Packages

t

scala.collection

StrictOptimizedSeqOps

trait StrictOptimizedSeqOps[+A, +CC[_], +C] extends SeqOps[A, CC, C] with StrictOptimizedIterableOps[A, CC, C]

Trait that overrides operations on sequences in order to take advantage of strict builders.

Source
StrictOptimizedSeqOps.scala
Linear Supertypes
StrictOptimizedIterableOps[A, CC, C], SeqOps[A, CC, C], IterableOps[A, CC, C], IterableOnceOps[A, CC, C], IterableOnce[A], Any
Type Hierarchy
Ordering
  1. Alphabetic
  2. By Inheritance
Inherited
  1. StrictOptimizedSeqOps
  2. StrictOptimizedIterableOps
  3. SeqOps
  4. IterableOps
  5. IterableOnceOps
  6. IterableOnce
  7. Any
Implicitly
  1. by iterableOnceExtensionMethods
  2. by any2stringadd
  3. by StringFormat
  4. by Ensuring
  5. by ArrowAssoc
  1. Hide All
  2. Show All
Visibility
  1. Public
  2. Protected

Abstract Value Members

  1. abstract def apply(i: Int): A

    Get the element at the specified index.

    Get the element at the specified index. This operation is provided for convenience in Seq. It should not be assumed to be efficient unless you have an IndexedSeq.

    Definition Classes
    SeqOps
    Annotations
    @throws(cause = scala.this.throws.<init>$default$1[IndexOutOfBoundsException])
  2. abstract def coll: C

    returns

    This collection as a C.

    Attributes
    protected
    Definition Classes
    IterableOps
  3. abstract def fromSpecific(coll: IterableOnce[A]): C

    Defines how to turn a given Iterable[A] into a collection of type C.

    Defines how to turn a given Iterable[A] into a collection of type C.

    This process can be done in a strict way or a non-strict way (ie. without evaluating the elements of the resulting collections). In other words, this methods defines the evaluation model of the collection.

    Attributes
    protected
    Definition Classes
    IterableOps
    Note

    When implementing a custom collection type and refining C to the new type, this method needs to be overridden (the compiler will issue an error otherwise). In the common case where C =:= CC[A], this can be done by mixing in the scala.collection.IterableFactoryDefaults trait, which implements the method using iterableFactory.

    ,

    As witnessed by the @uncheckedVariance annotation, using this method might be unsound. However, as long as it is called with an Iterable[A] obtained from this collection (as it is the case in the implementations of operations where we use a View[A]), it is safe.

  4. abstract def getClass(): Class[_ <: AnyRef]

    Returns the runtime class representation of the object.

    Returns the runtime class representation of the object.

    returns

    a class object corresponding to the runtime type of the receiver.

    Definition Classes
    Any
  5. abstract def iterableFactory: IterableFactory[CC]

    The companion object of this iterable collection, providing various factory methods.

    The companion object of this iterable collection, providing various factory methods.

    Definition Classes
    IterableOps
    Note

    When implementing a custom collection type and refining CC to the new type, this method needs to be overridden to return a factory for the new type (the compiler will issue an error otherwise).

  6. abstract def iterator: Iterator[A]

    Iterator can be used only once

    Iterator can be used only once

    Definition Classes
    IterableOnce
  7. abstract def length: Int

    The length (number of elements) of the sequence.

    The length (number of elements) of the sequence. size is an alias for length in Seq collections.

    Definition Classes
    SeqOps
  8. abstract def newSpecificBuilder: Builder[A, C]

    returns

    a strict builder for the same collection type. Note that in the case of lazy collections (e.g. scala.collection.View or scala.collection.immutable.LazyList), it is possible to implement this method but the resulting Builder will break laziness. As a consequence, operations should preferably be implemented with fromSpecific instead of this method.

    Attributes
    protected
    Definition Classes
    IterableOps
    Note

    When implementing a custom collection type and refining C to the new type, this method needs to be overridden (the compiler will issue an error otherwise). In the common case where C =:= CC[A], this can be done by mixing in the scala.collection.IterableFactoryDefaults trait, which implements the method using iterableFactory.

    ,

    As witnessed by the @uncheckedVariance annotation, using this method might be unsound. However, as long as the returned builder is only fed with A values taken from this instance, it is safe.

  9. abstract def toIterable: Iterable[A]

    returns

    This collection as an Iterable[A]. No new collection will be built if this is already an Iterable[A].

    Definition Classes
    IterableOps

Concrete Value Members

  1. final def !=(arg0: Any): Boolean

    Test two objects for inequality.

    Test two objects for inequality.

    returns

    true if !(this == that), false otherwise.

    Definition Classes
    Any
  2. final def ##: Int

    Equivalent to x.hashCode except for boxed numeric types and null.

    Equivalent to x.hashCode except for boxed numeric types and null. For numerics, it returns a hash value which is consistent with value equality: if two value type instances compare as true, then ## will produce the same hash value for each of them. For null returns a hashcode where null.hashCode throws a NullPointerException.

    returns

    a hash value consistent with ==

    Definition Classes
    Any
  3. def +(other: String): String
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toany2stringadd[StrictOptimizedSeqOps[A, CC, C]] performed by method any2stringadd in scala.Predef.
    Definition Classes
    any2stringadd
  4. final def ++[B >: A](suffix: IterableOnce[B]): CC[B]

    Alias for concat

    Alias for concat

    Definition Classes
    IterableOps
    Annotations
    @inline()
  5. final def ++:[B >: A](prefix: IterableOnce[B]): CC[B]

    Alias for prependedAll

    Alias for prependedAll

    Definition Classes
    SeqOpsIterableOps
    Annotations
    @inline()
  6. final def +:[B >: A](elem: B): CC[B]

    Alias for prepended.

    Alias for prepended.

    Note that :-ending operators are right associative (see example). A mnemonic for +: vs. :+ is: the COLon goes on the COLlection side.

    Definition Classes
    SeqOps
    Annotations
    @inline()
  7. def ->[B](y: B): (StrictOptimizedSeqOps[A, CC, C], B)
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toArrowAssoc[StrictOptimizedSeqOps[A, CC, C]] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc
    Annotations
    @inline()
  8. final def :+[B >: A](elem: B): CC[B]

    Alias for appended

    Alias for appended

    Note that :-ending operators are right associative (see example). A mnemonic for +: vs. :+ is: the COLon goes on the COLlection side.

    Definition Classes
    SeqOps
    Annotations
    @inline()
  9. final def :++[B >: A](suffix: IterableOnce[B]): CC[B]

    Alias for appendedAll

    Alias for appendedAll

    Definition Classes
    SeqOps
    Annotations
    @inline()
  10. final def ==(arg0: Any): Boolean

    Test two objects for equality.

    Test two objects for equality. The expression x == that is equivalent to if (x eq null) that eq null else x.equals(that).

    returns

    true if the receiver object is equivalent to the argument; false otherwise.

    Definition Classes
    Any
  11. final def addString(b: mutable.StringBuilder): mutable.StringBuilder

    Appends all elements of this collection to a string builder.

    Appends all elements of this collection to a string builder. The written text consists of the string representations (w.r.t. the method toString) of all elements of this collection without any separator string.

    Example:

    scala> val a = List(1,2,3,4)
    a: List[Int] = List(1, 2, 3, 4)
    
    scala> val b = new StringBuilder()
    b: StringBuilder =
    
    scala> val h = a.addString(b)
    h: StringBuilder = 1234
    b

    the string builder to which elements are appended.

    returns

    the string builder b to which elements were appended.

    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  12. final def addString(b: mutable.StringBuilder, sep: String): mutable.StringBuilder

    Appends all elements of this collection to a string builder using a separator string.

    Appends all elements of this collection to a string builder using a separator string. The written text consists of the string representations (w.r.t. the method toString) of all elements of this collection, separated by the string sep.

    Example:

    scala> val a = List(1,2,3,4)
    a: List[Int] = List(1, 2, 3, 4)
    
    scala> val b = new StringBuilder()
    b: StringBuilder =
    
    scala> a.addString(b, ", ")
    res0: StringBuilder = 1, 2, 3, 4
    b

    the string builder to which elements are appended.

    sep

    the separator string.

    returns

    the string builder b to which elements were appended.

    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  13. def addString(b: mutable.StringBuilder, start: String, sep: String, end: String): mutable.StringBuilder

    Appends all elements of this collection to a string builder using start, end, and separator strings.

    Appends all elements of this collection to a string builder using start, end, and separator strings. The written text begins with the string start and ends with the string end. Inside, the string representations (w.r.t. the method toString) of all elements of this collection are separated by the string sep.

    Example:

    scala> val a = List(1,2,3,4)
    a: List[Int] = List(1, 2, 3, 4)
    
    scala> val b = new StringBuilder()
    b: StringBuilder =
    
    scala> a.addString(b , "List(" , ", " , ")")
    res5: StringBuilder = List(1, 2, 3, 4)
    b

    the string builder to which elements are appended.

    start

    the starting string.

    sep

    the separator string.

    end

    the ending string.

    returns

    the string builder b to which elements were appended.

    Definition Classes
    IterableOnceOps
  14. def appended[B >: A](elem: B): CC[B]

    A copy of this sequence with an element appended.

    A copy of this sequence with an element appended.

    Note: will not terminate for infinite-sized collections.

    Example:

    scala> val a = List(1)
    a: List[Int] = List(1)
    
    scala> val b = a :+ 2
    b: List[Int] = List(1, 2)
    
    scala> println(a)
    List(1)
    B

    the element type of the returned sequence.

    elem

    the appended element

    returns

    a new sequence consisting of all elements of this sequence followed by value.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  15. def appendedAll[B >: A](suffix: IterableOnce[B]): CC[B]

    Returns a new sequence containing the elements from the left hand operand followed by the elements from the right hand operand.

    Returns a new sequence containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the sequence is the most specific superclass encompassing the element types of the two operands.

    B

    the element type of the returned collection.

    suffix

    the iterable to append.

    returns

    a new collection of type CC[B] which contains all elements of this sequence followed by all elements of suffix.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  16. final def asInstanceOf[T0]: T0

    Cast the receiver object to be of type T0.

    Cast the receiver object to be of type T0.

    Note that the success of a cast at runtime is modulo Scala's erasure semantics. Therefore the expression 1.asInstanceOf[String] will throw a ClassCastException at runtime, while the expression List(1).asInstanceOf[List[String]] will not. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the requested type.

    returns

    the receiver object.

    Definition Classes
    Any
    Exceptions thrown

    ClassCastException if the receiver object is not an instance of the erasure of type T0.

  17. def collect[B](pf: PartialFunction[A, B]): CC[B]

    Builds a new iterable collection by applying a partial function to all elements of this iterable collection on which the function is defined.

    Builds a new iterable collection by applying a partial function to all elements of this iterable collection on which the function is defined.

    B

    the element type of the returned iterable collection.

    pf

    the partial function which filters and maps the iterable collection.

    returns

    a new iterable collection resulting from applying the given partial function pf to each element on which it is defined and collecting the results. The order of the elements is preserved.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  18. def collectFirst[B](pf: PartialFunction[A, B]): Option[B]

    Finds the first element of the collection for which the given partial function is defined, and applies the partial function to it.

    Finds the first element of the collection for which the given partial function is defined, and applies the partial function to it.

    Note: may not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    pf

    the partial function

    returns

    an option value containing pf applied to the first value for which it is defined, or None if none exists.

    Definition Classes
    IterableOnceOps
    Example:
    1. Seq("a", 1, 5L).collectFirst({ case x: Int => x*10 }) = Some(10)

  19. def combinations(n: Int): Iterator[C]

    Iterates over combinations.

