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Preface

Scala is a Java-like programming language which unifies object-oriented and func-
tional programming. It is a pure object-oriented language in the sense that every
value is an object. Types and behavior of objects are described by classes. Classes
can be composed using mixin composition. Scala is designed to work seamlessly
with two less pure but mainstream object-oriented languages — Java and C#.

Scala is a functional language in the sense that every function is a value. Nesting of
function definitions and higher-order functions are naturally supported. Scala also
supports a general notion of pattern matching which can model the algebraic types
used in many functional languages.

Scala has been designed to interoperate seamlessly with Java (an alternative imple-
mentation of Scala also works for .NET). Scala classes can call Java methods, create
Java objects, inherit from Java classes and implement Java interfaces. None of this
requires interface definitions or glue code.

Scala has been developed from 2001 in the programming methods laboratory at
EPFL. Version 1.0 was released in November 2003. This document describes the
second version of the language, which was released in March 2006. It acts a refer-
ence for the language definition and some core library modules. Itis notintended to
teach Scala or its concepts; for this there are other documents [0a04, Ode06, OZ05b,
OCRZ03, OZ05a].

Scala has been a collective effort of many people. The design and the implemen-
tation of version 1.0 was completed by Philippe Altherr, Vincent Cremet, Gilles
Dubochet, Burak Emir, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik
Stenman, Matthias Zenger, and the author. Iulian Dragos, Gilles Dubochet, Sean
McDirmid and Lex Spoon joined in the effort to develop the second version of the
language and tools. Gilad Bracha, Craig Chambers, Erik Ernst, Matthias Felleisen,
Shriram Krishnamurti, Gary Leavens, Sebastian Maneth, Erik Meijer, Klaus Oster-
mann, Didier RéEmy, Mads Torgersen, and Philip Wadler have shaped the design of
the language through lively and inspiring discussions and comments on previous
versions of this document. The contributors to the Scala mailing list have also given
very useful feedback that helped us improve the language and its tools.






Chapter 1
Lexical Syntax

Scala programs are written using the Unicode character set. This chapter defines
the two modes of Scala’s lexical syntax, the Scala mode and the XML mode. If
not otherwise mentioned, the following descriptions of Scala tokens refer to Scala
mode, and literal characters ‘c’ refer to the ASCII fragment \u0000-\u007F.

In Scala mode, Unicode escapes are replaced by the corresponding Unicode charac-
ter with the given hexadecimal code.

UnicodeEscape ::= \{\\}u{u} hexDigit hexDigit hexDigit hexDigit
hexDigit =07 | oo 9T | A e At ] R

To construct tokens, characters are distinguished according to the following classes
(Unicode general category given in parentheses):

1. Whitespace characters. \u0020 | \u0009 | \u000D | \u000A

2. Letters, which include lower case letters(Ll), upper case letters(Lu), title-
case letters(Lt), other letters(Lo), letter numerals(NI) and the two characters
\u0024 ‘$’ and \u0OO5F ‘_’, which both count as upper case letters

3. Digits ‘0’ | ... | ‘9’.

4. Parentheses ‘C’ | )’ | ‘[ | ‘1" | “{" | “}".

5. Delimiter characters ““’ | “’’ | ‘"’ | “.7 | 57 | “,".

6. Operator characters. These consist of all printable ASCII characters

\u0020-\u007F. which are in none of the sets above, mathematical sym-
bols(Sm) and other symbols(So).
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1.1 Identifiers

Syntax:
op = opchar {opchar}
varid = Jlower idrest
plainid = upper idrest
| varid
| op
id = plainid
|  “\‘’string chars‘\‘’
idrest = {letter | digit} [‘_’ op]

There are three ways to form an identifier. First, an identifier can start with a letter
which can be followed by an arbitrary sequence of letters and digits. This may be
followed by underscore ‘_’ characters and another string composed of either letters
and digits or of operator characters. Second, an identifier can start with an operator
character followed by an arbitrary sequence of operator characters. The preceding
two forms are called plainidentifiers. Finally, an identifier may also be formed by an
arbitrary string between back-quotes (host systems may impose some restrictions
on which strings are legal for identifiers). The identifier then is composed of all
characters excluding the backquotes themselves.

As usual, a longest match rule applies. For instance, the string

big_bob++=‘def*

decomposes into the three identifiers big_bob, ++=, and def. The rules for pattern
matching further distinguish between variable identifiers, which start with a lower
case letter, and constant identifiers, which do not.

The ‘$’ character is reserved for compiler-synthesized identifiers. User programs
should not define identifiers which contain ‘$’ characters.

The following names are reserved words instead of being members of the syntactic
class id of lexical identifiers.

abstract case catch class def
do else extends false final
finally for if implicit import
match new null object override
package private protected requires return
sealed super this throw trait
try true type val var
while with yield

: = => <- <: <% > # @

The Unicode operator \u21D2 ‘=’, which has the ASCII equivalent ‘=>’, is also re-
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served.

Example 1.1.1 Here are examples of identifiers:

X Object maxIndex p2p empty_?
+ ‘yield’ apeTn _y dot_product_x=
__system _MAX_LEN_

Example 1.1.2 Backquote-enclosed strings are a solution when one needs to ac-
cess Java identifiers that are reserved words in Scala. For instance, the statement
Thread.yield() is illegal, since yield is a reserved word in Scala. However, here’s a
work-around:

Thread. ‘yield‘ ()

1.2 Newline Characters

Syntax:

semi ::= “;’ | nl {nl}

Scala is a line-oriented language where statements may be terminated by semi-
colons or newlines. A newline in a Scala source text is treated as the special token
“nl” if the three following criteria are satisfied:

1. The token immediately preceding the newline can terminate a statement.
2. The token immediately following the newline can begin a statement.
3. The token appears in a region where multiple statements are allowed.
The tokens that can terminate a statement are: literals, identifiers and the following
delimiters and reserved words:
this null true false return type <xml-start>

- ) ] ¥

The tokens that can begin a statement are all Scala tokens except the following de-
limiters and reserved words:

catch else extends finally match requires with
yield , . ; : _ = => <- <: <% >
#00 ) ] ¥

A case token can begin a statement only if followed by a class or object token.

Multiple statements are allowed in:
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1. all of a Scala source file, except for nested regions where newlines are sup-
pressed, and

2. the interval between matching { and } brace tokens, except for nested regions
where newlines are suppressed.

Multiple statements are disabled in:

1. the interval between matching ( and ) parenthesis tokens, except for nested
regions where newlines are enabled, and

2. the interval between matching [ and ] bracket tokens, except for nested re-
gions where newlines are enabled.

3. The interval between a case token and its matching => token, except for
nested regions where newlines are enabled.

4. Anyregions analyzed in XML mode (§1.5).

Note that the brace characters of {.. .} escapes in XML and string literals are not
tokens, and therefore do not enclose a region where newlines are enabled.

Normally, only a single nl token is inserted between two consecutive non-newline
tokens which are on different lines, even if there are multiple lines between the two
tokens. However, if two tokens are separated by at least one completely blank line
(i.e a line which contains no printable characters), then two nl tokens are inserted.

The Scala grammar (given in full in Appendix A) contains productions where op-
tional nl tokens, but not semicolons, are accepted. This has the effect that a new-
line in one of these positions does not terminate an expression or statement. These
positions can be summarized as follows:

Multiple newline tokens are accepted in the following places (note that a semicolon
in place of the newline would be illegal in every one of these cases):

— between the condition of an conditional expression (§6.15) or while loop
(§6.16) and the next following expression,

— between the enumerators of a for-comprehension (§6.18) and the next follow-
ing expression, and

— after the initial type keyword in a type definition or declaration (§4.3).
A single new line token is accepted

— in front of an opening brace “{”, if that brace is a legal continuation of the
current statement or expression,

— after an infix operator, if the first token on the next line can start an expression
(§6.11),
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— in front of a parameter clause (§4.6), and

— after an annotation (§11).

Example 1.2.1 The following code contains four well-formed statements, each on
two lines. The newline tokens between the two lines are not treated as statement
separators.

if (x> 0)
x=x-1

while (x > 0)
X =x/ 2

for (x <- 1 to 10)
Console.println(x)

type
Intlist = List[int]

Example 1.2.2 The following code designates an anonymous class

new Iterator[int]

{

private var x = 0
def hasNext = true
def next = { x=x+1; x }

With an additional newline character, the same code is interpreted as an object cre-
ation followed by a local block:

new Iterator[int]

{
private var x = 0
def hasNext = true
def next = { x =x+ 1; x }

Example 1.2.3 The following code designates a single expression:

x <0 ||
x > 10

With an additional newline character, the same code is interpreted as two expres-
sions:
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X <0 ||

x > 10

Example 1.2.4 The following code designates a single, curried function definition:
def func(x: int)
(y: int) = x + vy
With an additional newline character, the same code is interpreted as an abstract

function definition and a syntactically illegal statement:

def func(x: int)

(y: int) = x + vy

Example 1.2.5 The following code designates an attributed definition:

@serializable
protected class Data { ... }

With an additional newline character, the same code is interpreted as an attribute
and a separate statement (which is syntactically illegal).

@serializable

protected class Data { ... }

1.3 Literals

There are literals for integer numbers, floating point numbers, characters, booleans,
symbols, strings. The syntax of these literals is in each case as in Java.

Syntax:

Literal = integerLiteral
| floatingPointLiteral
| booleanLiteral

| characterLiteral

| stringLiteral

I

symbollLiteral

1.3.1 Integer Literals

Syntax:
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integerLiteral ::= (decimalNumeral | hexNumeral | octalNumeral) ['L’ | ’1’]
decimalNumeral ::= ‘0’ | nonZeroDigit {digit}

hexNumeral i:= ‘0’ 'x’ hexDigit {hexDigit}

octalNumeral ::= ‘0’ octalDigit {octalDigit}

digit ::= ‘0’ | nonZeroDigit

nonZeroDigit ::= ‘1’ | ... | ‘9’

octalDigit HEE T O L S Y

Integer literals are usually of type int, or of type long when followed by a L or 1
suffix. Values of type int are all integer numbers between —23! and 23! — 1, inclu-
sive. Values of type long are all integer numbers between —2% and 2% 1, inclusive.
A compile-time error occurs if an integer literal denotes a number outside these
ranges.

However, if the expected type pt (§6) of a literal in an expression is either byte,
short, or char and the integer number fits in the numeric range defined by the type,
then the number is converted to type pt and the literal’s type is pt. The numeric
ranges given by these types are:

byte -27t02" -1
short —2¢tg 2151
char 0to2%-1

Example 1.3.1 Here are some integer literals:

0 =21 OXFFFFFFFF 0777L

1.3.2 Floating Point Literals

Syntax:
floatingPointLiteral ::= digit {digit} ‘.’ {digit} [exponentPart] [floatType]
[ “.7 digit {digit} [exponentPart] [floatType]
[ digit {digit} exponentPart [floatType]
| digit {digit} floatType
exponentPart i:= (CCE’ | ’e’) [’+7 | ’-’] digit {digit}
floatType = F’ | ’f | D’ | ’d’

Floating point literals are of type float when followed by a floating point type suffix
For £, and are of type double otherwise. The type float consists of all IEEE 754 32-
bit single-precision binary floating point values, whereas the type double consists
of all IEEE 754 64-bit double-precision binary floating point values.

