opt
    Definition Classes
    jvm
  • AsmUtils
  • BCodeBodyBuilder
  • BCodeHelpers
  • BCodeIdiomatic
  • BCodeSkelBuilder
  • BCodeSyncAndTry
  • BTypes
  • BTypesFromSymbols
  • BackendReporting
  • BackendReportingImpl
  • BackendStats
  • BytecodeWriters
  • CoreBTypes
  • CoreBTypesProxy
  • CoreBTypesProxyGlobalIndependent
  • FileConflictException
  • GenBCode

class CoreBTypes[BTFS <: BTypesFromSymbols[_ <: Global]] extends AnyRef

Core BTypes and some other definitions. The initialization of these definitions requires access to symbols / types (global).

The symbols used to initialize the ClassBTypes may change from one compiler run to the next. To make sure the definitions are consistent with the symbols in the current run, the initializeCoreBTypes method in BTypesFromSymbols creates a new instance of CoreBTypes in each compiler run.

The class BTypesFromSymbols does not directly reference CoreBTypes, but CoreBTypesProxy. The reason is that having a var bTypes: CoreBTypes would not allow import bTypes._. Instead, the proxy class holds a CoreBTypes in a variable field and forwards to this instance.

The definitions in CoreBTypes need to be lazy vals to break an initialization cycle. When creating a new instance to assign to the proxy, the classBTypeFromSymbol invoked in the constructor will actually go through the proxy. The lazy vals make sure the instance is assigned in the proxy before the fields are initialized.

Note: if we did not re-create the core BTypes on each compiler run, BType.classBTypeCacheFromSymbol could not be a perRunCache anymore: the classes defined here need to be in that map, they are added when the ClassBTypes are created. The per run cache removes them, so they would be missing in the second run.

Source
CoreBTypes.scala
Linear Supertypes
AnyRef, Any
Type Hierarchy
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. CoreBTypes
  2. AnyRef
  3. Any
Implicitly
  1. by any2stringadd
  2. by StringFormat
  3. by Ensuring
  4. by ArrowAssoc
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. All

Instance Constructors

  1. new CoreBTypes(bTypes: BTFS)

Value Members

  1. final def !=(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  2. final def ##(): Int
    Definition Classes
    AnyRef → Any
  3. def +(other: String): String
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to any2stringadd[CoreBTypes[BTFS]] performed by method any2stringadd in scala.Predef.
    Definition Classes
    any2stringadd
  4. def ->[B](y: B): (CoreBTypes[BTFS], B)
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to ArrowAssoc[CoreBTypes[BTFS]] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc
    Annotations
    @inline()
  5. final def ==(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  6. lazy val AndroidCreatorClass: BTFS._$1.Symbol
  7. lazy val AndroidParcelableInterface: BTFS._$1.Symbol
  8. lazy val BeanInfoAttr: BTFS._$1.Symbol
  9. lazy val ObjectRef: BTFS.ClassBType
  10. lazy val PredefRef: BTFS.ClassBType
  11. lazy val StringRef: BTFS.ClassBType
  12. lazy val String_valueOf: BTFS._$1.Symbol
  13. final def asInstanceOf[T0]: T0
    Definition Classes
    Any
  14. val bTypes: BTFS
  15. lazy val boxResultType: Map[BTFS._$1.Symbol, BTFS.ClassBType]

    Maps the method symbol for a box method to the boxed type of the result.

    Maps the method symbol for a box method to the boxed type of the result. For example, the method symbol for Byte.box() is mapped to the ClassBType java/lang/Byte.

  16. lazy val boxedClassOfPrimitive: Map[BTFS.PrimitiveBType, BTFS.ClassBType]

    Map from primitive types to their boxed class type.

    Map from primitive types to their boxed class type. Useful when pushing class literals onto the operand stack (ldc instruction taking a class literal), see genConstant.