    Iterates over combinations. A _combination_ of length n is a subsequence of the original sequence, with the elements taken in order. Thus, "xy" and "yy" are both length-2 combinations of "xyy", but "yx" is not. If there is more than one way to generate the same subsequence, only one will be returned.

    For example, "xyyy" has three different ways to generate "xy" depending on whether the first, second, or third "y" is selected. However, since all are identical, only one will be chosen. Which of the three will be taken is an implementation detail that is not defined.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    returns

    An Iterator which traverses the possible n-element combinations of this sequence.

    Definition Classes
    SeqOps
    Example:
    1. "abbbc".combinations(2) = Iterator(ab, ac, bb, bc)

  20. final def concat[B >: A](suffix: IterableOnce[B]): CC[B]

    Returns a new sequence containing the elements from the left hand operand followed by the elements from the right hand operand.

    Returns a new sequence containing the elements from the left hand operand followed by the elements from the right hand operand. The element type of the sequence is the most specific superclass encompassing the element types of the two operands.

    B

    the element type of the returned collection.

    suffix

    the traversable to append.

    returns

    a new sequence which contains all elements of this sequence followed by all elements of suffix.

    Definition Classes
    SeqOpsIterableOps
    Annotations
    @inline()
  21. def contains[A1 >: A](elem: A1): Boolean

    Tests whether this sequence contains a given value as an element.

    Tests whether this sequence contains a given value as an element.

    Note: may not terminate for infinite-sized collections.

    elem

    the element to test.

    returns

    true if this sequence has an element that is equal (as determined by ==) to elem, false otherwise.

    Definition Classes
    SeqOps
  22. def containsSlice[B](that: Seq[B]): Boolean

    Tests whether this sequence contains a given sequence as a slice.

    Tests whether this sequence contains a given sequence as a slice.

    Note: may not terminate for infinite-sized collections.

    that

    the sequence to test

    returns

    true if this sequence contains a slice with the same elements as that, otherwise false.

    Definition Classes
    SeqOps
  23. def copyToArray[B >: A](xs: Array[B], start: Int, len: Int): Int

    Copy elements to an array, returning the number of elements written.

    Copy elements to an array, returning the number of elements written.

    Fills the given array xs starting at index start with at most len elements of this collection.

    Copying will stop once either all the elements of this collection have been copied, or the end of the array is reached, or len elements have been copied.

    B

    the type of the elements of the array.

    xs

    the array to fill.

    start

    the starting index of xs.

    len

    the maximal number of elements to copy.

    returns

    the number of elements written to the array

    Definition Classes
    IterableOnceOps
    Note

    Reuse: After calling this method, one should discard the iterator it was called on. Using it is undefined and subject to change. Note: will not terminate for infinite-sized collections.

  24. def copyToArray[B >: A](xs: Array[B], start: Int): Int

    Copy elements to an array, returning the number of elements written.

    Copy elements to an array, returning the number of elements written.

    Fills the given array xs starting at index start with values of this collection.

    Copying will stop once either all the elements of this collection have been copied, or the end of the array is reached.

    B

    the type of the elements of the array.

    xs

    the array to fill.

    start

    the starting index of xs.

    returns

    the number of elements written to the array Note: will not terminate for infinite-sized collections.

    Definition Classes
    IterableOnceOps
  25. def copyToArray[B >: A](xs: Array[B]): Int

    Copy elements to an array, returning the number of elements written.

    Copy elements to an array, returning the number of elements written.

    Fills the given array xs starting at index start with values of this collection.

    Copying will stop once either all the elements of this collection have been copied, or the end of the array is reached.

    B

    the type of the elements of the array.

    xs

    the array to fill.

    returns

    the number of elements written to the array Note: will not terminate for infinite-sized collections.

    Definition Classes
    IterableOnceOps
  26. def corresponds[B](that: Seq[B])(p: (A, B) => Boolean): Boolean

    Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate.

    Tests whether every element of this sequence relates to the corresponding element of another sequence by satisfying a test predicate.

    B

    the type of the elements of that

    that

    the other sequence

    p

    the test predicate, which relates elements from both sequences

    returns

    true if both sequences have the same length and p(x, y) is true for all corresponding elements x of this sequence and y of that, otherwise false.

    Definition Classes
    SeqOps
  27. def corresponds[B](that: IterableOnce[B])(p: (A, B) => Boolean): Boolean

    Tests whether every element of this collection's iterator relates to the corresponding element of another collection by satisfying a test predicate.

    Tests whether every element of this collection's iterator relates to the corresponding element of another collection by satisfying a test predicate.

    Note: will not terminate for infinite-sized collections.

    B

    the type of the elements of that

    that

    the other collection

    p

    the test predicate, which relates elements from both collections

    returns

    true if both collections have the same length and p(x, y) is true for all corresponding elements x of this iterator and y of that, otherwise false

    Definition Classes
    IterableOnceOps
  28. def count(p: (A) => Boolean): Int

    Counts the number of elements in the collection which satisfy a predicate.

    Counts the number of elements in the collection which satisfy a predicate.

    Note: will not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    the number of elements satisfying the predicate p.

    Definition Classes
    IterableOnceOps
  29. def diff[B >: A](that: Seq[B]): C

    Computes the multiset difference between this sequence and another sequence.

    Computes the multiset difference between this sequence and another sequence.

    that

    the sequence of elements to remove

    returns

    a new sequence which contains all elements of this sequence except some of occurrences of elements that also appear in that. If an element value x appears n times in that, then the first n occurrences of x will not form part of the result, but any following occurrences will.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  30. def distinct: C

    Selects all the elements of this sequence ignoring the duplicates.

    Selects all the elements of this sequence ignoring the duplicates.

    returns

    a new sequence consisting of all the elements of this sequence without duplicates.

    Definition Classes
    SeqOps
  31. def distinctBy[B](f: (A) => B): C

    Selects all the elements of this sequence ignoring the duplicates as determined by == after applying the transforming function f.

    Selects all the elements of this sequence ignoring the duplicates as determined by == after applying the transforming function f.

    B

    the type of the elements after being transformed by f

    f

    The transforming function whose result is used to determine the uniqueness of each element

    returns

    a new sequence consisting of all the elements of this sequence without duplicates.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  32. def drop(n: Int): C

    Selects all elements except first n ones.

    Selects all elements except first n ones.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    n

    the number of elements to drop from this iterable collection.

    returns

    a iterable collection consisting of all elements of this iterable collection except the first n ones, or else the empty iterable collection, if this iterable collection has less than n elements. If n is negative, don't drop any elements.

    Definition Classes
    IterableOpsIterableOnceOps
  33. def dropRight(n: Int): C

    The rest of the collection without its n last elements.

    The rest of the collection without its n last elements. For linear, immutable collections this should avoid making a copy.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    n

    the number of elements to drop from this iterable collection.

    returns

    a iterable collection consisting of all elements of this iterable collection except the last n ones, or else the empty iterable collection, if this iterable collection has less than n elements. If n is negative, don't drop any elements.

    Definition Classes
    StrictOptimizedIterableOpsIterableOps
  34. def dropWhile(p: (A) => Boolean): C

    Drops longest prefix of elements that satisfy a predicate.

    Drops longest prefix of elements that satisfy a predicate.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    p

    The predicate used to test elements.

    returns

    the longest suffix of this iterable collection whose first element does not satisfy the predicate p.

    Definition Classes
    IterableOpsIterableOnceOps
  35. def empty: C

    The empty iterable of the same type as this iterable

    The empty iterable of the same type as this iterable

    returns

    an empty iterable of type C.

    Definition Classes
    IterableOps
  36. def endsWith[B >: A](that: Iterable[B]): Boolean

    Tests whether this sequence ends with the given sequence.

    Tests whether this sequence ends with the given sequence.

    Note: will not terminate for infinite-sized collections.

    that

    the sequence to test

    returns

    true if this sequence has that as a suffix, false otherwise.

    Definition Classes
    SeqOps
  37. def ensuring(cond: (StrictOptimizedSeqOps[A, CC, C]) => Boolean, msg: => Any): StrictOptimizedSeqOps[A, CC, C]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toEnsuring[StrictOptimizedSeqOps[A, CC, C]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  38. def ensuring(cond: (StrictOptimizedSeqOps[A, CC, C]) => Boolean): StrictOptimizedSeqOps[A, CC, C]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toEnsuring[StrictOptimizedSeqOps[A, CC, C]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  39. def ensuring(cond: Boolean, msg: => Any): StrictOptimizedSeqOps[A, CC, C]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toEnsuring[StrictOptimizedSeqOps[A, CC, C]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  40. def ensuring(cond: Boolean): StrictOptimizedSeqOps[A, CC, C]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toEnsuring[StrictOptimizedSeqOps[A, CC, C]] performed by method Ensuring in scala.Predef.
    Definition Classes
    Ensuring
  41. def equals(arg0: Any): Boolean

    Compares the receiver object (this) with the argument object (that) for equivalence.

    Compares the receiver object (this) with the argument object (that) for equivalence.

    Any implementation of this method should be an equivalence relation:

    • It is reflexive: for any instance x of type Any, x.equals(x) should return true.
    • It is symmetric: for any instances x and y of type Any, x.equals(y) should return true if and only if y.equals(x) returns true.
    • It is transitive: for any instances x, y, and z of type Any if x.equals(y) returns true and y.equals(z) returns true, then x.equals(z) should return true.

    If you override this method, you should verify that your implementation remains an equivalence relation. Additionally, when overriding this method it is usually necessary to override hashCode to ensure that objects which are "equal" (o1.equals(o2) returns true) hash to the same scala.Int. (o1.hashCode.equals(o2.hashCode)).

    returns

    true if the receiver object is equivalent to the argument; false otherwise.

    Definition Classes
    Any
  42. def exists(p: (A) => Boolean): Boolean

    Tests whether a predicate holds for at least one element of this collection.

    Tests whether a predicate holds for at least one element of this collection.

    Note: may not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    true if the given predicate p is satisfied by at least one element of this collection, otherwise false

    Definition Classes
    IterableOnceOps
  43. def filter(pred: (A) => Boolean): C

    Selects all elements of this iterable collection which satisfy a predicate.

    Selects all elements of this iterable collection which satisfy a predicate.

    returns

    a new iterator consisting of all elements of this iterable collection that satisfy the given predicate p. The order of the elements is preserved.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  44. def filterImpl(pred: (A) => Boolean, isFlipped: Boolean): C
    Attributes
    protected[collection]
    Definition Classes
    StrictOptimizedIterableOps
  45. def filterNot(pred: (A) => Boolean): C

    Selects all elements of this iterable collection which do not satisfy a predicate.

    Selects all elements of this iterable collection which do not satisfy a predicate.

    pred

    the predicate used to test elements.

    returns

    a new iterable collection consisting of all elements of this iterable collection that do not satisfy the given predicate pred. Their order may not be preserved.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  46. def find(p: (A) => Boolean): Option[A]

    Finds the first element of the collection satisfying a predicate, if any.

    Finds the first element of the collection satisfying a predicate, if any.

    Note: may not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    p

    the predicate used to test elements.

    returns

    an option value containing the first element in the collection that satisfies p, or None if none exists.

    Definition Classes
    IterableOnceOps
  47. def findLast(p: (A) => Boolean): Option[A]

    Finds the last element of the sequence satisfying a predicate, if any.

    Finds the last element of the sequence satisfying a predicate, if any.

    Note: will not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    an option value containing the last element in the sequence that satisfies p, or None if none exists.