Example 1.3.2 Here are some floating point literals:

0.0 le30f 3.14159f 1.0e-100 1
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1.3.3 Boolean Literals
Syntax:

booleanliteral ::= true | false

The boolean literals true and false are members of type boolean.

1.3.4 Character Literals
Syntax:
characterLiteral ::= ‘\’’ printableChar ‘\’’

|  “\’’ charEscapeSeq ‘\’’

A character literal is a single character enclosed in quotes. The character is either a
printable unicode character or is described by an escape sequence (§1.3.6).

Example 1.3.3 Here are some character literals:

’a’ !\u0041! !\n! !\t!

Note that "\u000A’ is not a valid character literal because Unicode conversion is
done before literal parsing and the Unicode character \u000A (line feed), and is not
a printable character. One can use instead the escape sequence ‘\n’ or the octal
escape ‘\12’ (§1.3.6).

1.3.5 String Literals

Syntax:
stringliteral = ‘\"’ {stringElement} ‘\"’
stringElement = printableCharNoDoubleQuote | charEscapeSeq

A string literal is a sequence of characters in double quotes. The characters are ei-
ther printable unicode character or are described by escape sequences (§1.3.6). If
the string literal contains a double quote character, it must be escaped, i.e. \". The
value of a string literal is an instance of class String.

Example 1.3.4 Here are some string literals:

"Hello, \nWorld!"
"This string contains a \" character."

Multi-Line String Literals

Syntax:
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[RIAIRIN) crrInny

multiLineChars
{[’"’]1 [’"’] charNoDoubleQuote}

stringliteral
multilineChars ::

A multi-line string literal is a sequence of characters enclosed in triple quotes
"o L. """, The sequence of characters is arbitrary, except that it may not con-
tain a triple quote. Characters must not necessarily be printable; newlines or other
control characters are also permitted. Unicode escapes work as everywhere else,
but none of the escape sequences in (§1.3.6) is interpreted.

Example 1.3.5 Here is a multi-line string literal:

the present string
spans three
1ines. mirn

This would produce the string:

the present string
spans three
lines.

The Scala library contains a utility method stripMargin which can be used to strip
leading whitespace from multi-line strings. The expression

the present string
| spans three
|lines.""".stripMargin

evaluates to

the present string
spans three
lines.

Method stripMargin is defined in class scala.runtime.RichString. Because there

is a predefined implicit conversion (§6.24) from String to RichString, the method
is applicable to all strings.

1.3.6 Escape Sequences

The following escape sequences are recognized in character and string literals.
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\b \u0008: backspace BS

\t \u0009: horizontal tab HT
\n \u000a: linefeed LF

\f \u000c: form feed FF

\r \u000d: carriage return CR
\" \u0022: double quote "

\’ \u0027: single quote’

\\ \u0009: backslash \

A character with Unicode between 0 and 255 may also be represented by an octal
escape, i.e. a backslash ‘\’ followed by a sequence of up to three octal characters.

Itis a compile time error if a backslash character in a character or string literal does
not start a valid escape sequence.

1.3.7 Symbol literals

Syntax:

symbolLiteral 1= idrest
A symbol literal ’x is a shorthand for the expression scala.Symbol("x").intern.
Symbol is a case class (§5.3.2), which is defined as follows.

package scala

final case class Symbol(name: String) {
override def toString(): String = "’"
def intern: Symbol = ...

}

+ name

The intern method turns symbols into unique references: If two interned symbols
have the same name, then they must be the same object.

1.4 Whitespace and Comments

Tokens may be separated by whitespace characters and/or comments. Comments
come in two forms:

A single-line comment is a sequence of characters which starts with //and extends
to the end of the line.

A multi-line comment is a sequence of characters between /+ and */. Multi-line
comments may be nested.
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1.5 XML mode

In order to allow literal inclusion of XML fragments, lexical analysis switches from
Scala mode to XML mode when encountering an opening angle bracket '<’ in the
following circumstance: The '<’ must be preceded either by whitespace, an opening
parenthesis or an opening brace and immediately followed by a character starting
an XML name.

Syntax:
( whitespace | (" | {’ ) ’<’ (XNameStart | ’!’ | ’?7)
XNameStart ::= ‘_’ | BaseChar | Ideographic (asin W3C XML, but without

The scanner switches from XML mode to Scala mode if either

* the XML expression or the XML pattern started by the initial ‘<’ has been suc-
cessfully parsed, or if

 the parser encounters an embedded Scala expression or pattern and forces
the Scanner back to normal mode, until the Scala expression or pattern is suc-
cessfully parsed. In this case, since code and XML fragments can be nested,
the parser has to maintain a stack that reflects the nesting of XML and Scala
expressions adequately.

Note that no Scala tokens are constructed in XML mode, and that comments are
interpreted as text.

Example 1.5.1 The following value definition uses an XML literal with two embed-
ded Scala expressions

val b = <book>
<title>The Scala Language Specification</title>
<version>{scalaBook.version}</version>
<authors>{scalaBook.authors.mkList("", ", ", "")}</authors>
</book>






Chapter 2
Identifiers, Names and Scopes

Names in Scala identify types, values, methods, and classes which are collectively
called entities. Names are introduced by local definitions and declarations (§4), in-
heritance (§5.1.3), import clauses (§4.7), or package clauses (§9.2) which are collec-
tively called bindings.

Bindings of different kinds have a precedence defined on them: Definitions (local or
inherited) have highest precedence, followed by explicit imports, followed by wild-
card imports, followed by package members, which have lowest precedence.

There are two different name spaces, one for types (§3) and one for terms (§6). The
same name may designate a type and a term, depending on the context where the
name is used.

A binding has a scope in which the entity defined by a single name can be accessed
using a simple name. Scopes are nested. A binding in some inner scope shadows
bindings of lower precedence in the same scope as well as bindings of the same or
lower precedence in outer scopes.

Note that shadowing is only a partial order. In a situation like

val x = 1;
{ dimport p.x;

X }
neither binding of x shadows the other. Consequently, the reference to x in the third

line above would be ambiguous.

A reference to an unqualified (type- or term-) identifier x is bound by the unique
binding, which
* defines an entity with name x in the same namespace as the identifier, and

* shadows all other bindings that define entities with name x in that names-
pace.
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It is an error if no such binding exists. If x is bound by an import clause, then the
simple name x is taken to be equivalent to the qualified name to which x is mapped
by the import clause. If x is bound by a definition or declaration, then x refers to
the entity introduced by that binding. In that case, the type of x is the type of the
referenced entity.

Example 2.0.2 Assume the following two definitions of a objects named X in pack-
ages P and Q.

package P {
object X { val x = 1; valy = 2 }
}
package Q {
object X { val x = true; val y = "" }
}

The following program illustrates different kinds of bindings and precedences be-
tween them.

package P { // ‘X’ bound by package clause
import Console._ // ‘println’ bound by wildcard import
object A {
println("L4: "+X) // ‘X’ refers to ‘P.X’ here
object B {
import Q._ // ‘X’ bound by wildcard import
println("L7: "+X) // ‘X’ refers to ‘Q.X’ here
import X._ // ‘x’ and ‘y’ bound by wildcard import
println("L8: "+x) // ‘x’ refers to ‘Q.X.x’ here
object C {
val x = 3 // ‘x’ bound by local definition
println("L12: "+x) // ‘x’ refers to constant ‘3’ here
{ import Q.X._ // ‘x’ and ‘y’ bound by wildcard import
// println("L14: "+x) // reference to ‘x’ is ambiguous here
import X.y // ‘v’ bound by explicit import
println("L16: "+y) // ‘v’ refers to ‘Q.X.y’ here
{ val x = "abc" // ‘x’ bound by local definition
import P.X._ // ‘x’ and ‘y’ bound by wildcard import
// printin("L19: "+y) // reference to ‘y’ is ambiguous here

println("L20: "+x) // ‘x’ refers to string ‘‘abc’’ here

FIPr}

A reference to a qualified (type- or term-) identifier e.x refers to the member of the
type T of e which has the name x in the same namespace as the identifier. It is
an error if T is not a value type (§3.2). The type of e.x is the member type of the
referenced entity in 7.
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Syntax:
Type = InfixType [‘=>" Type]
| “C [*=>" Type] )’ *=>" Type
InfixType = CompoundType {id [nl] CompoundType}
CompoundType = AnnotType {with AnnotType} [Refinement]
AnnotType = {Annotation} SimpleType
SimpleType ::= SimpleType TypeArgs
| SimpleType ‘#’ id
| Stableld
| Path ‘.’ type
| “C Types [*,’] )’
TypeArgs i:= ‘[’ Types ‘]’
Types = Type {‘,’ Type}

We distinguish between first-order types and type constructors, which take type pa-
rameters and yield types. A subset of first-order types called value types represents
sets of (first-class) values. Value types are either concrete or abstract.

Every concrete value type can be represented as a class type, i.e. a type designator
(§3.2.3) that refers to a class' (§5.3), or as a compound type (§3.2.7) representing an
intersection of types, possibly with a refinement (§3.2.7) that further constrains the
types of its members. Abstract value types are introduced by type parameters (§4.4)
and abstract type bindings (§4.3). Parentheses in types are used for grouping.

Non-value types capture properties of identifiers that are not values (§3.3). For ex-
ample, a type constructor (§3.3.3) does not directly specify the type of values. How-
ever, when a type constructor is applied to the correct type arguments, it yields a
first-order type, which may be a value type.

IWe assume that objects and packages also implicitly define a class (of the same name as the
object or package, but inaccessible to user programs).
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Non-value types are expressed indirectly in Scala. E.g., a method type is described
by writing down a method signature, which in itself is not a real type, although it
gives rise to a corresponding function type (§3.3.1). Type constructors are another
example, as one can write type Swap[m[_, _], a,b] = m[b, a], but there is no
syntax to write the corresponding anonymous type function directly.

3.1 Paths
Syntax:
Path = StableId
| [did “.’] this
Stableld = id
| Path ‘.’ id
| [id ’.’] super [ClassQualifier] ‘.’ id
ClassQualifier = ‘[” d4id ‘1’

Paths are not types themselves, but they can be a part of named types and in that
function form a central role in Scala’s type system.

A path is one of the following.

The empty path € (which cannot be written explicitly in user programs).

C.this, where C references a class. The path this is taken as a shorthand for
C.this where C is the name of the class directly enclosing the reference.

* p.x where p is a path and x is a stable member of p. Stable members are
members introduced by value or object definitions, as well as packages.

e C.super.x or C.super[ M ].x where C references a class and x references a
stable member of the super class or designated parent class M of C. The prefix
super is taken as a shorthand for C.super where C is the name of the class
directly enclosing the reference.

A stable identifier is a path which ends in an identifier.