  17. lazy val boxedClasses: Set[BTFS.ClassBType]
  18. def clone(): AnyRef
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  19. def ensuring(cond: (CoreBTypes[BTFS]) ⇒ Boolean, msg: ⇒ Any): CoreBTypes[BTFS]
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to Ensuring[CoreBTypes[BTFS]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  20. def ensuring(cond: (CoreBTypes[BTFS]) ⇒ Boolean): CoreBTypes[BTFS]
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to Ensuring[CoreBTypes[BTFS]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  21. def ensuring(cond: Boolean, msg: ⇒ Any): CoreBTypes[BTFS]
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to Ensuring[CoreBTypes[BTFS]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  22. def ensuring(cond: Boolean): CoreBTypes[BTFS]
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to Ensuring[CoreBTypes[BTFS]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  23. final def eq(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  24. def equals(arg0: Any): Boolean
    Definition Classes
    AnyRef → Any
  25. def finalize(): Unit
    Attributes
    protected[java.lang]
    Definition Classes
    AnyRef
    Annotations
    @throws( classOf[java.lang.Throwable] )
  26. def formatted(fmtstr: String): String
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to StringFormat[CoreBTypes[BTFS]] performed by method StringFormat in scala.Predef.
    Definition Classes
    StringFormat
    Annotations
    @inline()
  27. final def getClass(): Class[_]
    Definition Classes
    AnyRef → Any
  28. def hashCode(): Int
    Definition Classes
    AnyRef → Any
  29. lazy val hashMethodSym: BTFS._$1.Symbol
  30. final def isInstanceOf[T0]: Boolean
    Definition Classes
    Any
  31. lazy val javaBoxMethods: Map[InternalName, BTFS.MethodNameAndType]
  32. lazy val javaUnboxMethods: Map[InternalName, BTFS.MethodNameAndType]
  33. lazy val jiSerializableRef: BTFS.ClassBType
  34. lazy val jlCharSequenceRef: BTFS.ClassBType
  35. lazy val jlClassCastExceptionRef: BTFS.ClassBType
  36. lazy val jlCloneableRef: BTFS.ClassBType
  37. lazy val jlIllegalArgExceptionRef: BTFS.ClassBType
  38. lazy val jlStringBufferRef: BTFS.ClassBType
  39. lazy val jlStringBuilderRef: BTFS.ClassBType
  40. lazy val jlThrowableRef: BTFS.ClassBType
  41. lazy val jliCallSiteRef: BTFS.ClassBType
  42. lazy val jliLambdaMetafactoryRef: BTFS.ClassBType
  43. lazy val jliMethodHandleRef: BTFS.ClassBType
  44. lazy val jliMethodHandlesLookupRef: BTFS.ClassBType
  45. lazy val jliMethodHandlesRef: BTFS.ClassBType
  46. lazy val jliMethodTypeRef: BTFS.ClassBType
  47. lazy val jliSerializedLambdaRef: BTFS.ClassBType
  48. lazy val juHashMapRef: BTFS.ClassBType
  49. lazy val juMapRef: BTFS.ClassBType
  50. lazy val lambdaDeserializeBootstrapHandle: Handle
  51. lazy val lambdaMetaFactoryAltMetafactoryHandle: Handle
  52. lazy val lambdaMetaFactoryMetafactoryHandle: Handle
  53. final def ne(arg0: AnyRef): Boolean
    Definition Classes
    AnyRef
  54. final def notify(): Unit
    Definition Classes
    AnyRef
  55. final def notifyAll(): Unit
    Definition Classes
    AnyRef
  56. lazy val predefAutoBoxMethods: Map[String, BTFS.MethodBType]
  57. lazy val predefAutoUnboxMethods: Map[String, BTFS.MethodBType]
  58. lazy val primitiveBoxConstructors: Map[InternalName, BTFS.MethodNameAndType]
  59. lazy val primitiveTypeToBType: Map[BTFS._$1.Symbol, BTFS.PrimitiveBType]

    Maps primitive types to their corresponding PrimitiveBType.

    Maps primitive types to their corresponding PrimitiveBType. The map is defined lexically above the first use of classBTypeFromSymbol because that method looks at the map.

  60. lazy val sbScalaBeanInfoRef: BTFS.ClassBType
  61. def singleParamOfClass(cls: BTFS._$1.Symbol): (BTFS._$1.Symbol) ⇒ Boolean
  62. lazy val srBoxedUnitRef: BTFS.ClassBType
  63. lazy val srBoxesRunTimeRef: BTFS.ClassBType
  64. lazy val srBoxesRuntimeBoxToMethods: Map[BTFS.BType, BTFS.MethodNameAndType]
  65. lazy val srBoxesRuntimeUnboxToMethods: Map[BTFS.BType, BTFS.MethodNameAndType]
  66. lazy val srLambdaDeserialize: BTFS.ClassBType
  67. lazy val srNothingRef: BTFS.ClassBType
  68. lazy val srNullRef: BTFS.ClassBType
  69. lazy val srRefConstructors: Map[InternalName, BTFS.MethodNameAndType]
  70. lazy val srRefCreateMethods: Map[InternalName, BTFS.MethodNameAndType]
  71. lazy val srRefZeroMethods: Map[InternalName, BTFS.MethodNameAndType]
  72. lazy val srStructuralCallSite: BTFS.ClassBType
  73. lazy val srSymbolLiteral: BTFS.ClassBType
  74. final def synchronized[T0](arg0: ⇒ T0): T0
    Definition Classes
    AnyRef
  75. def toString(): String
    Definition Classes
    AnyRef → Any
  76. lazy val tupleClassConstructors: Map[InternalName, BTFS.MethodNameAndType]
  77. lazy val typeOfArrayOp: Map[Int, BTFS.BType]
  78. lazy val unboxResultType: Map[BTFS._$1.Symbol, BTFS.PrimitiveBType]

    Maps the method symbol for an unbox method to the primitive type of the result.

    Maps the method symbol for an unbox method to the primitive type of the result. For example, the method symbol for Byte.unbox()) is mapped to the PrimitiveBType BYTE.

  79. final def wait(): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  80. final def wait(arg0: Long, arg1: Int): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  81. final def wait(arg0: Long): Unit
    Definition Classes
    AnyRef
    Annotations
    @throws( ... )
  82. def [B](y: B): (CoreBTypes[BTFS], B)
    Implicit
    This member is added by an implicit conversion from CoreBTypes[BTFS] to ArrowAssoc[CoreBTypes[BTFS]] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc

Inherited from AnyRef

Inherited from Any

Inherited by implicit conversion any2stringadd from CoreBTypes[BTFS] to any2stringadd[CoreBTypes[BTFS]]

Inherited by implicit conversion StringFormat from CoreBTypes[BTFS] to StringFormat[CoreBTypes[BTFS]]

Inherited by implicit conversion Ensuring from CoreBTypes[BTFS] to Ensuring[CoreBTypes[BTFS]]

Inherited by implicit conversion ArrowAssoc from CoreBTypes[BTFS] to ArrowAssoc[CoreBTypes[BTFS]]

Ungrouped