    Definition Classes
    SeqOps
  48. def flatMap[B](f: (A) => IterableOnce[B]): CC[B]

    Builds a new iterable collection by applying a function to all elements of this iterable collection and using the elements of the resulting collections.

    Builds a new iterable collection by applying a function to all elements of this iterable collection and using the elements of the resulting collections.

    For example:

    def getWords(lines: Seq[String]): Seq[String] = lines flatMap (line => line split "\\W+")

    The type of the resulting collection is guided by the static type of iterable collection. This might cause unexpected results sometimes. For example:

    // lettersOf will return a Seq[Char] of likely repeated letters, instead of a Set
    def lettersOf(words: Seq[String]) = words flatMap (word => word.toSet)
    
    // lettersOf will return a Set[Char], not a Seq
    def lettersOf(words: Seq[String]) = words.toSet flatMap ((word: String) => word.toSeq)
    
    // xs will be an Iterable[Int]
    val xs = Map("a" -> List(11,111), "b" -> List(22,222)).flatMap(_._2)
    
    // ys will be a Map[Int, Int]
    val ys = Map("a" -> List(1 -> 11,1 -> 111), "b" -> List(2 -> 22,2 -> 222)).flatMap(_._2)
    B

    the element type of the returned collection.

    f

    the function to apply to each element.

    returns

    a new iterable collection resulting from applying the given collection-valued function f to each element of this iterable collection and concatenating the results.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  49. def flatten[B](implicit toIterableOnce: (A) => IterableOnce[B]): CC[B]

    Converts this iterable collection of traversable collections into a iterable collection formed by the elements of these traversable collections.

    Converts this iterable collection of traversable collections into a iterable collection formed by the elements of these traversable collections.

    The resulting collection's type will be guided by the type of iterable collection. For example:

    val xs = List(
               Set(1, 2, 3),
               Set(1, 2, 3)
             ).flatten
    // xs == List(1, 2, 3, 1, 2, 3)
    
    val ys = Set(
               List(1, 2, 3),
               List(3, 2, 1)
             ).flatten
    // ys == Set(1, 2, 3)
    B

    the type of the elements of each traversable collection.

    returns

    a new iterable collection resulting from concatenating all element iterable collections.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  50. def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1

    Folds the elements of this collection using the specified associative binary operator.

    Folds the elements of this collection using the specified associative binary operator. The default implementation in IterableOnce is equivalent to foldLeft but may be overridden for more efficient traversal orders.

    The order in which operations are performed on elements is unspecified and may be nondeterministic.

    Note: will not terminate for infinite-sized collections.

    A1

    a type parameter for the binary operator, a supertype of A.

    z

    a neutral element for the fold operation; may be added to the result an arbitrary number of times, and must not change the result (e.g., Nil for list concatenation, 0 for addition, or 1 for multiplication).

    op

    a binary operator that must be associative.

    returns

    the result of applying the fold operator op between all the elements and z, or z if this collection is empty.

    Definition Classes
    IterableOnceOps
  51. def foldLeft[B](z: B)(op: (B, A) => B): B

    Applies a binary operator to a start value and all elements of this collection, going left to right.

    Applies a binary operator to a start value and all elements of this collection, going left to right.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

    B

    the result type of the binary operator.

    z

    the start value.

    op

    the binary operator.

    returns

    the result of inserting op between consecutive elements of this collection, going left to right with the start value z on the left:

    op(...op(z, x_1), x_2, ..., x_n)

    where x1, ..., xn are the elements of this collection. Returns z if this collection is empty.

    Definition Classes
    IterableOnceOps
  52. def foldRight[B](z: B)(op: (A, B) => B): B

    Applies a binary operator to all elements of this collection and a start value, going right to left.

    Applies a binary operator to all elements of this collection and a start value, going right to left.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

    B

    the result type of the binary operator.

    z

    the start value.

    op

    the binary operator.

    returns

    the result of inserting op between consecutive elements of this collection, going right to left with the start value z on the right:

    op(x_1, op(x_2, ... op(x_n, z)...))

    where x1, ..., xn are the elements of this collection. Returns z if this collection is empty.

    Definition Classes
    IterableOnceOps
  53. def forall(p: (A) => Boolean): Boolean

    Tests whether a predicate holds for all elements of this collection.

    Tests whether a predicate holds for all elements of this collection.

    Note: may not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    true if this collection is empty or the given predicate p holds for all elements of this collection, otherwise false.

    Definition Classes
    IterableOnceOps
  54. def foreach[U](f: (A) => U): Unit

    Apply f to each element for its side effects Note: [U] parameter needed to help scalac's type inference.

    Apply f to each element for its side effects Note: [U] parameter needed to help scalac's type inference.

    Definition Classes
    IterableOnceOps
  55. def formatted(fmtstr: String): String

    Returns string formatted according to given format string.

    Returns string formatted according to given format string. Format strings are as for String.format (@see java.lang.String.format).

    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toStringFormat[StrictOptimizedSeqOps[A, CC, C]] performed by method StringFormat in scala.Predef.
    Definition Classes
    StringFormat
    Annotations
    @inline()
  56. def groupBy[K](f: (A) => K): immutable.Map[K, C]

    Partitions this iterable collection into a map of iterable collections according to some discriminator function.

    Partitions this iterable collection into a map of iterable collections according to some discriminator function.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    K

    the type of keys returned by the discriminator function.

    f

    the discriminator function.

    returns

    A map from keys to iterable collections such that the following invariant holds:

    (xs groupBy f)(k) = xs filter (x => f(x) == k)

    That is, every key k is bound to a iterable collection of those elements x for which f(x) equals k.

    Definition Classes
    IterableOps
  57. def groupMap[K, B](key: (A) => K)(f: (A) => B): immutable.Map[K, CC[B]]

    Partitions this iterable collection into a map of iterable collections according to a discriminator function key.

    Partitions this iterable collection into a map of iterable collections according to a discriminator function key. Each element in a group is transformed into a value of type B using the value function.

    It is equivalent to groupBy(key).mapValues(_.map(f)), but more efficient.

    case class User(name: String, age: Int)
    
    def namesByAge(users: Seq[User]): Map[Int, Seq[String]] =
      users.groupMap(_.age)(_.name)

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    K

    the type of keys returned by the discriminator function

    B

    the type of values returned by the transformation function

    key

    the discriminator function

    f

    the element transformation function

    Definition Classes
    IterableOps
  58. def groupMapReduce[K, B](key: (A) => K)(f: (A) => B)(reduce: (B, B) => B): immutable.Map[K, B]

    Partitions this iterable collection into a map according to a discriminator function key.

    Partitions this iterable collection into a map according to a discriminator function key. All the values that have the same discriminator are then transformed by the value function and then reduced into a single value with the reduce function.

    It is equivalent to groupBy(key).mapValues(_.map(f).reduce(reduce)), but more efficient.

    def occurrences[A](as: Seq[A]): Map[A, Int] =
      as.groupMapReduce(identity)(_ => 1)(_ + _)

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    Definition Classes
    IterableOps
  59. def grouped(size: Int): Iterator[C]

    Partitions elements in fixed size iterable collections.

    Partitions elements in fixed size iterable collections.

    size

    the number of elements per group

    returns

    An iterator producing iterable collections of size size, except the last will be less than size size if the elements don't divide evenly.

    Definition Classes
    IterableOps
    See also

    scala.collection.Iterator, method grouped

  60. def hashCode(): Int

    Calculate a hash code value for the object.

    Calculate a hash code value for the object.

    The default hashing algorithm is platform dependent.

    Note that it is allowed for two objects to have identical hash codes (o1.hashCode.equals(o2.hashCode)) yet not be equal (o1.equals(o2) returns false). A degenerate implementation could always return 0. However, it is required that if two objects are equal (o1.equals(o2) returns true) that they have identical hash codes (o1.hashCode.equals(o2.hashCode)). Therefore, when overriding this method, be sure to verify that the behavior is consistent with the equals method.

    returns

    the hash code value for this object.

    Definition Classes
    Any
  61. def head: A

    Selects the first element of this iterable collection.

    Selects the first element of this iterable collection.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    returns

    the first element of this iterable collection.

    Definition Classes
    IterableOps
    Exceptions thrown

    NoSuchElementException if the iterable collection is empty.

  62. def headOption: Option[A]

    Optionally selects the first element.

    Optionally selects the first element.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    returns

    the first element of this iterable collection if it is nonempty, None if it is empty.

    Definition Classes
    IterableOps
  63. def indexOf[B >: A](elem: B): Int

    Finds index of first occurrence of some value in this sequence.

    Finds index of first occurrence of some value in this sequence.

    B

    the type of the element elem.

    elem

    the element value to search for.

    returns

    the index >= 0 of the first element of this sequence that is equal (as determined by ==) to elem, or -1, if none exists.

    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding(message = "Override indexOf(elem, from) instead - indexOf(elem) calls indexOf(elem, 0)", since = "2.13.0")
  64. def indexOf[B >: A](elem: B, from: Int): Int

    Finds index of first occurrence of some value in this sequence after or at some start index.

    Finds index of first occurrence of some value in this sequence after or at some start index.

    B

    the type of the element elem.

    elem

    the element value to search for.

    from

    the start index

    returns

    the index >= from of the first element of this sequence that is equal (as determined by ==) to elem, or -1, if none exists.

    Definition Classes
    SeqOps
  65. def indexOfSlice[B >: A](that: Seq[B]): Int

    Finds first index where this sequence contains a given sequence as a slice.

    Finds first index where this sequence contains a given sequence as a slice.

    Note: may not terminate for infinite-sized collections.

    that

    the sequence to test

    returns

    the first index >= 0 such that the elements of this sequence starting at this index match the elements of sequence that, or -1 of no such subsequence exists.

    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding(message = "Override indexOfSlice(that, from) instead - indexOfSlice(that) calls indexOfSlice(that, 0)", since = "2.13.0")
  66. def indexOfSlice[B >: A](that: Seq[B], from: Int): Int

    Finds first index after or at a start index where this sequence contains a given sequence as a slice.

    Finds first index after or at a start index where this sequence contains a given sequence as a slice.

    Note: may not terminate for infinite-sized collections.

    that

    the sequence to test

    from

    the start index

    returns

    the first index >= from such that the elements of this sequence starting at this index match the elements of sequence that, or -1 of no such subsequence exists.

    Definition Classes
    SeqOps
  67. def indexWhere(p: (A) => Boolean): Int

    Finds index of the first element satisfying some predicate.

    Finds index of the first element satisfying some predicate.

    Note: may not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    the index >= 0 of the first element of this sequence that satisfies the predicate p, or -1, if none exists.

    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding(message = "Override indexWhere(p, from) instead - indexWhere(p) calls indexWhere(p, 0)", since = "2.13.0")
  68. def indexWhere(p: (A) => Boolean, from: Int): Int

    Finds index of the first element satisfying some predicate after or at some start index.

    Finds index of the first element satisfying some predicate after or at some start index.

    Note: may not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    from

    the start index

    returns

    the index >= from of the first element of this sequence that satisfies the predicate p, or -1, if none exists.

    Definition Classes
    SeqOps
  69. def indices: immutable.Range

    Produces the range of all indices of this sequence.

    Produces the range of all indices of this sequence.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    returns

    a Range value from 0 to one less than the length of this sequence.

    Definition Classes
    SeqOps
  70. def init: C

    The initial part of the collection without its last element.

    The initial part of the collection without its last element.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    Definition Classes
    IterableOps
  71. def inits: Iterator[C]

    Iterates over the inits of this iterable collection.