3.2 Value Types
Every value in Scala has a type which is of one of the following forms.

3.2.1 Singleton Types

Syntax:

SimpleType ::= Path ‘.’ type
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A singleton type is of the form p . type, where p is a path pointing to a value expected
to conform (§6) to scala.AnyRef. The type denotes the set of values consisting of
null and the value denoted by p.

3.2.2 Type Projection
Syntax:
SimpleType ::= SimpleType ‘#’ id

A type projection T#x references the type member named x of type T. If x refer-
ences an abstract type member, then T must be a singleton type.

3.2.3 Type Designators
Syntax:

SimpleType ::= Stableld

A type designator refers to a named value type. It can be simple or qualified. All
such type designators are shorthands for type projections.

Specifically, the unqualified type name ¢ where ¢ is bound in some class, object, or
package C is taken as a shorthand for C.this.type#t¢. If f is not bound in a class,
object, or package, then ¢ is taken as a shorthand for €. type#t.

A qualified type designator has the form p. f where p is a path (§3.1) and ¢ is a type
name. Such a type designator is equivalent to the type projection p.type#x.

Example 3.2.1 Some type designators and their expansions are listed below. We
assume a local type parameter ¢, a value maintable with a type member Node and
the standard class scala.Int,

t €.type#t
Int scala.type#Int
scala.Int scala.type#Int

data.maintable.Node data.maintable.type#Node

3.2.4 Parameterized Types

Syntax:
SimpleType = SimpleType TypeArgs
TypeArgs = ‘[’ Types ‘1’

A parameterized type T[U, ..., U,] consists of a type designator T and type param-
eters Uy, ..., U, where n = 1. T must refer to a type constructor which takes n type
parameters ay, ..., ay.
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Say the type parameters have lower bounds L, ..., L, and upper bounds Uy, ..., Uj.
The parameterized type is well-formed if each actual type parameter conforms to its
bounds, i.e. oL; <: T; <: cU; where o is the substitution [a; := T3, ..., a, := Ty].

Example 3.2.2 Given the partial type definitions:

class TreeMap[a <: Comparable[a], b] { ... }
class List[a] { ... }
class I extends Comparable[I] { ... }

the following parameterized types are well formed:

TreeMap[I, String]
List[I]
List[List[Boolean]]

Example 3.2.3 Given the type definitions of Example 3.2.2, the following types are
ill-formed:

TreeMap[I] // illegal: wrong number of parameters
TreeMap[List[I], Boolean] // illegal: type parameter not within bound

3.2.5 Tuple Types
Syntax:

SimpleType ii= ‘(7 Types [‘,’]1 ")’

A tuple type (711, ..., Ty) is an alias for the class scala.Tuplen[Ty,..., T,1, where
n = 2. The type may also be written with a trailing comma, i.e. (T3, ..., T,,). The
unary tuple type scala.Tuplel[T] can be written in tuple syntax only by using a
trailing comma, i.e. (T,).

Tuple classes are case classes whose fields can be accessed using selectors _1, ..., _n.
Their functionality is abstracted in a corresponding Product trait. The n-ary tuple
class and product trait are defined at least as follows in the standard Scala library
(they might also add other methods and implement other traits).

case class Tuplen[+T1, ..., +Tn](_1: T1, ..., _n: Tn)
extends Productn[Tl, ..., Tn] {}

trait Productn[+T1, +T2, +Tn] {
override def arity = n
def _1: T1
def _n:Tn

}



3.2 Value Types 21

3.2.6 Annotated Types

Syntax:

AnnotType ::= {Annotation} SimpleType
An annotated type @a; ... @a, T attaches annotations ay, ..., a, to the type T
(S11).

3.2.7 Compound Types

Syntax:
CompoundType = AnnotType {with AnnotType} [Refinement]
Refinement = [nl] ‘{’ RefineStat {semi RefineStat} ‘}’
RefineStat Dcl

| type TypeDef
|

A compound type T; with ... with T,, {R} represents objects with members as
given in the component types T, ..., T,; and the refinement {R }. Arefinement {R }
contains declarations and type definitions. Each declaration or definition in a re-
finement must override a declaration or definition in one of the component types
Ty, ..., Ty. The usual rules for overriding (§5.1.4) apply. If no refinement is given,
the empty refinement is implicitly added, i.e. 77 with ... with T}, is a shorthand
for 77 with ... with T, {}.

3.2.8 Infix Types
Syntax:

InfixType ::= CompoundType {id [nl] CompoundType}

An infix type T; op T» consists of an infix operator op which gets applied to two
type operands T; and T,. The type is equivalent to the type application op[ T3, T>»].
The infix operator op may be an arbitrary identifier, except for », which is reserved
as a postfix modifier denoting a repeated parameter type (§4.6.2).

All type infix operators have the same precedence; parentheses have to be used for
grouping. The associativity (§6.11) of a type operator is determined as for term op-
erators: type operators endingin a colon ‘:’ are right-associative; all other operators
are left-associative.

In a sequence of consecutive type infix operations #, op, t; op,...op,, t,, all opera-
tors opy, ..., op,, must have the same associativity. If they are all left-associative, the
sequence is interpreted as (... (fp op; f1) op,...) op,, Iy, otherwise it is interpreted as
o op; (t1 0p, (...0p,, ty)...).
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3.2.9 Function Types

Syntax:

Type ::= InfixType ‘=>" Type
| “C ['=>" Type] )’ *=>’ Type

The type (T3,..., T,) => U represents the set of function values that take argu-
ments of types 71, ..., T, and yield results of type U. In the case of exactly one ar-
gument type T => U isashorthand for (T) => U. Thetype (=>T) => U repre-
sents functions with call-by-name parameters (§4.6.1) of type T which yield results
of type U. Function types associate to the right, e.g. S => T => U is the same as
S = (T = U).

Function types are shorthands for class types that define apply functions. Specif-
ically, the n-ary function type (T1,..., T,) => U is a shorthand for the class type
Functionn[Ty,..., T,,U]. Such class types are defined in the Scala library for n
between 0 and 9 as follows.

package scala

trait Functionn[-Ti,..., -T,, +R] {
def applv(x;: Ti,...,X,: Ty): R
override def toString() = "<function>"
}

Hence, function types are covariant (§4.5) in their result type and contravariant in
their argument types.

A call-by-name function type (=> T) => U is a shorthand for the class type
ByNameFunction[ T, U ], which is defined as follows.

package scala
trait ByNameFunction[-T, +R] {
def apply(x: => T): R
override def toString() = "<function>"

}

3.2.10 Primitive Types Defined in Predef

The object Predef is imported implicitly into every Scala program . It contains type
definitions which establish the primitive types mentioned above as aliases of class
types. Numeric and boolean types are equated with standard Scala classes. The
String type is equated with the string class of the underlying host system. In a Java
environment, Predef contains the following bindings, among others:

type byte = scala.Byte
type short = scala.Short
type char = scala.Char
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type int = scala.Int

type long = scala.Long

type float = scala.Float

type double = scala.Double
type boolean = scala.Boolean
type String = java.lang.String

3.3 Non-Value Types

The types explained in the following do not denote sets of values, nor do they appear
explicitly in programs. They are introduced in this report as the internal types of
defined identifiers.

3.3.1 Method Types

A method type is denoted internally as (Ts)U, where (T5s) is a sequence of types

(T, ..., Tp) for some n = 0 and U is a (value or method) type. This type represents
named methods that take arguments of types T, ..., T,; and that return a result of
type U.

We let method types associate to the right: (Ts;)(Ts) U is treated as (Ts;) ((Ts2) U).

A special case are types of methods without any parameters. They are written here
=> T. Parameterless methods name expressions that are re-evaluated each time the
parameterless method name is referenced.

Method types do not exist as types of values. If a method name is used as a value, its
type is implicitly converted to a corresponding function type (§6.24).

Example 3.3.1 The declarations

def a: Int
def b (x: Int): Boolean
def ¢ (x: Int) (y: String, z: String): String

produce the typings

a: => Int
b: (Int) Boolean
c: (Int) (String, String) String

3.3.2 Polymorphic Method Types

A polymorphic method type is denoted internally as [tps]T where [tps] is a type
parameter section [a; >: Ly <: Uy,...,a, >: L, <: U,] forsomen=0and T
is a (value or method) type. This type represents named methods that take type
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arguments S, ..., S; which conform (§3.2.4) to the lower bounds L, ..., L, and
the upper bounds Uy, ..., U, and that yield results of type T.

Example 3.3.2 The declarations

def empty[a]: List[a]

def union[a <: Comparable[a]] (x: Set[a], xs: Set[a]): Set[a]
produce the typings

empty : [a >: Nothing <: Any] List[a]
union : [a >: Nothing <: Comparable[a]] (x: Set[a], xs: Set[a]) Set[a]

3.3.3 Type Constructors

A type constructor is represented internally much like a polymorphic method type.
[+ a > Ly <: Uy,...,xa, >: L, <: U,] T represents a type that is expected
by a type constructor parameter (§4.4) or an abstract type constructor binding (§4.3)
with the corresponding type parameter clause.

Example 3.3.3 Consider this fragment of the Tterable[+x] class:

trait Iterable[+x] {
def flatMap[newType[+x] <: Iterable[x], s](f: t => newType[s]): newType[s]
}

Conceptually, the type constructor Iterable is a name for the anonymous type
[+x] Iterable[x], which may be passed to the newType type constructor param-
eter in flatMap.

3.4 Base Types and Member Definitions

Types of class members depend on the way the members are referenced. Central
here are three notions, namely:

1. the notion of the set of base types of a type T,
2. the notion of a type T in some class C seen from some prefix type S,

3. the notion of the set of member bindings of some type T.

These notions are defined mutually recursively as follows.

1. The set of base types of a type is a set of class types, given as follows.

* The base types of a class type C with parents 71, ..., T, are C itself, as well as
the base types of the compound type T; with ... with T, {R}.
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* The base types of an aliased type are the base types of its alias.
* The base types of an abstract type are the base types of its upper bound.

* The base types of a parameterized type C[T1,..., T,] are the base types of
type C, where every occurrence of a type parameter a; of C has been replaced
by the corresponding parameter type T;.

* The base types of a singleton type p.type are the base types of the type of p.

* The base types of a compound type 7; with ... with T, {R} are the re-
duced union of the base classes of all T;’s. This means: Let the multi-set .
be the multi-set-union of the base types of all T;’s. If . contains several type
instances of the same class, say Si#C[TI, ..., T,i] (i € I), then all those in-
stances are replaced by one of them which conforms to all others. It is an
error if no such instance exists. It follows that the reduced union, if it exists,
produces a set of class types, where different types are instances of different
classes.

* The base types of a type selection S#T are determined as follows. If T is an
alias or abstract type, the previous clauses apply. Otherwise, T must be a (pos-
sibly parameterized) class type, which is defined in some class B. Then the
base types of S#T are the base types of T in B seen from the prefix type S.

2. The notion of a type T in class C seen from some prefix type S makes sense only if
the prefix type S has a type instance of class C as a base type, say S'#C[ Ty, ..., T,].
Then we define as follows.

e IfS = €.type, then T in C seen from S is T itself.