    Iterates over the inits of this iterable collection. The first value will be this iterable collection and the final one will be an empty iterable collection, with the intervening values the results of successive applications of init.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    returns

    an iterator over all the inits of this iterable collection

    Definition Classes
    IterableOps
    Example:
    1. List(1,2,3).inits = Iterator(List(1,2,3), List(1,2), List(1), Nil)

  72. def intersect[B >: A](that: Seq[B]): C

    Computes the multiset intersection between this sequence and another sequence.

    Computes the multiset intersection between this sequence and another sequence.

    that

    the sequence of elements to intersect with.

    returns

    a new sequence which contains all elements of this sequence which also appear in that. If an element value x appears n times in that, then the first n occurrences of x will be retained in the result, but any following occurrences will be omitted.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  73. def isDefinedAt(idx: Int): Boolean

    Tests whether this sequence contains given index.

    Tests whether this sequence contains given index.

    The implementations of methods apply and isDefinedAt turn a Seq[A] into a PartialFunction[Int, A].

    idx

    the index to test

    returns

    true if this sequence contains an element at position idx, false otherwise.

    Definition Classes
    SeqOps
  74. def isEmpty: Boolean

    Tests whether the sequence is empty.

    Tests whether the sequence is empty.

    Note: Implementations in subclasses that are not repeatedly traversable must take care not to consume any elements when isEmpty is called.

    returns

    true if the sequence contains no elements, false otherwise.

    Definition Classes
    SeqOpsIterableOnceOps
  75. final def isInstanceOf[T0]: Boolean

    Test whether the dynamic type of the receiver object is T0.

    Test whether the dynamic type of the receiver object is T0.

    Note that the result of the test is modulo Scala's erasure semantics. Therefore the expression 1.isInstanceOf[String] will return false, while the expression List(1).isInstanceOf[List[String]] will return true. In the latter example, because the type argument is erased as part of compilation it is not possible to check whether the contents of the list are of the specified type.

    returns

    true if the receiver object is an instance of erasure of type T0; false otherwise.

    Definition Classes
    Any
  76. def isTraversableAgain: Boolean

    Tests whether this iterable collection can be repeatedly traversed.

    Tests whether this iterable collection can be repeatedly traversed. Always true for Iterables and false for Iterators unless overridden.

    returns

    true if it is repeatedly traversable, false otherwise.

    Definition Classes
    IterableOpsIterableOnceOps
  77. def knownSize: Int

    returns

    The number of elements in this collection, if it can be cheaply computed, -1 otherwise. Cheaply usually means: Not requiring a collection traversal.

    Definition Classes
    IterableOnce
  78. def last: A

    Selects the last element.

    Selects the last element.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    returns

    The last element of this iterable collection.

    Definition Classes
    IterableOps
    Exceptions thrown

    NoSuchElementException If the iterable collection is empty.

  79. def lastIndexOf[B >: A](elem: B, end: Int = length - 1): Int

    Finds index of last occurrence of some value in this sequence before or at a given end index.

    Finds index of last occurrence of some value in this sequence before or at a given end index.

    Note: will not terminate for infinite-sized collections.

    B

    the type of the element elem.

    elem

    the element value to search for.

    end

    the end index.

    returns

    the index <= end of the last element of this sequence that is equal (as determined by ==) to elem, or -1, if none exists.

    Definition Classes
    SeqOps
  80. def lastIndexOfSlice[B >: A](that: Seq[B]): Int

    Finds last index where this sequence contains a given sequence as a slice.

    Finds last index where this sequence contains a given sequence as a slice.

    Note: will not terminate for infinite-sized collections.

    that

    the sequence to test

    returns

    the last index such that the elements of this sequence starting at this index match the elements of sequence that, or -1 of no such subsequence exists.

    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding(message = "Override lastIndexOfSlice(that, end) instead - lastIndexOfSlice(that) calls lastIndexOfSlice(that, Int.MaxValue)", since = "2.13.0")
  81. def lastIndexOfSlice[B >: A](that: Seq[B], end: Int): Int

    Finds last index before or at a given end index where this sequence contains a given sequence as a slice.

    Finds last index before or at a given end index where this sequence contains a given sequence as a slice.

    Note: will not terminate for infinite-sized collections.

    that

    the sequence to test

    end

    the end index

    returns

    the last index <= end such that the elements of this sequence starting at this index match the elements of sequence that, or -1 of no such subsequence exists.

    Definition Classes
    SeqOps
  82. def lastIndexWhere(p: (A) => Boolean): Int

    Finds index of last element satisfying some predicate.

    Finds index of last element satisfying some predicate.

    Note: will not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    the index of the last element of this sequence that satisfies the predicate p, or -1, if none exists.

    Definition Classes
    SeqOps
    Annotations
    @deprecatedOverriding(message = "Override lastIndexWhere(p, end) instead - lastIndexWhere(p) calls lastIndexWhere(p, Int.MaxValue)", since = "2.13.0")
  83. def lastIndexWhere(p: (A) => Boolean, end: Int): Int

    Finds index of last element satisfying some predicate before or at given end index.

    Finds index of last element satisfying some predicate before or at given end index.

    Note: will not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    the index <= end of the last element of this sequence that satisfies the predicate p, or -1, if none exists.

    Definition Classes
    SeqOps
  84. def lastOption: Option[A]

    Optionally selects the last element.

    Optionally selects the last element.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    returns

    the last element of this iterable collection$ if it is nonempty, None if it is empty.

    Definition Classes
    IterableOps
  85. def lengthCompare(that: Iterable[_]): Int

    Compares the length of this sequence to the size of another Iterable.

    Compares the length of this sequence to the size of another Iterable.

    that

    the Iterable whose size is compared with this sequence's length.

    returns

    A value x where

    x <  0       if this.length <  that.size
    x == 0       if this.length == that.size
    x >  0       if this.length >  that.size

    The method as implemented here does not call length or size directly; its running time is O(this.length min that.size) instead of O(this.length + that.size). The method should be overridden if computing size is cheap and knownSize returns -1.

    Definition Classes
    SeqOps
  86. def lengthCompare(len: Int): Int

    Compares the length of this sequence to a test value.

    Compares the length of this sequence to a test value.

    len

    the test value that gets compared with the length.

    returns

    A value x where

    x <  0       if this.length <  len
    x == 0       if this.length == len
    x >  0       if this.length >  len

    The method as implemented here does not call length directly; its running time is O(length min len) instead of O(length). The method should be overridden if computing length is cheap and knownSize returns -1.

    Definition Classes
    SeqOps
    See also

    lengthIs

  87. final def lengthIs: SizeCompareOps

    Returns a value class containing operations for comparing the length of this sequence to a test value.

    Returns a value class containing operations for comparing the length of this sequence to a test value.

    These operations are implemented in terms of lengthCompare(Int), and allow the following more readable usages:

    this.lengthIs < len     // this.lengthCompare(len) < 0
    this.lengthIs <= len    // this.lengthCompare(len) <= 0
    this.lengthIs == len    // this.lengthCompare(len) == 0
    this.lengthIs != len    // this.lengthCompare(len) != 0
    this.lengthIs >= len    // this.lengthCompare(len) >= 0
    this.lengthIs > len     // this.lengthCompare(len) > 0
    Definition Classes
    SeqOps
    Annotations
    @inline()
  88. def map[B](f: (A) => B): CC[B]

    Builds a new iterable collection by applying a function to all elements of this iterable collection.

    Builds a new iterable collection by applying a function to all elements of this iterable collection.

    B

    the element type of the returned iterable collection.

    f

    the function to apply to each element.

    returns

    a new iterable collection resulting from applying the given function f to each element of this iterable collection and collecting the results.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  89. def max[B >: A](implicit ord: math.Ordering[B]): A

    Finds the largest element.

    Finds the largest element.

    Note: will not terminate for infinite-sized collections.

    B

    The type over which the ordering is defined.

    ord

    An ordering to be used for comparing elements.

    returns

    the largest element of this collection with respect to the ordering ord.

    Definition Classes
    IterableOnceOps
    Exceptions thrown

    UnsupportedOperationException if this collection is empty.

  90. def maxBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A

    Finds the first element which yields the largest value measured by function f.

    Finds the first element which yields the largest value measured by function f.

    Note: will not terminate for infinite-sized collections.

    B

    The result type of the function f.

    f

    The measuring function.

    cmp

    An ordering to be used for comparing elements.

    returns

    the first element of this collection with the largest value measured by function f with respect to the ordering cmp.

    Definition Classes
    IterableOnceOps
    Exceptions thrown

    UnsupportedOperationException if this collection is empty.

  91. def maxByOption[B](f: (A) => B)(implicit cmp: math.Ordering[B]): Option[A]

    Finds the first element which yields the largest value measured by function f.

    Finds the first element which yields the largest value measured by function f.

    Note: will not terminate for infinite-sized collections.

    B

    The result type of the function f.

    f

    The measuring function.

    cmp

    An ordering to be used for comparing elements.

    returns

    an option value containing the first element of this collection with the largest value measured by function f with respect to the ordering cmp.

    Definition Classes
    IterableOnceOps
  92. def maxOption[B >: A](implicit ord: math.Ordering[B]): Option[A]

    Finds the largest element.

    Finds the largest element.

    Note: will not terminate for infinite-sized collections.

    B

    The type over which the ordering is defined.

    ord

    An ordering to be used for comparing elements.

    returns

    an option value containing the largest element of this collection with respect to the ordering ord.

    Definition Classes
    IterableOnceOps
  93. def min[B >: A](implicit ord: math.Ordering[B]): A

    Finds the smallest element.

    Finds the smallest element.

    Note: will not terminate for infinite-sized collections.

    B

    The type over which the ordering is defined.

    ord

    An ordering to be used for comparing elements.

    returns

    the smallest element of this collection with respect to the ordering ord.

    Definition Classes
    IterableOnceOps
    Exceptions thrown

    UnsupportedOperationException if this collection is empty.

  94. def minBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A

    Finds the first element which yields the smallest value measured by function f.

    Finds the first element which yields the smallest value measured by function f.

    Note: will not terminate for infinite-sized collections.

    B

    The result type of the function f.

    f

    The measuring function.

    cmp

    An ordering to be used for comparing elements.

    returns

    the first element of this collection with the smallest value measured by function f with respect to the ordering cmp.

    Definition Classes
    IterableOnceOps
    Exceptions thrown

    UnsupportedOperationException if this collection is empty.

  95. def minByOption[B](f: (A) => B)(implicit cmp: math.Ordering[B]): Option[A]

    Finds the first element which yields the smallest value measured by function f.

    Finds the first element which yields the smallest value measured by function f.

    Note: will not terminate for infinite-sized collections.

    B

    The result type of the function f.

    f

    The measuring function.

    cmp

    An ordering to be used for comparing elements.

    returns

    an option value containing the first element of this collection with the smallest value measured by function f with respect to the ordering cmp.

    Definition Classes
    IterableOnceOps
  96. def minOption[B >: A](implicit ord: math.Ordering[B]): Option[A]

    Finds the smallest element.

    Finds the smallest element.

    Note: will not terminate for infinite-sized collections.

    B

    The type over which the ordering is defined.

    ord

    An ordering to be used for comparing elements.

    returns

    an option value containing the smallest element of this collection with respect to the ordering ord.

    Definition Classes
    IterableOnceOps
  97. final def mkString: String

    Displays all elements of this collection in a string.

    Displays all elements of this collection in a string.

    Delegates to addString, which can be overridden.

    returns

    a string representation of this collection. In the resulting string the string representations (w.r.t. the method toString) of all elements of this collection follow each other without any separator string.

    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  98. final def mkString(sep: String): String

    Displays all elements of this collection in a string using a separator string.

    Displays all elements of this collection in a string using a separator string.