* Otherwise, if T is the i’th type parameter of some class D, then

- If S has a base type DI[Uy,...,U,], for some type parameters
[Uy, ..., U,], then T in C seen from S is U;.

— Otherwise, if C is defined in a class C’, then T in C seen from S is the
same as T in C’ seen from S'.

— Otherwise, if C is not defined in another class, then T in C seen from S is
T itself.

e Otherwise, if T is the singleton type D.this.type for some class D then

- If Dis asubclass of C and S has a type instance of class D among its base
types, then T in C seen from S is S.

— Otherwise, if C is defined in a class C’, then T in C seen from S is the
same as T in C’ seen from S'.

— Otherwise, if C is not defined in another class, then T in C seen from S is
T itself.
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e If T is some other type, then the described mapping is performed to all its
type components.

If T is a possibly parameterized class type, where T’s class is defined in some other
class D, and S is some prefix type, then we use “T seen from S” as a shorthand for
“T in D seen from S”.

3. The member bindings of a type T are all bindings d such that there exists a type
instance of some class C among the base types of T and there exists a definition or
declaration d’ in C such that d results from d’ by replacing every type T’ in d’ by T’
in C seen from T.

The definition of a type projection S#¢ is the member binding d; of the type ¢ in S.
In that case, we also say that S#¢ is defined by d;.

3.5 Relations between types
We define two relations between types.

Type equivalence T=U T and U are interchangeable in all contexts.
Conformance T<:U  Type T conforms to type U.

3.5.1 Type Equivalence

Equivalence (=) between types is the smallest congruence? such that the following
holds:

 If tis defined by a type alias type ¢ = T, then ¢is equivalentto T.
e Ifa path p has a singleton type g.type, then p.type = q.type.

* If Ois defined by an object definition, and p is a path consisting only of pack-
age or object selectors and ending in O, then O.this.type = p.type.

* Two compound types (§3.2.7) are equivalent if the sequences of their compo-
nent are pairwise equivalent, and occur in the same order, and their refine-
ments are equivalent. Two refinements are equivalent if they bind the same
names and the modifiers, types and bounds of every declared entity are equiv-
alent in both refinements.

* Two method types (§3.3.1) are equivalent if they have equivalent result types,
both have the same number of parameters, and corresponding parameters
have equivalent types. Note that the names of parameters do not matter for
method type equivalence.

2 A congruence is an equivalence relation which is closed under formation of contexts
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* Two polymorphic method types (§3.3.2) are equivalent if they have the same
number of type parameters, and, after renaming one set of type parameters by
another, the result types as well as lower and upper bounds of corresponding
type parameters are equivalent.

* Two type constructors (§3.3.3) are equivalent if they have the same number of
type parameters, and, after renaming one set of type parameters by another,
the result types as well as variances, lower and upper bounds of correspond-
ing type parameters are equivalent.

3.5.2 Conformance

The conformance relation (<:) is the smallest transitive relation that satisfies the
following conditions.

* Conformance includes equivalence. If T = U then T <: U.
* For every value type T, scala.Nothing <: T <:scala.Any.

e For every type constructor T (with any number of type parameters),
scala.Nothing <: T <:scala.Any.

* For every class type T <: scala.AnyRef one has scala.Null <: T.

* A type variable or abstract type ¢ conforms to its upper bound and its lower
bound conforms to ¢.

* A class type or parameterized type conforms to any of its base-types.

* Asingleton type p.type conforms to the type of the path p.

* A type projection T#t conforms to U#t if T conforms to U.

* A parameterized type T[Ti,..., T,]1 conformsto T[U,...,U,] if the fol-

lowing three conditions hold fori =1, ..., n.

- If the i’th type parameter of T is declared covariant, then T; <: U;.
- If the i’th type parameter of T is declared contravariant, then U; <: T;.

— If the i'th type parameter of T is declared neither covariant nor con-
travariant, then U; = T;.

e Acompound type 77 with ... with T, {R} conforms to each ofits compo-
nent types T;.

e If T<:Uj;fori=1,..., nand for every binding d of a type or value x in R there
exists a member binding of x in T which subsumes d, then T conforms to the
compound type U; with ... with U, {R}.

«If T; = T/ for i = 1,...,n and U conforms to U’ then the method type
(11, ..., Ty)U conformsto (17, ..., T,)U".
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e The polymorphic type [a; >: L <: Uy, ..., a, >: L, <: U,]T conforms to the
polymorphic type [a; >: L} <: Uy, ..., a, >: L), <: U,]T" if, assuming L] <:
ay <:Uj,...,L}, <t a, <: Uy one has T <: T' and L; <: L; and U; <: U; for
i=1,..., n.

 Type constructors T and T’ follow a similar discipline. We characterize T

and T’ by their type parameter clauses [ay, ..., a,] and [aj, ..., a,,], where
an a; or a; may include a variance annotation, a higher-order type param-
eter clause, and bounds. Then, T conforms to T’ if any list [z, ..., t,] -

with declared variances, bounds and higher-order type parameter clauses —
of valid type arguments for T' is also a valid list of type arguments for T and
Tit,..., t,]<:T'[ty,..., t;]. Note that this entails that:

— The bounds on a; must be weaker than the corresponding bounds de-
clared for a.

— The variance of a; must match the variance of a;, where covariance
matches covariance, contravariance matches contravariance and any
variance matches invariance.

— Recursively, these restrictions apply to the corresponding higher-order
type parameter clauses of a; and a;.

A declaration or definition in some compound type of class type C subsumes an-
other declaration of the same name in some compound type or class type C', if one
of the following holds.

* Avalue declaration or definition that defines a name x with type T subsumes
a value or method declaration that defines x with type T’, provided T <: T".

* A method declaration or definition that defines a name x with type T sub-
sumes a method declaration that defines x with type T’, provided T <: T".

» Atypealias type t[Ty, ..., T,] = T subsumes a type alias type t[T}, ..., T,] =T’
ifT=T.

* A type declaration type ¢[T3,..., T,] >: L <: U subsumes a type declara-
tion type ¢[Ty,...,T,] >: L' <: U' if'<:Land U <:U'.

* A type or class definition that binds a type name ¢ subsumes an abstract type
declaration type t[T},...,T,] >: L <: UifL<:t<:U.

The (<:) relation forms pre-order between types, i.e. it is transitive and reflexive.
least upper bounds and greatest lower bounds of a set of types are understood to be
relative to that order.
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Note. The least upper bound or greatest lower bound of a set of types does not
always exist. For instance, consider the class definitions

class A[+t] {}
class B extends A[B]
class C extends A[C]

Then the types A[Any], A[A[Any]], A[A[A[Any]]], ... form a descending se-
quence of upper bounds for B and C. The least upper bound would be the infinite
limit of that sequence, which does not exist as a Scala type. Since cases like this are
in general impossible to detect, a Scala compiler is free to reject a term which has
a type specified as a least upper or greatest lower bound, and that bound would be
more complex than some compiler-set limit>.

The least upper bound or greatest lower bound might also not be unique. For in-
stance A with B and B with A are both least upper bounds of A and B. If there are
several least upper bounds or greatest lower bounds, the Scala compiler is free to
pick any one of them.

3.6 Type Erasure

A type is called generic if it contains type arguments or type variables. Type erasure
is a mapping from (possibly generic) types to non-generic types. We write | T| for
the erasure of type T. The erasure mapping is defined as follows.

* The erasure of an alias type is the erasure of its right-hand side.

* The erasure of an abstract type is the erasure of its upper bound.

* The erasure of the parameterized type scala.Array|T}] is scala.Array(|T1]].
* The erasure of every other parameterized type T[T1, ..., Tyl is | T|.

* The erasure of a singleton type p.type is the erasure of the type of p.

e The erasure of a type projection T#x is | T' | #x.

e The erasure of a compound type T; with ... with T, {R}is|Ty|.

e The erasure of every other type is the type itself.

3The current Scala compiler limits the nesting level of parameterization in such bounds to 10.






Chapter 4
Basic Declarations and Definitions

Syntax:

Dcl = wval ValDcl

| wvar VarDcl

| def FunDcl

| type [nl] TypeDcl
Def ::= val PatDef

| var VarDef

| def FunDef

| type [nl] TypeDef

| TmplDef

A declaration introduces names and assigns them types. It can form part of a class
definition (§5.1) or of a refinement in a compound type (§3.2.7).

A definition introduces names that denote terms or types. It can form part of an
object or class definition or it can be local to a block. Both declarations and defini-
tions produce bindings that associate type names with type definitions or bounds,
and that associate term names with types.

The scope of a name introduced by a declaration or definition is the whole state-
ment sequence containing the binding. However, there is a restriction on forward
references in blocks: In a statement sequence s; ... s, making up a block, if a simple
name in s; refers to an entity defined by s; where j > i, then none of the definitions
between and including s; and s; may be a value or variable definition.

4.1 Value Declarations and Definitions

Syntax:

Dcl ::= val ValDcl
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ValDcl r:= ids ‘:’ Type

Def ::= val PatDef

PatDef ::= Pattern2 {‘,’ Pattern2} [‘:’ Type] ‘=’ Expr
ids = did {¢,’ id}

A value declaration val x: T introduces x as a name of a value of type T.

Avalue definition val x: T = e defines x as a name of the value that results from
the evaluation of e. The type T may be omitted, in which case the type of expression
e is assumed. If a type T is given, then e is expected to conform to it (§6).

Evaluation of the value definition implies evaluation of its right-hand side e. The
effect of the value definition is to bind x to the value of e converted to type T.

Value definitions can alternatively have a pattern (§8.1) as left-hand side. If p is
some pattern other than a simple name or a name followed by a colon and a type,
then the value definition val p = e is expanded as follows:

1. If the pattern p has bound variables x;, ..., x,, where n > 1:
val $x = e match {case p => {x1,..., Xy}}
val x; = $x._1
val x, = $x._n

Here, $x is a fresh name.

2. If p has a unique bound variable x:

val x = e match { case p => x }

3. If p has no bound variables:

e match { case p => ()}

Example 4.1.1 The following are examples of value definitions

val pi = 3.1415

val pi: double = 3.1415 // equivalent to first definition
val Some(x) = £() // a pattern definition

val x :: xs = mylist // an infix pattern definition

The last two definitions have the following expansions.

val x = £f() match { case Some(x) => x }

val x$ = mylist match { case x :: xs => {x, xs} }
val x = x$._1
val xs = x$._2
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Avalue declaration val x,..., x,: T isashorthand for the sequence of value dec-
larations val x;: T; ...; val x,: T. Avalue definition val p,...,p, = e is
a shorthand for the sequence of value definitions val p; = e; ...; val p, = e.
A value definition val p,..., p,: T = e is a shorthand for the sequence of value
definitions val p;:T = e; ...; val p,:T = e.

4.2 Variable Declarations and Definitions

Syntax:
Dcl ::= var VarDcl
Def ::= var VarDef
VarDcl 1:= dids ‘:’ Type
VarDef ::= dids [“:’ Type] ‘=’ Expr

| dids ‘:’ Type ‘=" ‘_

Avariable declaration var x: T isequivalent to declarations of a getter function x
and a setter function x_=, defined as follows:

def x: T
def x_= (y: T): unit

An implementation of a class containing variable declarations may define these
variables using variable definitions, or it may define setter and getter functions di-
rectly.