    Delegates to addString, which can be overridden.

    sep

    the separator string.

    returns

    a string representation of this collection. In the resulting string the string representations (w.r.t. the method toString) of all elements of this collection are separated by the string sep.

    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
    Example:
    1. List(1, 2, 3).mkString("|") = "1|2|3"

  99. final def mkString(start: String, sep: String, end: String): String

    Displays all elements of this collection in a string using start, end, and separator strings.

    Displays all elements of this collection in a string using start, end, and separator strings.

    Delegates to addString, which can be overridden.

    start

    the starting string.

    sep

    the separator string.

    end

    the ending string.

    returns

    a string representation of this collection. The resulting string begins with the string start and ends with the string end. Inside, the string representations (w.r.t. the method toString) of all elements of this collection are separated by the string sep.

    Definition Classes
    IterableOnceOps
    Example:
    1. List(1, 2, 3).mkString("(", "; ", ")") = "(1; 2; 3)"

  100. def nonEmpty: Boolean

    Tests whether the collection is not empty.

    Tests whether the collection is not empty.

    returns

    true if the collection contains at least one element, false otherwise.

    Definition Classes
    IterableOnceOps
    Annotations
    @deprecatedOverriding(message = "nonEmpty is defined as !isEmpty; override isEmpty instead", since = "2.13.0")
  101. def occCounts[B](sq: Seq[B]): mutable.Map[B, Int]
    Attributes
    protected[collection]
    Definition Classes
    SeqOps
  102. def padTo[B >: A](len: Int, elem: B): CC[B]

    A copy of this sequence with an element value appended until a given target length is reached.

    A copy of this sequence with an element value appended until a given target length is reached.

    B

    the element type of the returned sequence.

    len

    the target length

    elem

    the padding value

    returns

    a new sequence consisting of all elements of this sequence followed by the minimal number of occurrences of elem so that the resulting collection has a length of at least len.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  103. def partition(p: (A) => Boolean): (C, C)

    A pair of, first, all elements that satisfy predicate p and, second, all elements that do not.

    A pair of, first, all elements that satisfy predicate p and, second, all elements that do not. Interesting because it splits a collection in two.

    The default implementation provided here needs to traverse the collection twice. Strict collections have an overridden version of partition in StrictOptimizedIterableOps, which requires only a single traversal.

    Definition Classes
    StrictOptimizedIterableOpsIterableOps
  104. def partitionMap[A1, A2](f: (A) => Either[A1, A2]): (CC[A1], CC[A2])

    Applies a function f to each element of the iterable collection and returns a pair of iterable collections: the first one made of those values returned by f that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.

    Applies a function f to each element of the iterable collection and returns a pair of iterable collections: the first one made of those values returned by f that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.

    Example:

    val xs = Iterable(1, "one", 2, "two", 3, "three") partitionMap {
     case i: Int => Left(i)
     case s: String => Right(s)
    }
    // xs == (Iterable(1, 2, 3),
    //        Iterable(one, two, three))
    A1

    the element type of the first resulting collection

    A2

    the element type of the second resulting collection

    f

    the 'split function' mapping the elements of this iterable collection to an scala.util.Either

    returns

    a pair of iterable collections: the first one made of those values returned by f that were wrapped in scala.util.Left, and the second one made of those wrapped in scala.util.Right.

    Definition Classes
    StrictOptimizedIterableOpsIterableOps
  105. def patch[B >: A](from: Int, other: IterableOnce[B], replaced: Int): CC[B]

    Produces a new sequence where a slice of elements in this sequence is replaced by another sequence.

    Produces a new sequence where a slice of elements in this sequence is replaced by another sequence.

    Patching at negative indices is the same as patching starting at 0. Patching at indices at or larger than the length of the original sequence appends the patch to the end. If more values are replaced than actually exist, the excess is ignored.

    B

    the element type of the returned sequence.

    from

    the index of the first replaced element

    other

    the replacement sequence

    replaced

    the number of elements to drop in the original sequence

    returns

    a new sequence consisting of all elements of this sequence except that replaced elements starting from from are replaced by all the elements of other.

    Definition Classes
    SeqOps
  106. def permutations: Iterator[C]

    Iterates over distinct permutations.

    Iterates over distinct permutations.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    returns

    An Iterator which traverses the distinct permutations of this sequence.

    Definition Classes
    SeqOps
    Example:
    1. "abb".permutations = Iterator(abb, bab, bba)

  107. def prepended[B >: A](elem: B): CC[B]

    A copy of the sequence with an element prepended.

    A copy of the sequence with an element prepended.

    Also, the original sequence is not modified, so you will want to capture the result.

    Example:

    scala> val x = List(1)
    x: List[Int] = List(1)
    
    scala> val y = 2 +: x
    y: List[Int] = List(2, 1)
    
    scala> println(x)
    List(1)
    B

    the element type of the returned sequence.

    elem

    the prepended element

    returns

    a new sequence consisting of value followed by all elements of this sequence.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  108. def prependedAll[B >: A](prefix: IterableOnce[B]): CC[B]

    As with :++, returns a new collection containing the elements from the left operand followed by the elements from the right operand.

    As with :++, returns a new collection containing the elements from the left operand followed by the elements from the right operand.

    It differs from :++ in that the right operand determines the type of the resulting collection rather than the left one. Mnemonic: the COLon is on the side of the new COLlection type.

    B

    the element type of the returned collection.

    prefix

    the iterable to prepend.

    returns

    a new sequence which contains all elements of prefix followed by all the elements of this sequence.

    Definition Classes
    StrictOptimizedSeqOpsSeqOps
  109. def product[B >: A](implicit num: math.Numeric[B]): B

    Multiplies up the elements of this collection.

    Multiplies up the elements of this collection.

    Note: will not terminate for infinite-sized collections.

    B

    the result type of the * operator.

    num

    an implicit parameter defining a set of numeric operations which includes the * operator to be used in forming the product.

    returns

    the product of all elements of this collection with respect to the * operator in num.

    Definition Classes
    IterableOnceOps
  110. def reduce[B >: A](op: (B, B) => B): B

    Reduces the elements of this collection using the specified associative binary operator.

    Reduces the elements of this collection using the specified associative binary operator.

    The order in which operations are performed on elements is unspecified and may be nondeterministic.

    B

    A type parameter for the binary operator, a supertype of A.

    op

    A binary operator that must be associative.

    returns

    The result of applying reduce operator op between all the elements if the collection is nonempty.

    Definition Classes
    IterableOnceOps
    Exceptions thrown

    UnsupportedOperationException if this collection is empty.

  111. def reduceLeft[B >: A](op: (B, A) => B): B

    Applies a binary operator to all elements of this collection, going left to right.

    Applies a binary operator to all elements of this collection, going left to right.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

    B

    the result type of the binary operator.

    op

    the binary operator.

    returns

    the result of inserting op between consecutive elements of this collection, going left to right:

    op( op( ... op(x_1, x_2) ..., x_{n-1}), x_n)

    where x1, ..., xn are the elements of this collection.

    Definition Classes
    IterableOnceOps
    Exceptions thrown

    UnsupportedOperationException if this collection is empty.

  112. def reduceLeftOption[B >: A](op: (B, A) => B): Option[B]

    Optionally applies a binary operator to all elements of this collection, going left to right.

    Optionally applies a binary operator to all elements of this collection, going left to right.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

    B

    the result type of the binary operator.

    op

    the binary operator.

    returns

    an option value containing the result of reduceLeft(op) if this collection is nonempty, None otherwise.

    Definition Classes
    IterableOnceOps
  113. def reduceOption[B >: A](op: (B, B) => B): Option[B]

    Reduces the elements of this collection, if any, using the specified associative binary operator.

    Reduces the elements of this collection, if any, using the specified associative binary operator.

    The order in which operations are performed on elements is unspecified and may be nondeterministic.

    B

    A type parameter for the binary operator, a supertype of A.

    op

    A binary operator that must be associative.

    returns

    An option value containing result of applying reduce operator op between all the elements if the collection is nonempty, and None otherwise.

    Definition Classes
    IterableOnceOps
  114. def reduceRight[B >: A](op: (A, B) => B): B

    Applies a binary operator to all elements of this collection, going right to left.

    Applies a binary operator to all elements of this collection, going right to left.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

    B

    the result type of the binary operator.

    op

    the binary operator.

    returns

    the result of inserting op between consecutive elements of this collection, going right to left:

    op(x_1, op(x_2, ..., op(x_{n-1}, x_n)...))

    where x1, ..., xn are the elements of this collection.

    Definition Classes
    IterableOnceOps
    Exceptions thrown

    UnsupportedOperationException if this collection is empty.

  115. def reduceRightOption[B >: A](op: (A, B) => B): Option[B]

    Optionally applies a binary operator to all elements of this collection, going right to left.

    Optionally applies a binary operator to all elements of this collection, going right to left.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered or the operator is associative and commutative.

    B

    the result type of the binary operator.

    op

    the binary operator.

    returns

    an option value containing the result of reduceRight(op) if this collection is nonempty, None otherwise.

    Definition Classes
    IterableOnceOps
  116. def reverse: C

    Returns new sequence with elements in reversed order.

    Returns new sequence with elements in reversed order.

    Note: will not terminate for infinite-sized collections.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    returns

    A new sequence with all elements of this sequence in reversed order.

    Definition Classes
    SeqOps
  117. def reverseIterator: Iterator[A]

    An iterator yielding elements in reversed order.

    An iterator yielding elements in reversed order.

    Note: will not terminate for infinite-sized collections.

    Note: xs.reverseIterator is the same as xs.reverse.iterator but might be more efficient.

    returns

    an iterator yielding the elements of this sequence in reversed order

    Definition Classes
    SeqOps
  118. def reversed: Iterable[A]
    Attributes
    protected
    Definition Classes
    IterableOnceOps
  119. def sameElements[B >: A](that: IterableOnce[B]): Boolean

    Are the elements of this collection the same (and in the same order) as those of that?

    Are the elements of this collection the same (and in the same order) as those of that?

    Definition Classes
    SeqOps
  120. def scan[B >: A](z: B)(op: (B, B) => B): CC[B]

    Computes a prefix scan of the elements of the collection.

    Computes a prefix scan of the elements of the collection.

    Note: The neutral element z may be applied more than once.

    B

    element type of the resulting collection

    z

    neutral element for the operator op

    op

    the associative operator for the scan

    returns

    a new iterable collection containing the prefix scan of the elements in this iterable collection

    Definition Classes
    IterableOps
  121. def scanLeft[B](z: B)(op: (B, A) => B): CC[B]

    Produces a iterable collection containing cumulative results of applying the operator going left to right, including the initial value.

    Produces a iterable collection containing cumulative results of applying the operator going left to right, including the initial value.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    B

    the type of the elements in the resulting collection

    z

    the initial value

    op

    the binary operator applied to the intermediate result and the element

    returns

    collection with intermediate results

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  122. def scanRight[B](z: B)(op: (A, B) => B): CC[B]

    Produces a collection containing cumulative results of applying the operator going right to left.

    Produces a collection containing cumulative results of applying the operator going right to left. The head of the collection is the last cumulative result.

    Note: will not terminate for infinite-sized collections.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    Example:

    List(1, 2, 3, 4).scanRight(0)(_ + _) == List(10, 9, 7, 4, 0)
    B

    the type of the elements in the resulting collection

    z

    the initial value

    op

    the binary operator applied to the intermediate result and the element

    returns

    collection with intermediate results

    Definition Classes
    IterableOps
  123. def search[B >: A](elem: B, from: Int, to: Int)(implicit ord: Ordering[B]): SearchResult

    Search within an interval in this sorted sequence for a specific element.