Avariable definition var x: T = e introduces a mutable variable with type T and
initial value as given by the expression e. The type T can be omitted, in which case
the type of e is assumed. If T is given, then e is expected to conform to it (§6).

A variable definition var x: T = _ can appear only as a member of a template. It
introduces a mutable field with type T and a default initial value. The default value
depends on the type T as follows:

0 if T is int or one of its subrange types,
OL if T is 1long,

0.0f if Tis float,

0.0d if T isdouble,

false if T'isboolean,

{} if T isunit,

null for all other types T.

When they occur as members of a template, both forms of variable definition also
introduce a getter function x which returns the value currently assigned to the vari-
able, as well as a setter function x_= which changes the value currently assigned to
the variable. The functions have the same signatures as for a variable declaration.
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The template then has these getter and setter functions as members, whereas the
original variable cannot be accessed directly as a template member.

Example 4.2.1 The following example shows how properties can be simulated in
Scala. It defines a class TimeOfDayVar of time values with updatable integer fields
representing hours, minutes, and seconds. Its implementation contains tests that
allow only legal values to be assigned to these fields. The user code, on the other
hand, accesses these fields just like normal variables.

class TimeOfDayVar {

private var h: int = 0
private var m: int = 0
private var s: int = 0
def hours = h
def hours_= (h: int) = if (0 <= h & h < 24) this.h = h
else throw new DateError()
def minutes = m
def minutes_= (m: int) = if (0 <=m && m < 60) this.m = m
else throw new DateError()
def seconds = s
def seconds_= (s: int) = if (0 <= s && s < 60) this.s = s
else throw new DateError()
}
val d = new TimeOfDayVar
d.hours = 8; d.minutes = 30; d.seconds = 0
d.hours = 25 // throws a DateError exception
A variable declaration var xj,...,x,: T is a shorthand for the se-
quence of variable declarations var x;: T; ...; var x;,: T. A vari-
able definition wvar x;,...,x, = e is a shorthand for the sequence of
variable definitions var x; = e; ...; var x, = e. A variable definition
var Xxi,...,Xx,:T = e 1is a shorthand for the sequence of variable definitions
var x;: 1T =e; ...; var x,: 1T = e.
4.3 Type Declarations and Type Aliases
Syntax:
Dcl ::= type {nl} TypeDcl
TypeDcl ::= 1id [TypeParamClause] [>: Type] [<: Typel
Def ::= type {nl} TypeDef

TypeDef ::= 1id [TypeParamClause] ‘=’ Type
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A type declaration type t[tps] >: L <: U declares t to be an abstract type with
lower bound type L and upper bound type U. If the type parameter clause [tps] is
omitted, t abstracts over a first-order type, otherwise ¢ stands for a type constructor
that accepts type arguments as described by the type parameter clause.

If a type declaration appears as a member declaration of a type, implementations
of the type may implement ¢ with any type T for which L <: T <: U. It is a compile-
time error if L does not conform to U. Either or both bounds may be omitted. If the
lower bound L is absent, the bottom type scala.Nothing is assumed. If the upper
bound U is absent, the top type scala.Any is assumed.

A type constructor declaration imposes additional restrictions on the concrete types
for which ¢ may stand. Besides the bounds L and U, the type parameter clause
may impose higher-order bounds and variances, as governed by the conformance
of type constructors (§3.5.2).

The scope of a type parameter extends over the bounds >: L <: U and the type
parameter clause tps itself. A higher-order type parameter clause (of an abstract
type constructor tc) has the same kind of scope, restricted to the declaration of the
type parameter fc.

To illustrate nested scoping, these declarations are all equivalent:
type t[m[x] <: Bound[x], Bound[x]], type t[m[x] <: Bound[x], Bound[vy]]
and type t[m[x] <: Bound[x], Bound[_]1], as the scope of, e.g., the type param-
eter of m is limited to the declaration of m. In all of them, ¢ is an abstract type
member that abstracts over two type constructors: m stands for a type constructor
that takes one type parameter and that must be a subtype of Bound, t’s second
type constructor parameter. t[MutableList, Iterable] isavalid use of t.

A type alias type t = T defines t to be an alias name for the type T. The left hand
side of a type alias may have a type parameter clause, e.g. type t[tps] = T. The
scope of a type parameter extends over the right hand side T and the type parameter
clause tpsitself.

The scope rules for definitions (§4) and type parameters (§4.6) make it possible that
a type name appears in its own bound or in its right-hand side. However, it is a static
error if a type alias refers recursively to the defined type constructor itself. That is,
the type T in a type alias type f[tps] = T may not refer directly or indirectly to
the name ¢. Itis also an error if an abstract type is directly or indirectly its own upper
or lower bound.

Example 4.3.1 The following are legal type declarations and definitions:

type Intlist = List[Integer]

type T <: Comparable[T]

type Two[a] = Tuple2[a, a]

type MyCollection[+x] <: Iterable[x]

The following are illegal:
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type Abs = Comparable[Abs] // recursive type alias
type S <: T // S, T are bounded by themselves.
type T <: S
type T >: Comparable[T.That] // Cannot select from T.
// T is a type, not a value
type MyCollection <: Iterable // Type constructor members must explicitly state the

If a type alias type t[tps] = S refers to a class type S, the name ¢ can also be used
as a constructor for objects of type S.

Example 4.3.2 The Predef object contains a definition which establishes Pair as
an alias of the parameterized class Tuple2:

type Pair[+a, +b] = Tuple2[a, b]

As a consequence, for any two types S and T, the type Pair[S, T] is equiva-
lent to the type Tuple2[S, T]. Pair can also be used as a constructor instead of
Tuple2. Furthermore, because Tuple? is a case class (§5.3.2), Pair?2 is also an alias
for the case class factory Tuple2, and this holds for in expressions as well as patterns.
Hence, the following are all legal uses of Pair.

val x: Pair[int, String] = new Pair(1, "abc")
val y: Pair[String, int] = x match {
case Pair(i, s) => Pair(z + i, i * i)

}

4.4 Type Parameters

Syntax:
TypeParamClause = ‘[’ VariantTypeParam {‘,’ VariantTypeParam} ‘]’
VariantTypeParam ::= [‘+’ | ‘-’] TypeParam
TypeParam = id [TypeParamClause] [>: Type] [<: Type]

Type parameters appear in type definitions, class definitions, and function defini-
tions. In this section we consider only type parameter definitions with lower bounds
>: L and upper bounds <: U whereas a discussion of view bounds <% U is de-
ferred to Section 7.4.

The most general form of a first-order type parameteris + ¢ >: L <: U. Here, L,
and U are lower and upper bounds that constrain possible type arguments for the
parameter. It is a compile-time error if L does not conform to U. + is a variance, i.e.
an optional prefix of either +, or -.
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The names of all type parameters must be pairwise different in their enclosing type
parameter clause. The scope of a type parameter includes in each case the whole
type parameter clause. Therefore it is possible that a type parameter appears as
part of its own bounds or the bounds of other type parameters in the same clause.
However, a type parameter may not be bounded directly or indirectly by itself.

A type constructor parameter adds a nested type parameter clause to the
type parameter. The most general form of a type constructor parameter is
+ fltps] >: L <: U.

The above scoping restrictions are generalized to the case of nested type parameter
clauses, which declare higher-order type parameters. Higher-order type parame-
ters (the type parameters of a type parameter ) are only visible in their immediately
surrounding parameter clause (possibly including clauses at a deeper nesting level)
and in the bounds of ¢. Therefore, their names must only be pairwise different from
the names of other visible parameters. Since the names of higher-order type pa-
rameters are thus often irrelevant, they may be denoted with a ‘_’, which is nowhere
visible.

Example 4.4.1 Here are some well-formed type parameter clauses:

[s, tl

[ex <: Throwable]

[a <: Comparable[b], b <: a]

[a, b >: a, ¢ >: a <: b]

[m[x], n[x]]

[m[_], n[_]] // equivalent to previous clause
[m[x <: bound[x]], bound[_]]

[m[+x] <: Iterable[x]]

The following type parameter clauses are illegal:

[a >: a] // illegal, ‘a’ has itself as bound
[a <: b, b<: c, c<: a]l //illegal, ‘a’ has itself as bound
[a, b, ¢ >: a <: b] // illegal lower bound ‘a’ of ‘c’ does

// not conform to upper bound ‘b’.

4.5 Variance Annotations

Variance annotations indicate how instances of parameterized types vary with re-
spect to subtyping (§3.5.2). A ‘+’ variance indicates a covariant dependency, a ‘-’
variance indicates a contravariant dependency, and a missing variance indication
indicates an invariant dependency.

A variance annotation constrains the way the annotated type variable may ap-
pear in the type or class which binds the type parameter. In a type definition
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type t[tps] = S, or a type declaration type f[tps] >: L <: U type parameters
labeled ‘+’ must only appear in covariant position whereas type parameters labeled
‘~” must only appear in contravariant position. Analogously, for a class definition
class c[tps](ps) requires s extends f, type parameters labeled ‘+’ must only
appear in covariant position in the self type s and the template ¢, whereas type pa-
rameters labeled ‘-’ must only appear in contravariant position.

The variance position of a type parameter in a type or template is defined as follows.
Let the opposite of covariance be contravariance, and the opposite of invariance be
itself. The top-level of the type or template is always in covariant position. The
variance position changes at the following constructs.

e The variance position of a method parameter is the opposite of the variance
position of the enclosing parameter clause.

» The variance position of a type parameter is the opposite of the variance po-
sition of the enclosing type parameter clause.

* The variance position of the lower bound of a type declaration or type param-
eter is the opposite of the variance position of the type declaration or param-
eter.

e The right hand side S of a type alias type f[tps] = S is always in invariant
position.

e The type of a mutable variable is always in invariant position.
* The prefix S of a type selection S#T is always in invariant position.

* For a type argument T of a type S[...T... ]: If the corresponding type pa-
rameter is invariant, then T is in invariant position. If the corresponding type
parameter is contravariant, the variance position of T is the opposite of the
variance position of the enclosing type S[...T... 1.

References to the type parameters in object-private values, variables, or methods
of the class are not checked for their variance position. In these members the type
parameter may appear anywhere without restricting its legal variance annotations.

Example 4.5.1 The following variance annotation is legal.

abstract class P[+a, +b] {
def fst: a; def snd: b
}

With this variance annotation, elements of type P subtype covariantly with respect
to their arguments. For instance,

P[IOException, String] <: P[Throwable, AnyRef]

If we make the elements of P mutable, the variance annotation becomes illegal.
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abstract class Q[+a, +b](x: a, y: b) {
var fst: a = x // #%%% error: illegal variance:
var snd: b =y // ‘a’, ‘b’ occur in invariant position.

}

If the mutable variables are object-private, the class definition becomes legal again:

abstract class R[+a, +b](x: a, y: b) {
private[this] var fst: a = x // OK
private[this] var snd: b =y // OK
}

Example 4.5.2 The following variance annotation is illegal, since a appears in con-
travariant position in the parameter of append:

abstract class Vector[+a] {
def append(x: Vector[a]): Vector[a]
// ###% error: illegal variance:
// ‘a’ occurs in contravariant position.