    Search within an interval in this sorted sequence for a specific element. If this sequence is an IndexedSeq, a binary search is used. Otherwise, a linear search is used.

    The sequence should be sorted with the same Ordering before calling; otherwise, the results are undefined.

    elem

    the element to find.

    from

    the index where the search starts.

    to

    the index following where the search ends.

    ord

    the ordering to be used to compare elements.

    returns

    a Found value containing the index corresponding to the element in the sequence, or the InsertionPoint where the element would be inserted if the element is not in the sequence.

    Definition Classes
    SeqOps
    Note

    if to <= from, the search space is empty, and an InsertionPoint at from is returned

    See also

    scala.collection.IndexedSeq

    scala.math.Ordering

    scala.collection.SeqOps, method sorted

  124. def search[B >: A](elem: B)(implicit ord: Ordering[B]): SearchResult

    Search this sorted sequence for a specific element.

    Search this sorted sequence for a specific element. If the sequence is an IndexedSeq, a binary search is used. Otherwise, a linear search is used.

    The sequence should be sorted with the same Ordering before calling; otherwise, the results are undefined.

    elem

    the element to find.

    ord

    the ordering to be used to compare elements.

    returns

    a Found value containing the index corresponding to the element in the sequence, or the InsertionPoint where the element would be inserted if the element is not in the sequence.

    Definition Classes
    SeqOps
    See also

    scala.collection.IndexedSeq

    scala.math.Ordering

    scala.collection.SeqOps, method sorted

  125. def segmentLength(p: (A) => Boolean, from: Int): Int

    Computes length of longest segment whose elements all satisfy some predicate.

    Computes length of longest segment whose elements all satisfy some predicate.

    Note: may not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    from

    the index where the search starts.

    returns

    the length of the longest segment of this sequence starting from index from such that every element of the segment satisfies the predicate p.

    Definition Classes
    SeqOps
  126. final def segmentLength(p: (A) => Boolean): Int

    Computes length of longest segment whose elements all satisfy some predicate.

    Computes length of longest segment whose elements all satisfy some predicate.

    Note: may not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    the length of the longest segment of this sequence such that every element of the segment satisfies the predicate p.

    Definition Classes
    SeqOps
  127. final def size: Int

    The size of this sequence.

    The size of this sequence.

    Note: will not terminate for infinite-sized collections.

    returns

    the number of elements in this sequence.

    Definition Classes
    SeqOpsIterableOnceOps
  128. final def sizeCompare(that: Iterable[_]): Int

    Compares the size of this sequence to the size of another Iterable.

    Compares the size of this sequence to the size of another Iterable.

    that

    the Iterable whose size is compared with this sequence's size.

    returns

    A value x where

    x <  0       if this.size <  that.size
    x == 0       if this.size == that.size
    x >  0       if this.size >  that.size

    The method as implemented here does not call size directly; its running time is O(this.size min that.size) instead of O(this.size + that.size). The method should be overridden if computing size is cheap and knownSize returns -1.

    Definition Classes
    SeqOpsIterableOps
  129. final def sizeCompare(otherSize: Int): Int

    Compares the size of this sequence to a test value.

    Compares the size of this sequence to a test value.

    otherSize

    the test value that gets compared with the size.

    returns

    A value x where

    x <  0       if this.size <  otherSize
    x == 0       if this.size == otherSize
    x >  0       if this.size >  otherSize

    The method as implemented here does not call size directly; its running time is O(size min otherSize) instead of O(size). The method should be overridden if computing size is cheap and knownSize returns -1.

    Definition Classes
    SeqOpsIterableOps
    See also

    sizeIs

  130. final def sizeIs: SizeCompareOps

    Returns a value class containing operations for comparing the size of this iterable collection to a test value.

    Returns a value class containing operations for comparing the size of this iterable collection to a test value.

    These operations are implemented in terms of sizeCompare(Int), and allow the following more readable usages:

    this.sizeIs < size     // this.sizeCompare(size) < 0
    this.sizeIs <= size    // this.sizeCompare(size) <= 0
    this.sizeIs == size    // this.sizeCompare(size) == 0
    this.sizeIs != size    // this.sizeCompare(size) != 0
    this.sizeIs >= size    // this.sizeCompare(size) >= 0
    this.sizeIs > size     // this.sizeCompare(size) > 0
    Definition Classes
    IterableOps
    Annotations
    @inline()
  131. def slice(from: Int, until: Int): C

    Selects an interval of elements.

    Selects an interval of elements. The returned iterable collection is made up of all elements x which satisfy the invariant:

    from <= indexOf(x) < until

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    from

    the lowest index to include from this iterable collection.

    until

    the lowest index to EXCLUDE from this iterable collection.

    returns

    a iterable collection containing the elements greater than or equal to index from extending up to (but not including) index until of this iterable collection.

    Definition Classes
    IterableOpsIterableOnceOps
  132. def sliding(size: Int, step: Int): Iterator[C]

    Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)

    Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)

    The returned iterator will be empty when called on an empty collection. The last element the iterator produces may be smaller than the window size when the original collection isn't exhausted by the window before it and its last element isn't skipped by the step before it.

    size

    the number of elements per group

    step

    the distance between the first elements of successive groups

    returns

    An iterator producing iterable collections of size size, except the last element (which may be the only element) will be smaller if there are fewer than size elements remaining to be grouped.

    Definition Classes
    IterableOps
    Examples:
    1. List(1, 2, 3, 4, 5).sliding(2, 2) = Iterator(List(1, 2), List(3, 4), List(5))

    2. ,
    3. List(1, 2, 3, 4, 5, 6).sliding(2, 3) = Iterator(List(1, 2), List(4, 5))

    See also

    scala.collection.Iterator, method sliding

  133. def sliding(size: Int): Iterator[C]

    Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)

    Groups elements in fixed size blocks by passing a "sliding window" over them (as opposed to partitioning them, as is done in grouped.)

    An empty collection returns an empty iterator, and a non-empty collection containing fewer elements than the window size returns an iterator that will produce the original collection as its only element.

    size

    the number of elements per group

    returns

    An iterator producing iterable collections of size size, except for a non-empty collection with less than size elements, which returns an iterator that produces the source collection itself as its only element.

    Definition Classes
    IterableOps
    Examples:
    1. List().sliding(2) = empty iterator

    2. ,
    3. List(1).sliding(2) = Iterator(List(1))

    4. ,
    5. List(1, 2).sliding(2) = Iterator(List(1, 2))

    6. ,
    7. List(1, 2, 3).sliding(2) = Iterator(List(1, 2), List(2, 3))

    See also

    scala.collection.Iterator, method sliding

  134. def sortBy[B](f: (A) => B)(implicit ord: Ordering[B]): C

    Sorts this sequence according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.

    Sorts this sequence according to the Ordering which results from transforming an implicitly given Ordering with a transformation function.

    Note: will not terminate for infinite-sized collections.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    The sort is stable. That is, elements that are equal (as determined by ord.compare) appear in the same order in the sorted sequence as in the original.

    B

    the target type of the transformation f, and the type where the ordering ord is defined.

    f

    the transformation function mapping elements to some other domain B.

    ord

    the ordering assumed on domain B.

    returns

    a sequence consisting of the elements of this sequence sorted according to the ordering where x < y if ord.lt(f(x), f(y)).

    Definition Classes
    SeqOps
    Example:
    1. val words = "The quick brown fox jumped over the lazy dog".split(' ')
      // this works because scala.Ordering will implicitly provide an Ordering[Tuple2[Int, Char]]
      words.sortBy(x => (x.length, x.head))
      res0: Array[String] = Array(The, dog, fox, the, lazy, over, brown, quick, jumped)
    See also

    scala.math.Ordering

  135. def sortWith(lt: (A, A) => Boolean): C

    Sorts this sequence according to a comparison function.

    Sorts this sequence according to a comparison function.

    Note: will not terminate for infinite-sized collections.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    The sort is stable. That is, elements that are equal (as determined by lt) appear in the same order in the sorted sequence as in the original.

    lt

    the comparison function which tests whether its first argument precedes its second argument in the desired ordering.

    returns

    a sequence consisting of the elements of this sequence sorted according to the comparison function lt.

    Definition Classes
    SeqOps
    Example:
    1. List("Steve", "Tom", "John", "Bob").sortWith(_.compareTo(_) < 0) =
      List("Bob", "John", "Steve", "Tom")
  136. def sorted[B >: A](implicit ord: Ordering[B]): C

    Sorts this sequence according to an Ordering.

    Sorts this sequence according to an Ordering.

    The sort is stable. That is, elements that are equal (as determined by ord.compare) appear in the same order in the sorted sequence as in the original.

    ord

    the ordering to be used to compare elements.

    returns

    a sequence consisting of the elements of this sequence sorted according to the ordering ord.

    Definition Classes
    SeqOps
    See also

    scala.math.Ordering Note: Even when applied to a view or a lazy collection it will always force the elements.

  137. def span(p: (A) => Boolean): (C, C)

    Splits this iterable collection into a prefix/suffix pair according to a predicate.

    Splits this iterable collection into a prefix/suffix pair according to a predicate.

    Note: c span p is equivalent to (but possibly more efficient than) (c takeWhile p, c dropWhile p), provided the evaluation of the predicate p does not cause any side-effects.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    p

    the test predicate

    returns

    a pair consisting of the longest prefix of this iterable collection whose elements all satisfy p, and the rest of this iterable collection.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  138. def splitAt(n: Int): (C, C)

    Splits this iterable collection into a prefix/suffix pair at a given position.

    Splits this iterable collection into a prefix/suffix pair at a given position.

    Note: c splitAt n is equivalent to (but possibly more efficient than) (c take n, c drop n).

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    n

    the position at which to split.

    returns

    a pair of iterable collections consisting of the first n elements of this iterable collection, and the other elements.

    Definition Classes
    IterableOpsIterableOnceOps
  139. def startsWith[B >: A](that: IterableOnce[B], offset: Int = 0): Boolean

    Tests whether this sequence contains the given sequence at a given index.

    Tests whether this sequence contains the given sequence at a given index.

    Note: If the both the receiver object this and the argument that are infinite sequences this method may not terminate.

    that

    the sequence to test

    offset

    the index where the sequence is searched.

    returns

    true if the sequence that is contained in this sequence at index offset, otherwise false.

    Definition Classes
    SeqOps
  140. def stepper[S <: Stepper[_]](implicit shape: StepperShape[A, S]): S

    Returns a scala.collection.Stepper for the elements of this collection.

    Returns a scala.collection.Stepper for the elements of this collection.

    The Stepper enables creating a Java stream to operate on the collection, see scala.jdk.StreamConverters. For collections holding primitive values, the Stepper can be used as an iterator which doesn't box the elements.

    The implicit scala.collection.StepperShape parameter defines the resulting Stepper type according to the element type of this collection.

    Note that this method is overridden in subclasses and the return type is refined to S with EfficientSplit, for example scala.collection.IndexedSeqOps.stepper. For Steppers marked with scala.collection.Stepper.EfficientSplit, the converters in scala.jdk.StreamConverters allow creating parallel streams, whereas bare Steppers can be converted only to sequential streams.