The problem can be avoided by generalizing the type of append by means of a lower
bound:

abstract class Vector[+a] {
def append[b >: a](x: Vector[b]): Vector[b]
3

Example 4.5.3 Here is a case where a contravariant type parameter is useful.

abstract class OutputChannel[-a] {
def write(x: a): unit

}

With that annotation, we have that OutputChannel[AnyRef] conforms to
OutputChannel[String]. That is, a channel on which one can write any object can
substitute for a channel on which one can write only strings.

4.6 Function Declarations and Definitions

Syntax:
Dcl = def FunDcl
FunDcl = FunSig ‘:’ Type
Def = def FunDef
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FunDef ::= FunSig [‘:’ Type] ‘=’ Expr
FunSig ::= 1id [FunTypeParamClause] ParamClauses
FunTypeParamClause ::= [’ TypeParam {‘,’ TypeParam} ‘]’
ParamClauses ::= {ParamClause} [[nl] ‘(’ implicit Params ‘)’]
ParamClause ::= [nl] “C’ [Params] ’)’}
Params = Param {‘,’ Param}
Param ::= {Annotation} id [‘:’ ParamType]
ParamType := Type

| “=>" Type

| Type ‘x’

A function declaration has the form def fpsig: T, where f is the function’s
name, psig is its parameter signature and T is its result type. A function definition
def fpsig: T = e alsoincludes a function body e, i.e. an expression which defines
the function’s result. A parameter signature consists of an optional type parameter
clause [ tps], followed by zero or more value parameter clauses (ps;)...(ps,). Such
a declaration or definition introduces a value with a (possibly polymorphic) method
type whose parameter types and result type are as given.

The type of the function body must conform to the function’s declared result type,
if one is given. If the function definition is not recursive, the result type may be
omitted, in which case it is determined from the type of the function body.

A type parameter clause tps consists of one or more type declarations (§4.3), which
introduce type parameters, possibly with bounds. The scope of a type parameter
includes the whole signature, including any of the type parameter bounds as well as
the function body; if it is present.

A value parameter clause ps consists of zero or more formal parameter bindings
such as x: T, which bind value parameters and associate them with their types.
The scope of a formal value parameter name x is the function body; if one is given.
Both type parameter names and value parameter names must be pairwise distinct.

4.6.1 By-Name Parameters
Syntax:

ParamType 1= =7 Type
The type of a value parameter may be prefixed by =>, e.g. x: => T. The type of
such a parameter is then the parameterless method type => T. This indicates that
the corresponding argument is not evaluated at the point of function application,
but instead is evaluated at each use within the function. That is, the argument is
evaluated using call-by-name.

Example 4.6.1 The declaration

def whileLoop (cond: => Boolean) (stat: => unit): unit
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indicates that both parameters of whileLoop are evaluated using call-by-name.

4.6.2 Repeated Parameters

Syntax:

ParamType i:= Type ‘=’
The last value parameter of a parameter section may be suffixed by “+”, e.g.
(..., x:T=). The type of such a repeated parameter inside the method is then

the sequence type scala.Seq[T]. Methods with repeated parameters T take
a variable number of arguments of type T. That is, if a method m with type
(Ty,..., Ty, S*)U is applied to arguments (ey, ..., ex) where k = n, then m is taken
in that application to have type (T3, ..., Ty, S, ..., S)U, with k — n occurrences of
type S. The only exception to this rule is if the last argument is marked to be
a sequence argument via a _» type annotation. If m above is applied to argu-
ments (ey, ..., ey, € : _x), then the type of m in that application is taken to be
(T,..., T,, scala.Seq[S]).

Example 4.6.2 The following method definition computes the sum of a variable
number of integer arguments.

def sum(args: intx) = {
var result = 0
for (arg <- args.elements) result = result + arg
result

}

The following applications of this method yield 0, 1, 6, in that order.

sum()
sum(1)
sum(1l, 2, 3)

Furthermore, assume the definition:

val xs = List(1, 2, 3)

The following applications method sum is ill-formed:

sum(xs) // ##xww% error: expected: int, found: List[int]

By contrast, the following application is well formed and yields again the result 6:

sum(xs: _*)
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4.6.3 Procedures

Syntax:
FunDcl = FunSig
FunDef = FunSig [nl] ‘{’ Block ‘}’

Special syntax exists for procedures, i.e. functions that return the unit value {}. A
procedure declaration is a function declaration where the result type is omitted.
The result type is then implicitly completed to the unit type. E.g., def f(ps) is
equivalent to def f(ps): unit.

A procedure definition is a function definition where the result type and the equals
sign are omitted; its defining expression must be ablock. E.g., def f(ps) {stats} is
equivalentto def f(ps): unit = {stats}.

Example 4.6.3 Here is a declaration and a definition of a procedure named write:

trait Writer {
def write(str: String)
}

object Terminal extends Writer {
def write(str: String) { System.out.println(str) }
}

The code above is implicitly completed to the following code:

trait Writer {
def write(str: String): unit
}
object Terminal extends Writer {
def write(str: String): unit = { System.out.println(str) }
3

4.6.4 Method Return Type Inference

A class member definition m that overrides some other function m' in a base class
of C may leave out the return type, even if it is recursive. In this case, the return type
R’ of the overridden function m’, seen as a member of C, is taken as the return type
of m for each recursive invocation of m. That way, a type R for the right-hand side
of m can be determined, which is then taken as the return type of m. Note that R
may be different from R’, as long as R conforms to R’.

Example 4.6.4 Assume the following definitions:

trait I {
def factorial(x: int): int
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}
class C extends I {
def factorial(x: int) = if (x == 0) 1 else x * factorial(x - 1)

}

Here, it is OK to leave out the result type of factorial in C, even though the method
is recursive.

4.7 Import Clauses

Syntax:
Import ::= import ImportExpr {‘,’ ImportExpr}
ImportExpr ::= StableId ‘.’ (id | ‘_’ | ImportSelectors)
ImportSelectors ::= ‘{’ {ImportSelector ‘,’}
(ImportSelector | ‘_") *‘}’
ImportSelector ::=id [‘=’ id | ‘=" ‘_’]

An import clause has the form import p.I where p is a stable identifier (§3.1)
and I is an import expression. The import expression determines a set of names
of members of p which are made available without qualification. The most general
form of an import expression is a list of import selectors

{ X1 => Y1y Xn => Yn, — } .

for n = 0, where the final wildcard ‘_’ may be absent. It makes available each mem-
ber p.x; under the unqualified name y;. l.e. every import selector x; => y; re-
names p.x; to y;. If a final wildcard is present, all members z of p other than
X1, ..., X, are also made available under their own unqualified names.

Import selectors work in the same way for type and term members. For instance, an
import clause import p.{x => y} renames the term name p.x to the term name
y and the type name p. x to the type name y. At least one of these two names must
reference a member of p.

If the target in an import selector is a wildcard, the import selector hides access to
the source member. For instance, the import selector x => _ “renames” x to the
wildcard symbol (which is unaccessible as a name in user programs), and thereby
effectively prevents unqualified access to x. This is useful if there is a final wild-
card in the same import selector list, which imports all members not mentioned in

previous import selectors.

The scope of a binding introduced by an import-clause starts immediately after the
import clause and extends to the end of the enclosing block, template, package
clause, or compilation unit, whichever comes first.

Several shorthands exist. An import selector may be just a simple name x. In
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this case, x is imported without renaming, so the import selector is equivalent to
x => x. Furthermore, it is possible to replace the whole import selector list by
a single identifier or wildcard. The import clause import p.x is equivalent to
import p.{x},i.e.it makes available without qualification the member x of p. The
import clause import p._ is equivalent to import p.{_}, i.e. it makes available
without qualification all members of p (this is analogous to import p.* inJava).

An import clause with multiple import expressions import p;.I,..., pn.I, isin-
terpreted as a sequence of import clauses import p;.I[;; ...; import py.I,.

Example 4.7.1 Consider the object definition:

object M {

def z =0, one =1

def add(x: Int, y: Int): Int = x + vy
}

Then the block

{ import M.{one, z => zero, _}; add(zero, one) }

is equivalent to the block

{ M.add(M.z, M.one) } .



Chapter 5
Classes and Objects

Syntax:

TmplDef ::= [case] class ClassDef
| [case] object ObjectDef
| trait TraitDef

Classes (§5.3) and objects (§5.4) are both defined in terms of templates.

5.1 Templates

Syntax:
ClassTemplate ::= [EarlyDefs] ClassParents [TemplateBody]
TraitTemplate ::= [EarlyDefs] TraitParents [TemplateBody]
ClassParents ::= Constr {with AnnotType}
TraitParents ::= AnnotType {with AnnotType}
TemplateBody t:= [nl] “{’ [id [‘:’ Type] ‘=>’]

TemplateStat {semi TemplateStat} ‘}’

A template defines the type signature, behavior and initial state of a trait
or class of objects or of a single object. Templates form part of instance
creation expressions, class definitions, and object definitions. A template
sc with mt; with ... with mt, {stats} consists of a constructor invocation sc
which defines the template’s superclass, trait references mt, ..., mt, (n=0), which
define the template’s traits, and a statement sequence stats which contains initial-
ization code and additional member definitions for the template.

Each trait reference mt; must denote a trait (§5.3.3). By contrast, the superclass
constructor sc normally refers to a class which is not a trait. It is possible to write
a list of parents that starts with a trait reference, e.g. mi#; with ... with m¢,. In
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that case the list of parents is implicitly extended to include the supertype of m#
as first parent type. The new supertype must have at least one constructor that
does not take parameters. In the following, we will always assume that this implicit
extension has been performed, so that the first parent class of a template is a regular
superclass constructor, not a trait reference.

The list of parents of every class is also always implicitly extended by a reference to
the scala.ScalaObject trait as last mixin. E.g.

sc¢ with mit; with ... with mi¢, {stats}

becomes

mt; with ... with mt, {stats} with ScalaObject {stats} .

The list of parents of a template must be well-formed. This means that the class
denoted by the superclass constructor sc must be a subclass of the superclasses
of all the traits mt, ..., mt,. In other words, the non-trait classes inherited by a
template form a chain in the inheritance hierarchy which starts with the template’s
superclass.

The least proper supertype of a template is the class type or compound type (§3.2.7)
consisting of all its parent class types.

The statement sequence stats contains member definitions that define new mem-
bers or overwrite members in the parent classes. If the template forms part of a
class definition, the statement part stats may also contain declarations of abstract
members. Furthermore, stats may contain expressions that are executed in the or-
der they are given as part of the initialization of a template.

The sequence of template statements may be prefixed with a formal parameter def-
inition and an arrow, e.g. x =>,or x: T =>. If a formal parameter is given, it can be
used as an alias for the reference this throughout the body of the template. If the
formal parameter comes with a type T, this type is assumed to be the self-type (§5.3)
of the underlying class.

Example 5.1.1 Consider the following class definitions:

class Base extends Object {}
trait Mixin extends Base {}
object 0 extends Mixin {}

In this case, the definition of 0 is expanded to:

object 0 extends Base with Mixin {}

Inheriting from Java Types. A template may have a Java class as its superclass and
Java interfaces as its mixins.
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Template Evaluation. Consider a template sc¢ with mt; with mt, {stats}.

If this is the template of a trait (§5.3.3) then its mixin-evaluation consists of an eval-
uation of the statement sequence stats.

If this is not a template of a trait, then its evaluation consists of the following steps.

e First, the superclass constructor sc is evaluated (§5.1.1).

e Then, all base classes in the template’s linearization (§5.1.2) up to the tem-
plate’s superclass denoted by sc are mixin-evaluated. Mixin-evaluation hap-
pens in reverse order of occurrence in the linearization, i.e. the class immedi-
ately preceding sc is evaluated first.

* Finally the statement sequence stats is evaluated.

5.1.1 Constructor Invocations
Syntax:

Constr ::= AnnotType {‘(’ [Exprs [‘,’]] )’}

Constructor invocations define the type, members, and initial state of objects cre-
ated by an instance creation expression, or of parts of an object’s definition which
are inherited by a class or object definition. A constructor invocation is a function
application x.c[targs](args;)...(args,), where x is a stable identifier (§3.1), cis a
type name which either designates a class or defines an alias type for one, targsis a
type argument list, and args,, ..., args,, are argument lists, which match the param-
eters of one the constructors of that class.

The prefix ‘x.’ can be omitted. A type argument list can be given only if the class ¢
takes type parameters. Even then it can be omitted, in which case a type argument
list is synthesized using local type inference (§6.24.4). If no explicit arguments are
given, an empty list () is implicitly supplied.

An evaluation of a constructor invocation x.c[targs](args,)...(args,) consists of
the following steps:

e First, the prefix x is evaluated.
* Then, the arguments args,, ..., args,, are evaluated from left to right.

* Finally, the being constructed is initialized by evaluating the template of the
class referred to by c.

5.1.2 Class Linearization

The classes reachable through transitive closure of the direct inheritance relation
from a class C are called the base classes of C. Because of mixins, the inheritance re-
lationship on base classes forms in general a directed acyclic graph. A linearization
of this graph is defined as follows.
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Definition 5.1.2 Let C be a class with template C; with ... with C, { stats }.
The linearization of C, £ (C) is defined as follows:

L) = C,LCHTE... T L)

Here ¥ denotes concatenation where elements of the right operand replace identi-
cal elements of the left operand:

{a, A¥B = a,(A+B) ifa¢gB
= A¥B ifae B

Example 5.1.3 Consider the following class definitions.

abstract class AbsIterator extends AnyRef with ScalaObject { ... }
trait RichIterator extends AbsIterator { ... }

class Stringlterator extends AbsIterator { ... }

class Iter extends StringIterator with RichIterator { ... }

Then the linearization of class Iter is

{ Iter, RichIterator, StringlIterator, AbsIterator, ScalaObject, AnyRef, Any }

Note that the linearization of a class refines the inheritance relation: if C is a sub-
class of D, then C precedes D in any linearization where both C and D occur. Defi-
nition 5.1.2 also satisfies the property that a linearization of a class always contains
the linearization of its direct superclass as a suffix. For instance, the linearization of
StringIterator is

{ Stringlterator, AbsIterator, ScalaObject, AnyRef, Any }

which is a suffix of the linearization of its subclass Iter. The same is not true for the
linearization of mixins. For instance, the linearization of RichIterator is

{ RichIterator, AbsIterator, ScalaObject, AnyRef, Any }

which is not a suffix of the linearization of Iter.

5.1.3 Class Members

A class C defined by a template C; with ... with C, { stats } can define mem-
bers in its statement sequence stats and can inherit members from all parent
classes. Scala adopts Java and C#’s conventions for static overloading of methods. It
is thus possible that a class defines and/or inherits several methods with the same
name. To decide whether a defined member of a class C overrides a member of a
parent class, or whether the two co-exist as overloaded variants in C, Scala uses the
following definition of matching on members:
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Definition 5.1.4 A member definition M matches a member definition M, if M and
M’ bind the same name, and one of following holds.

1. Neither M nor M’ is a method definition.
2. M and M’ define both monomorphic methods with equal argument types.

3. M defines a parameterless method and M’ defines a method with an empty
parameter list () or vice versa.

4. M and M’ define both polymorphic methods with equal number of argument
—_ = —_ — — - ——
types T, T and equal numbers of type parameters ¢, ¢, say,and T = [t /¢]T.

Member definitions fall into two categories: concrete and abstract. Members of
class C are either directly defined (i.e. they appear in C’s statement sequence stats)
or they are inherited. There are two rules that determine the set of members of a
class, one for each category:

Definition 5.1.5 A concrete member of a class C is any concrete definition M in
some class C; € Z(C), except if there is a preceding class C; € £ (C) where j < i
which directly defines a concrete member M’ matching M.

An abstract member of a class C is any abstract definition M in some class C; € £ (C),
except if C contains already a concrete member M’ matching M, or if there is a
preceding class C; € £(C) where j < i which directly defines an abstract member
M’ matching M.

This definition also determines the overriding relationships between matching
members of a class C and its parents (§5.1.4). First, a concrete definition always
overrides an abstract definition. Second, for definitions M and M’ which are both
concrete or both abstract, M overrides M’ if M appears in a class that precedes (in
the linearization of C) the class in which M’ is defined.

Itis an error if a template directly defines two matching members. It is also an error
if a template contains two members (directly defined or inherited) with the same
name and the same erased type (§3.6).

Example 5.1.6 Consider the class definitions

class A { def f: Int =1 ; def g: Int = 2 ; def h: Int = 3 }
abstract class B { def f: Int = 4 ; def g: Int }
abstract class C extends A with B { def h: Int }

Then class C has a directly defined abstract member h. It inherits member f from
class B and member g from class A.



50 Classes and Objects

5.1.4 Overriding

A member M of class C that matches (§5.1.3) a non-private member M’ of a base
class of C is said to override that member. In this case the binding of the overrid-
ing member M must subsume (§3.5.2) the binding of the overridden member M’.
Furthermore, the following restrictions on modifiers apply to M and M’:

e M’ must not be labeled final.
e M must not be private (§5.2).

 If M is labeled private[C] for some enclosing class or package C, then M’
must be labeled private[C’] for some class or package C’ where C’ equals C
or C' is contained in C.

e If M is labeled protected, then M’ must also be labeled protected.
e If M’ is not an abstract member, then M must be labeled override.

 If M'is incomplete (§5.2) in C then M must be labeled abstract override.
A special rule concerns parameterless methods. If a paramterless method defined

asdef f: T = ...ordef f = ... overrides a method of type ()T’ which has an
empty parameter list, then f is also assumed to have an empty parameter list.

Example 5.1.7 Consider the definitions:

trait Root { type T <: Root }

trait A extends Root { type T <: A }
trait B extends Root { type T <: B }
trait C extends A with B

Then the class definition C is not well-formed because the binding of T in C is
type T <: B, which fails to subsume the binding type T <: A of T in type A. The
problem can be solved by adding an overriding definition of type T in class C:

class C extends A with B { type T <: C }

5.1.5 Inheritance Closure

Let C be a class type. The inheritance closure of C is the smallest set .# of types such
that

e If Tisin ., then every type T’ which forms syntactically a part of T is also in
.
e If T is a class type in .#, then all parents (§5.1) of T are also in .%.

Itis a static error if the inheritance closure of a class type consists of an infinite num-
ber of types. (This restriction is necessary to make subtyping decidable [KP07]).



5.1 Templates 51

5.1.6 Early Definitions

Syntax:
EarlyDefs = ‘{’ [EarlyDef {semi EarlyDef}] ‘}’ with
EarlyDef = Annotations Modifiers PatDef

A template may start with an early field definition clause, which serves to define
certain field values before the supertype constructor is called. In a template

{ val p1: T1 = e

} with sc with m#; with mt, {stats}

The initial pattern definitions of py, ..., p,, are called early definitions. They define
fields which form part of the template. Every early definition must define at least
one variable.

An early definition is type-checked and evaluated in the scope which is in effect
just before the template being defined, augmented by any type parameters of the
enclosing class and by any early definitions preceding the one being defined. In
particular, any reference to this in the right-hand side of an early definition refers
to the identity of this just outside the template. Consequently, it is impossible that
an early definition refers to the object being constructed by the template, or refers
to one of its fields and methods, except for any other preceding early definition in
the same section.

Early definitions are evaluated in the order they are being defined before the super-
class constructor of the template is called.

Example 5.1.8 Early definitions are particularly useful for traits, which do not have
normal constructor parameters. Example:

trait Greeting {
val name: String
val msg = "How are you, "+name
}
class C extends {
val name = "Bob"
} with Greeting {
println(msg)
}

In the code above, the field name is initialized before the constructor of Greeting
is called. Therefore, field msg in class Greeting is properly initialized to
"How are you, Bob".

If name has been initialized instead in C’s normal class body, it would be initial-
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ized after the constructor of Greeting. In that case, msg would be initialized to
"How are you, <null>".

5.2 Modifiers

Syntax:
Modifier ::= LocalModifier
| AcessModifier
| override
LocalModifier := abstract
| final
| sealed
| implicit
AccessModifier := (private | protected) [AccessQualifier]
AccessQualifier = ‘[’ (dd | this) ‘]’

Member definitions may be preceded by modifiers which affect the accessibility
and usage of the identifiers bound by them. If several modifiers are given, their
order does not matter, but the same modifier may not occur repeatedly. Modifiers
preceding a repeated definition apply to all constituent definitions. The rules gov-
erning the validity and meaning of a modifier are as follows.

* The private modifier can be used with any definition or declaration in a tem-

plate. Such members can be accessed only from within the directly enclosing
template and its companion module or companion class (§SExample 5.4.1).
They are not inherited by subclasses and they may not override definitions in
parent classes.

The modifier can be qualifiedwith an identifier C (e.g. private[C]) that must
denote a class or package enclosing the definition. Members labeled with
such a modifier are accessible respectively only from code inside the pack-
age C or only from code inside the class C and its companion module (§5.4).
Such members are also inherited only from templates inside C.

An different form of qualification is private[this]. A member M marked
with this modifier can be accessed only from within the object in which it is
defined. That is, a selection p.M is only legal if the prefix is this or O. this,
for some class O enclosing the reference. In addition, the restrictions for un-
qualified private apply.

Members marked private without a qualifier are called class-private, whereas
members labeled with private[this] are called object-private. A member
is private if it is either class-private or object-private, but not if it is marked
private[ C] where C is an identifier; in the latter case the member is called
qualified private.



5.2 Modifiers 53

Class-private or object-private members may not be deferred, and may not
have protected, final or override modfiers.

e The protected modifier applies to class member definitions. Protected mem-
bers of a class can be accessed from within

- the template of the defining class,
- all templates that have the defining class as a base class,
- the companion module of any of those classes.