    Definition Classes
    IterableOnce
  141. final def strictOptimizedCollect[B, C2](b: Builder[B, C2], pf: PartialFunction[A, B]): C2

    B

    Type of elements of the resulting collection (e.g. String)

    C2

    Type of the resulting collection (e.g. List[String])

    b

    Builder to use to build the resulting collection

    pf

    Element transformation partial function

    returns

    The resulting collection

    Attributes
    protected[this]
    Definition Classes
    StrictOptimizedIterableOps
    Annotations
    @inline()
  142. final def strictOptimizedConcat[B >: A, C2](that: IterableOnce[B], b: Builder[B, C2]): C2

    B

    Type of elements of the resulting collections (e.g. Int)

    C2

    Type of the resulting collection (e.g. List[Int])

    that

    Elements to concatenate to this collection

    b

    Builder to use to build the resulting collection

    returns

    The resulting collection

    Attributes
    protected[this]
    Definition Classes
    StrictOptimizedIterableOps
    Annotations
    @inline()
  143. final def strictOptimizedFlatMap[B, C2](b: Builder[B, C2], f: (A) => IterableOnce[B]): C2

    B

    Type of elements of the resulting collection (e.g. String)

    C2

    Type of the resulting collection (e.g. List[String])

    b

    Builder to use to build the resulting collection

    f

    Element transformation function

    returns

    The resulting collection

    Attributes
    protected[this]
    Definition Classes
    StrictOptimizedIterableOps
    Annotations
    @inline()
  144. final def strictOptimizedFlatten[B, C2](b: Builder[B, C2])(implicit toIterableOnce: (A) => IterableOnce[B]): C2

    B

    Type of elements of the resulting collection (e.g. Int)

    C2

    Type of the resulting collection (e.g. List[Int])

    b

    Builder to use to build the resulting collection

    toIterableOnce

    Evidence that A can be seen as an IterableOnce[B]

    returns

    The resulting collection

    Attributes
    protected[this]
    Definition Classes
    StrictOptimizedIterableOps
    Annotations
    @inline()
  145. final def strictOptimizedMap[B, C2](b: Builder[B, C2], f: (A) => B): C2

    B

    Type of elements of the resulting collection (e.g. String)

    C2

    Type of the resulting collection (e.g. List[String])

    b

    Builder to use to build the resulting collection

    f

    Element transformation function

    returns

    The resulting collection

    Attributes
    protected[this]
    Definition Classes
    StrictOptimizedIterableOps
    Annotations
    @inline()
  146. final def strictOptimizedZip[B, C2](that: IterableOnce[B], b: Builder[(A, B), C2]): C2

    B

    Type of elements of the second collection (e.g. String)

    C2

    Type of the resulting collection (e.g. List[(Int, String)])

    that

    Collection to zip with this collection

    b

    Builder to use to build the resulting collection

    returns

    The resulting collection

    Attributes
    protected[this]
    Definition Classes
    StrictOptimizedIterableOps
    Annotations
    @inline()
  147. def sum[B >: A](implicit num: math.Numeric[B]): B

    Sums up the elements of this collection.

    Sums up the elements of this collection.

    Note: will not terminate for infinite-sized collections.

    B

    the result type of the + operator.

    num

    an implicit parameter defining a set of numeric operations which includes the + operator to be used in forming the sum.

    returns

    the sum of all elements of this collection with respect to the + operator in num.

    Definition Classes
    IterableOnceOps
  148. def tail: C

    The rest of the collection without its first element.

    The rest of the collection without its first element.

    Definition Classes
    IterableOps
  149. def tails: Iterator[C]

    Iterates over the tails of this iterable collection.

    Iterates over the tails of this iterable collection. The first value will be this iterable collection and the final one will be an empty iterable collection, with the intervening values the results of successive applications of tail.

    returns

    an iterator over all the tails of this iterable collection

    Definition Classes
    IterableOps
    Example:
    1. List(1,2,3).tails = Iterator(List(1,2,3), List(2,3), List(3), Nil)

  150. def take(n: Int): C

    Selects the first n elements.

    Selects the first n elements.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    n

    the number of elements to take from this iterable collection.

    returns

    a iterable collection consisting only of the first n elements of this iterable collection, or else the whole iterable collection, if it has less than n elements. If n is negative, returns an empty iterable collection.

    Definition Classes
    IterableOpsIterableOnceOps
  151. def takeRight(n: Int): C

    A collection containing the last n elements of this collection.

    A collection containing the last n elements of this collection.

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    n

    the number of elements to take from this iterable collection.

    returns

    a iterable collection consisting only of the last n elements of this iterable collection, or else the whole iterable collection, if it has less than n elements. If n is negative, returns an empty iterable collection.

    Definition Classes
    StrictOptimizedIterableOpsIterableOps
  152. def takeWhile(p: (A) => Boolean): C

    Takes longest prefix of elements that satisfy a predicate.

    Takes longest prefix of elements that satisfy a predicate.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    p

    The predicate used to test elements.

    returns

    the longest prefix of this iterable collection whose elements all satisfy the predicate p.

    Definition Classes
    IterableOpsIterableOnceOps
  153. def tapEach[U](f: (A) => U): C

    Applies a side-effecting function to each element in this collection.

    Applies a side-effecting function to each element in this collection. Strict collections will apply f to their elements immediately, while lazy collections like Views and LazyLists will only apply f on each element if and when that element is evaluated, and each time that element is evaluated.

    U

    the return type of f

    f

    a function to apply to each element in this iterable collection

    returns

    The same logical collection as this

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
  154. def to[C1](factory: Factory[A, C1]): C1

    Given a collection factory factory, convert this collection to the appropriate representation for the current element type A.

    Given a collection factory factory, convert this collection to the appropriate representation for the current element type A. Example uses:

    xs.to(List) xs.to(ArrayBuffer) xs.to(BitSet) // for xs: Iterable[Int]

    Definition Classes
    IterableOnceOps
  155. def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]

    Convert collection to array.

    Convert collection to array.

    Implementation note: DO NOT call Array.from from this method.

    Definition Classes
    IterableOnceOps
  156. final def toBuffer[B >: A]: Buffer[B]
    Definition Classes
    IterableOnceOps
    Annotations
    @inline()
  157. def toIndexedSeq: immutable.IndexedSeq[A]
    Definition Classes
    IterableOnceOps
  158. def toList: immutable.List[A]
    Definition Classes
    IterableOnceOps
  159. def toMap[K, V](implicit ev: <:<[A, (K, V)]): immutable.Map[K, V]
    Definition Classes
    IterableOnceOps
  160. def toSeq: immutable.Seq[A]

    returns

    This collection as a Seq[A]. This is equivalent to to(Seq) but might be faster.

    Definition Classes
    IterableOnceOps
  161. def toSet[B >: A]: immutable.Set[B]
    Definition Classes
    IterableOnceOps
  162. def toString(): String

    Returns a string representation of the object.

    Returns a string representation of the object.

    The default representation is platform dependent.

    returns

    a string representation of the object.

    Definition Classes
    Any
  163. def toVector: immutable.Vector[A]
    Definition Classes
    IterableOnceOps
  164. def transpose[B](implicit asIterable: (A) => Iterable[B]): CC[CC[B]]

    Transposes this iterable collection of iterable collections into a iterable collection of iterable collections.

    Transposes this iterable collection of iterable collections into a iterable collection of iterable collections.

    The resulting collection's type will be guided by the static type of iterable collection. For example:

    val xs = List(
               Set(1, 2, 3),
               Set(4, 5, 6)).transpose
    // xs == List(
    //         List(1, 4),
    //         List(2, 5),
    //         List(3, 6))
    
    val ys = Vector(
               List(1, 2, 3),
               List(4, 5, 6)).transpose
    // ys == Vector(
    //         Vector(1, 4),
    //         Vector(2, 5),
    //         Vector(3, 6))

    Note: Even when applied to a view or a lazy collection it will always force the elements.

    B

    the type of the elements of each iterable collection.

    asIterable

    an implicit conversion which asserts that the element type of this iterable collection is an Iterable.

    returns

    a two-dimensional iterable collection of iterable collections which has as nth row the nth column of this iterable collection.

    Definition Classes
    IterableOps
    Exceptions thrown

    IllegalArgumentException if all collections in this iterable collection are not of the same size.

  165. def unzip[A1, A2](implicit asPair: (A) => (A1, A2)): (CC[A1], CC[A2])

    Converts this iterable collection of pairs into two collections of the first and second half of each pair.

    Converts this iterable collection of pairs into two collections of the first and second half of each pair.

    val xs = Iterable(
               (1, "one"),
               (2, "two"),
               (3, "three")).unzip
    // xs == (Iterable(1, 2, 3),
    //        Iterable(one, two, three))
    A1

    the type of the first half of the element pairs

    A2

    the type of the second half of the element pairs

    asPair

    an implicit conversion which asserts that the element type of this iterable collection is a pair.

    returns

    a pair of iterable collections, containing the first, respectively second half of each element pair of this iterable collection.

    Definition Classes
    StrictOptimizedIterableOpsIterableOps
  166. def unzip3[A1, A2, A3](implicit asTriple: (A) => (A1, A2, A3)): (CC[A1], CC[A2], CC[A3])

    Converts this iterable collection of triples into three collections of the first, second, and third element of each triple.

    Converts this iterable collection of triples into three collections of the first, second, and third element of each triple.

    val xs = Iterable(
               (1, "one", '1'),
               (2, "two", '2'),
               (3, "three", '3')).unzip3
    // xs == (Iterable(1, 2, 3),
    //        Iterable(one, two, three),
    //        Iterable(1, 2, 3))
    A1

    the type of the first member of the element triples

    A2

    the type of the second member of the element triples

    A3

    the type of the third member of the element triples

    asTriple

    an implicit conversion which asserts that the element type of this iterable collection is a triple.

    returns

    a triple of iterable collections, containing the first, second, respectively third member of each element triple of this iterable collection.

    Definition Classes
    StrictOptimizedIterableOpsIterableOps
  167. def updated[B >: A](index: Int, elem: B): CC[B]

    A copy of this sequence with one single replaced element.

    A copy of this sequence with one single replaced element.

    B

    the element type of the returned sequence.

    index

    the position of the replacement

    elem

    the replacing element

    returns

    a new sequence which is a copy of this sequence with the element at position index replaced by elem.

    Definition Classes
    SeqOps
    Exceptions thrown

    IndexOutOfBoundsException if index does not satisfy 0 <= index < length. In case of a lazy collection this exception may be thrown at a later time or not at all (if the end of the collection is never evaluated).

  168. def view: SeqView[A]

    A view over the elements of this collection.

    A view over the elements of this collection.

    Definition Classes
    SeqOpsIterableOps
  169. def withFilter(p: (A) => Boolean): WithFilter[A, CC]

    Creates a non-strict filter of this iterable collection.

    Creates a non-strict filter of this iterable collection.

    Note: the difference between c filter p and c withFilter p is that the former creates a new collection, whereas the latter only restricts the domain of subsequent map, flatMap, foreach, and withFilter operations.

    Note: might return different results for different runs, unless the underlying collection type is ordered.

    p

    the predicate used to test elements.

    returns

    an object of class WithFilter, which supports map, flatMap, foreach, and withFilter operations. All these operations apply to those elements of this iterable collection which satisfy the predicate p.

    Definition Classes
    IterableOps
  170. def zip[B](that: IterableOnce[B]): CC[(A, B)]

    Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs.

    Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs. If one of the two collections is longer than the other, its remaining elements are ignored.

    B

    the type of the second half of the returned pairs

    that

    The iterable providing the second half of each result pair

    returns

    a new iterable collection containing pairs consisting of corresponding elements of this iterable collection and that. The length of the returned collection is the minimum of the lengths of this iterable collection and that.

    Definition Classes
    StrictOptimizedIterableOpsIterableOps
  171. def zipAll[A1 >: A, B](that: Iterable[B], thisElem: A1, thatElem: B): CC[(A1, B)]

    Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs.

    Returns a iterable collection formed from this iterable collection and another iterable collection by combining corresponding elements in pairs. If one of the two collections is shorter than the other, placeholder elements are used to extend the shorter collection to the length of the longer.

    that

    the iterable providing the second half of each result pair

    thisElem

    the element to be used to fill up the result if this iterable collection is shorter than that.

    thatElem

    the element to be used to fill up the result if that is shorter than this iterable collection.

    returns

    a new collection of type That containing pairs consisting of corresponding elements of this iterable collection and that. The length of the returned collection is the maximum of the lengths of this iterable collection and that. If this iterable collection is shorter than that, thisElem values are used to pad the result. If that is shorter than this iterable collection, thatElem values are used to pad the result.

    Definition Classes
    IterableOps
  172. def zipWithIndex: CC[(A, Int)]

    Zips this iterable collection with its indices.

    Zips this iterable collection with its indices.

    returns

    A new iterable collection containing pairs consisting of all elements of this iterable collection paired with their index. Indices start at 0.

    Definition Classes
    StrictOptimizedIterableOpsIterableOpsIterableOnceOps
    Example:
    1. List("a", "b", "c").zipWithIndex == List(("a", 0), ("b", 1), ("c", 2))

Deprecated Value Members

  1. def /:[B](z: B)(op: (B, A) => B): B
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A])./:(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.foldLeft instead

  2. final def /:[B](z: B)(op: (B, A) => B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use foldLeft instead of /:

  3. def :\[B](z: B)(op: (A, B) => B): B
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).:\(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.foldRight instead

  4. final def :\[B](z: B)(op: (A, B) => B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use foldRight instead of :\

  5. def aggregate[B](z: => B)(seqop: (B, A) => B, combop: (B, B) => B): B
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) aggregate is not relevant for sequential collections. Use foldLeft(z)(seqop) instead.

  6. def collectFirst[B](f: PartialFunction[A, B]): Option[B]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).collectFirst(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.collectFirst(...) instead

  7. def companion: IterableFactory[CC]
    Definition Classes
    IterableOps
    Annotations
    @deprecated @deprecatedOverriding(message = "Use iterableFactory instead", since = "2.13.0") @inline()
    Deprecated

    (Since version 2.13.0) Use iterableFactory instead

  8. def copyToBuffer(dest: Buffer[A]): Unit
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).copyToBuffer(dest)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.copyToBuffer(...) instead

  9. final def copyToBuffer[B >: A](dest: Buffer[B]): Unit
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use dest ++= coll instead

  10. def count(f: (A) => Boolean): Int
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).count(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.count(...) instead

  11. def exists(f: (A) => Boolean): Boolean
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).exists(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.exists(...) instead

  12. def filter(f: (A) => Boolean): Iterator[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).filter(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.filter(...) instead

  13. def find(p: (A) => Boolean): Option[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).find(p)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.find instead

  14. def flatMap[B](f: (A) => IterableOnce[B]): IterableOnce[B]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).flatMap(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.flatMap instead or consider requiring an Iterable

  15. def fold[A1 >: A](z: A1)(op: (A1, A1) => A1): A1
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).fold(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.fold instead

  16. def foldLeft[B](z: B)(op: (B, A) => B): B
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).foldLeft(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.foldLeft instead

  17. def foldRight[B](z: B)(op: (A, B) => B): B
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).foldRight(z)(op)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.foldRight instead

  18. def forall(f: (A) => Boolean): Boolean
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).forall(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.forall(...) instead

  19. def foreach[U](f: (A) => U): Unit
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).foreach(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.foreach(...) instead

  20. def hasDefiniteSize: Boolean

    Tests whether this collection is known to have a finite size.

    Tests whether this collection is known to have a finite size. All strict collections are known to have finite size. For a non-strict collection such as Stream, the predicate returns true if all elements have been computed. It returns false if the stream is not yet evaluated to the end. Non-empty Iterators usually return false even if they were created from a collection with a known finite size.

    Note: many collection methods will not work on collections of infinite sizes. The typical failure mode is an infinite loop. These methods always attempt a traversal without checking first that hasDefiniteSize returns true. However, checking hasDefiniteSize can provide an assurance that size is well-defined and non-termination is not a concern.

    returns

    true if this collection is known to have finite size, false otherwise.

    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Check .knownSize instead of .hasDefiniteSize for more actionable information (see scaladoc for details)

    See also

    method knownSize for a more useful alternative

  21. def isEmpty: Boolean
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).isEmpty
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.isEmpty instead

  22. def map[B](f: (A) => B): IterableOnce[B]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).map(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.map instead or consider requiring an Iterable

  23. def max(implicit ord: math.Ordering[A]): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).max(ord)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.max instead

  24. def maxBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).maxBy(f)(cmp)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.maxBy(...) instead

  25. def min(implicit ord: math.Ordering[A]): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).min(ord)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.min instead

  26. def minBy[B](f: (A) => B)(implicit cmp: math.Ordering[B]): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).minBy(f)(cmp)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.minBy(...) instead

  27. def mkString: String
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).mkString
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.mkString instead

  28. def mkString(sep: String): String
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).mkString(sep)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.mkString instead

  29. def mkString(start: String, sep: String, end: String): String
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).mkString(start, sep, end)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.mkString instead

  30. def nonEmpty: Boolean
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).nonEmpty
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.nonEmpty instead

  31. final def prefixLength(p: (A) => Boolean): Int

    Returns the length of the longest prefix whose elements all satisfy some predicate.

    Returns the length of the longest prefix whose elements all satisfy some predicate.

    Note: may not terminate for infinite-sized collections.

    p

    the predicate used to test elements.

    returns

    the length of the longest prefix of this sequence such that every element of the segment satisfies the predicate p.

    Definition Classes
    SeqOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use segmentLength instead of prefixLength

  32. def product(implicit num: math.Numeric[A]): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).product(num)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.product instead

  33. def reduce(f: (A, A) => A): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).reduce(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.reduce(...) instead

  34. def reduceLeft(f: (A, A) => A): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).reduceLeft(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.reduceLeft(...) instead

  35. def reduceLeftOption(f: (A, A) => A): Option[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).reduceLeftOption(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.reduceLeftOption(...) instead

  36. def reduceOption(f: (A, A) => A): Option[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).reduceOption(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.reduceOption(...) instead

  37. def reduceRight(f: (A, A) => A): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).reduceRight(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.reduceRight(...) instead

  38. def reduceRightOption(f: (A, A) => A): Option[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).reduceRightOption(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.reduceRightOption(...) instead

  39. final def repr: C
    Definition Classes
    IterableOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use coll instead of repr in a collection implementation, use the collection value itself from the outside

  40. def reverseMap[B](f: (A) => B): CC[B]
    Definition Classes
    SeqOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .reverseIterator.map(f).to(...) instead of .reverseMap(f)

  41. def sameElements[B >: A](that: IterableOnce[B]): Boolean
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).sameElements(that)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.sameElements instead

  42. def size: Int
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).size
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.size instead

  43. def sum(implicit num: math.Numeric[A]): A
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).sum(num)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.sum instead

  44. def to[C1](factory: Factory[A, C1]): C1
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).to(factory)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.to(factory) instead

  45. def toArray[B >: A](implicit arg0: ClassTag[B]): Array[B]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toArray(arg0)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.toArray

  46. def toBuffer[B >: A]: Buffer[B]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toBuffer
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.to(ArrayBuffer) instead

  47. def toIndexedSeq: IndexedSeq[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toIndexedSeq
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.toIndexedSeq instead

  48. final def toIterable: Iterable[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toIterable
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.to(Iterable) instead

  49. def toIterator: Iterator[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toIterator
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator instead

  50. final def toIterator: Iterator[A]
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator instead of .toIterator

  51. def toList: immutable.List[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toList
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.to(List) instead

  52. def toMap[K, V](implicit ev: <:<[A, (K, V)]): immutable.Map[K, V]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toMap(ev)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.to(Map) instead

  53. def toSeq: immutable.Seq[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toSeq
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.to(Seq) instead

  54. def toSet[B >: A]: immutable.Set[B]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toSet
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.to(Set) instead

  55. def toStream: immutable.Stream[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toStream
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.to(LazyList) instead

  56. final def toStream: immutable.Stream[A]
    Definition Classes
    IterableOnceOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .to(LazyList) instead of .toStream

  57. final def toTraversable: Traversable[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toTraversable
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.to(Iterable) instead

  58. final def toTraversable: Traversable[A]

    Converts this iterable collection to an unspecified Iterable.

    Converts this iterable collection to an unspecified Iterable. Will return the same collection if this instance is already Iterable.

    returns

    An Iterable containing all elements of this iterable collection.

    Definition Classes
    IterableOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use toIterable instead

  59. def toVector: immutable.Vector[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).toVector
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use .iterator.to(Vector) instead

  60. final def union[B >: A](that: Seq[B]): CC[B]

    Produces a new sequence which contains all elements of this sequence and also all elements of a given sequence.

    Produces a new sequence which contains all elements of this sequence and also all elements of a given sequence. xs union ys is equivalent to xs ++ ys.

    B

    the element type of the returned sequence.

    that

    the sequence to add.

    returns

    a new collection which contains all elements of this sequence followed by all elements of that.

    Definition Classes
    SeqOps
    Annotations
    @deprecated @inline()
    Deprecated

    (Since version 2.13.0) Use concat instead

  61. def view(from: Int, until: Int): View[A]

    A view over a slice of the elements of this collection.

    A view over a slice of the elements of this collection.

    Definition Classes
    IterableOps
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .view.slice(from, until) instead of .view(from, until)

  62. def withFilter(f: (A) => Boolean): Iterator[A]
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toIterableOnceExtensionMethods[A] performed by method iterableOnceExtensionMethods in scala.collection.IterableOnce.
    Shadowing
    This implicitly inherited member is shadowed by one or more members in this class.
    To access this member you can use a type ascription:
    (strictOptimizedSeqOps: IterableOnceExtensionMethods[A]).withFilter(f)
    Definition Classes
    IterableOnceExtensionMethods
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use .iterator.withFilter(...) instead

  63. def [B](y: B): (StrictOptimizedSeqOps[A, CC, C], B)
    Implicit
    This member is added by an implicit conversion from StrictOptimizedSeqOps[A, CC, C] toArrowAssoc[StrictOptimizedSeqOps[A, CC, C]] performed by method ArrowAssoc in scala.Predef.
    Definition Classes
    ArrowAssoc
    Annotations
    @deprecated
    Deprecated

    (Since version 2.13.0) Use -> instead. If you still wish to display it as one character, consider using a font with programming ligatures such as Fira Code.

Inherited from StrictOptimizedIterableOps[A, CC, C]

Inherited from SeqOps[A, CC, C]

Inherited from IterableOps[A, CC, C]

Inherited from IterableOnceOps[A, CC, C]

Inherited from IterableOnce[A]

Inherited from Any

Inherited by implicit conversion iterableOnceExtensionMethods fromStrictOptimizedSeqOps[A, CC, C] to IterableOnceExtensionMethods[A]

Inherited by implicit conversion any2stringadd fromStrictOptimizedSeqOps[A, CC, C] to any2stringadd[StrictOptimizedSeqOps[A, CC, C]]

Inherited by implicit conversion StringFormat fromStrictOptimizedSeqOps[A, CC, C] to StringFormat[StrictOptimizedSeqOps[A, CC, C]]

Inherited by implicit conversion Ensuring fromStrictOptimizedSeqOps[A, CC, C] to Ensuring[StrictOptimizedSeqOps[A, CC, C]]

Inherited by implicit conversion ArrowAssoc fromStrictOptimizedSeqOps[A, CC, C] to ArrowAssoc[StrictOptimizedSeqOps[A, CC, C]]

Ungrouped