A protected modifier can be qualified with an package identifier C (e.g.
protected[C]) that must denote a class or package enclosing the definition.
Members labeled with such a modifier are also accessible respectively from
all code inside the package C or from all code inside the class C and its com-
panion module (§5.4).

A protected identifier x may be used as a member name in a selection r.x
only if one of the following applies:

- The access is within the template defining the member, or, if a qualifi-
cation C is given, inside the package C, or the class C, or its companion
module, or

— ris one of the reserved words this and super, or

- r’s type conforms to a type-instance of the class which contains the ac-
cess.

A different form of qualification is protected[this]. A member M marked
with this modifier can be accessed only from within the object in which it is
defined. That is, a selection p.M is only legal if the prefix is this or O. this,
for some class O enclosing the reference. In addition, the restrictions for un-
qualified protected apply.

* The override modifier applies to class member definitions or declarations. It
is mandatory for member definitions or declarations that override some other
concrete member definition in a parent class. If an override modifier is given,
there must be at least one overridden member definition or declaration (ei-
ther concrete or abstract).

* The override modifier has a different significance when combined with the
abstract modifier. That modifier combination is only allowed for value mem-
bers of traits. A member labeled abstract override must override at least
one other member and all members overridden by it must be incomplete.

We call a member M of a template incomplete if it is either abstract (i.e. de-
fined by a declaration), oritis labeled abstract and override and every mem-
ber overridden by M is again incomplete.

Note that the abstract override modifier combination does not influence
the concept whether a member is concrete or abstract. A member is abstract
if only a declaration is given for it; it is concrete if a full definition is given.
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e The abstract modifier is used in class definitions. It is redundant for traits,

and mandatory for all other classes which have incomplete members. Ab-
stract classes cannot be instantiated (§6.9) with a constructor invocation un-
less followed by mixins and/or a refinement which override all incomplete
members of the class. A case class (§5.3.2) cannot be abstract.

The abstract modifier can also be used in conjunction with override for
class member definitions. In that case the previous discussion applies.

e The final modifier applies to class member definitions and to class defini-

tions. A final class member definition may not be overridden in subclasses.
A final class may not be inherited by a template. final is redundant for ob-
ject definitions. Members of final classes or objects are implicitly also final, so
the final modifier is redundant for them, too. final may not be applied to
incomplete members, and it may not be combined in one modifier list with
private or sealed.

* The sealed modifier applies to class definitions. A sealed class may not be

directly inherited, except if the inheriting template is defined the same source
file as the inherited class. However, subclasses of a sealed class can inherited
anywhere.

Example 5.2.1 The following code illustrates the use of qualified private:

package outerpkg.innerpkg
class Outer {

}

class Inner {
private[Outer] def f()
private[innerpkg] def g()
private[outerpkg] def h()
}

Here, accesses to the method f can appear anywhere within OuterClass, but
not outside it. Accesses to method g can appear anywhere within the package
outerpkg.innerpkg, as would be the case for package-private methods in Java. Fi-
nally, accesses to method h can appear anywhere within package outerpkg, includ-
ing packages contained in it.

Example 5.2.2 A useful idiom to prevent clients of a class from constructing new
instances of that class is to declare the class abstract and sealed:

object m {

}

abstract sealed class C (x: Int) {
def nextC = new C(x + 1) {}

}
val empty = new C(0) {}
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For instance, in the code above clients can create instances of class m. C only by call-
ing the nextC method of an existing m. C object; it is not possible for clients to create
objects of class m. C directly. Indeed the following two lines are both in error:

new m.C(0) // #+x%% error: C is abstract, so it cannot be instantiated.
new m.C(0) {} // ##%% error: illegal inheritance from sealed class.

A similar access restriction can be achieved by marking the primary constructor
private (see Example 5.3.2).

5.3 Class Definitions

Syntax:

TmplDef ::= class ClassDef

ClassDef ::= id [TypeParamClause] {Annotation}
[AccessModifier] ClassParamClauses
[ ‘requires’ AnnotType] ClassTemplateOpt

ClassParamClauses ::= {ClassParamClause}
[[nl] “C’ dimplicit ClassParams ‘)’]

ClassParamClause ::= [nl] ‘(’ [ClassParams ’)’}

ClassParams ::= ClassParam {‘’ ClassParam}

ClassParam ::= {Annotation} [{Modifier} (‘val’ | ‘var’)]
id [‘:’ ParamType]

ClassTemplateOpt = extends ClassTemplate | [[extends] TemplateBody]

The most general form of class definition is

class c[tps] as m(ps;)...(ps,) requires s extends f (n=0).

Here,

¢ is the name of the class to be defined.

tps is a non-empty list of type parameters of the class being defined. The
scope of a type parameter is the whole class definition including the type pa-
rameter section itself. It is illegal to define two type parameters with the same
name. The type parameter section [ tps] may be omitted. A class with a type
parameter section is called polymorphic, otherwise it is called monomorphic.

as is a possibly empty sequence of annotations (§11). If any annotations are
given, they apply to the primary constructor of the class.

m is an access modifier (§5.2) such as private or protected, possibly with
a qualification. If such an access modifier is given it applies to the primary
constructor to the class.
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(psy)...(ps,) are formal value parameter clauses for the primary constructor
of the class. The scope of a formal value parameter includes the template .
However, a formal value parameter may not form part of the types of any of
the parent classes or members of the class template ¢. It is illegal to define two
formal value parameters with the same name. If no formal parameter sections
are given, an empty parameter section () is assumed.

If a formal parameter declaration x : T is preceded by a val or var keyword, an
accessor (getter) definition (§4.2) for this parameter is implicitly added to the
class. The getter introduces a value member x of class c¢ that is defined as an
alias of the parameter. If the introducing keyword is var, a setter accessor x_=
(§4.2) is also implicitly added to the class. In invocation of that setter x_=(e)
changes the value of the parameter to the result of evaluating e. The formal
parameter declaration may contain modifiers, which then carry over to the
accessor definition(s). A formal parameter prefixed by val or var may not at
the same time be a call-by-name parameter (§4.6.1).

sis the self type of the class. Inside the class, the type of this is assumed to be
s. The self type must conform to the self types of all classes which are inherited
by the template ¢. The self type declaration requires s may be omitted, in
which case the self type of the class is assumed to be equal to c[tps].

t is a template (§5.1) of the form

sc with mit; with ... with mt,, { stats } (m=0)

which defines the base classes, behavior and initial state of objects of the
class. The extends clause extends sc with mt; with ... with mf,, canbe
omitted, in which case extends scala.AnyRef is assumed. The class body
{stats} may also be omitted, in which case the empty body {} is assumed.

This class definition defines a type c[tps] and a constructor which when applied to
parameters conforming to types ps initializes instances of type c[ tps] by evaluating
the template ¢.

Example 5.3.1 The following example illustrates val and var parameters of a class

C:

class C(x: int, val y: String, var z: List[String])
val ¢ = new C(1, "abc", List())
C.Z = C.y :: C.Z

Example 5.3.2 The following class can be created only from its companion module.

object Sensitive {
def makeSensitive(credentials: Certificate): Sensitive =

if (credentials == Admin) new Sensitive()
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else throw new SecurityViolationException

}

class Sensitive private () {

5.3.1 Constructor Definitions

Syntax:
FunDef = this ParamClause ParamClauses
(‘=" ConstrExpr | [nl] ConstrBlock)
ConstrExpr ::= SelfInvocation
| ConstrBlock
ConstrBlock ::= ‘{’ SelfInvocation {semi BlockStat} ‘}’
SelfInvocation ::= this ArgumentExprs {ArgumentExprs}

A class may have additional constructors besides the primary constructor. These
are defined by constructor definitions of the form def this(ps;)...(ps,) = e.
Such a definition introduces an additional constructor for the enclosing class, with
parameters as given in the formal parameter lists ps, ..., ps,, and whose evaluation
is defined by the constructor expression e. The scope of each formal parameter is
the constructor expression e. A constructor expression is either a self constructor
invocation this(args,)...(args,) or a block which begins with a self constructor in-
vocation. The self constructor invocation must construct a generic instance of the
class. Le. if the class in question has name C and type parameters [ tps], then a self
constructor invocation must generate an instance of C[tps]; it is not permitted to
instantiate formal type parameters.

The signature and the self constructor invocation of a constructor definition are
type-checked and evaluated in the scope which is in effect at the point of the en-
closing class definition, augmented by any type parameters of the enclosing class
and by any early definitions (§5.1.6) of the enclosing template. The rest of the con-
structor expression is type-checked and evaluated as a function body in the current
class.

If there are auxiliary constructors of a class C, they form together with C’s primary
constructor (§5.3) an overloaded constructor definition. The usual rules for over-
loading resolution (§6.24.3) apply for constructor invocations of C, including for
the self constructor invocations in the constructor expressions themselves. How-
ever, unlike other methods, constructors are never inherited. To prevent infinite
cycles of constructor invocations, there is the restriction that every self constructor
invocation must refer to a constructor definition which precedes it (i.e. it must refer
to either a preceding auxiliary constructor or the primary constructor of the class).

Example 5.3.3 Consider the class definition
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class LinkedList[a]l() {
var head = _
var tail = null
def isEmpty = tail != null
def this(head: a) = { this(); this.head = head }
def this(head: a, tail: List[a]) = { this(head); this.tail = tail }

This defines a class LinkedList with three constructors. The second constructor
constructs an singleton list, while the third one constructs a list with a given head
and tail.

5.3.2 Case Classes
Syntax:

TmplDef ::= case class ClassDef

If a class definition is prefixed with case, the class is said to be a case class.

The formal parameters in the first parameter section of a case class are called ele-
ments; they treated specially. First, the value of such a parameter can be extracted
as a field of a constructor pattern. Second, a val prefix is implicitly added to such
a parameter, unless the parameter carries already a val or var modifier. Hence, an
accessor definition for the parameter is generated (§5.3).

A case class definition of c[tps]1(ps;)...(ps,) with type parameters tps and value
parameters ps implicitly generates a function definition for a case class factory to-
gether with the class definition itself:

def c[tps](ps;)...(ps,): s = new c[tps](xsy)...(XSy,)

(Here, s is the self type of class c and each xs; denotes the parameters of ps;. If a type
parameter section is missing in the class, it is also missing in the factory definition).

Every case class implicitly overrides some method definitions of class scala.AnyRef
(§12.1) unless a definition of the same method is already given in the case class itself
or a concrete definition of the same method is given in some base class of the case
class different from AnyRef. In particular:

Method equals: (Any)boolean is structural equality, where two instances
are equal if they both belong to the case class in question and they have equal
(with respect to equals) constructor arguments.

Method hashCode: ()int computes a hash-code depending on the data
structure in a way which maps equal (with respect to equals) values to equal
hash-codes.

Method toString: ()String returns a string representation which contains
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the name of the class and its elements.

Example 5.3.4 Here is the definition of abstract syntax for lambda calculus:

class Expr

case class Var (x: String) extends Expr
case class Apply (f: Expr, e: Expr) extends Expr
case class Lambda(x: String, e: Expr) extends Expr

This defines a class Expr with case classes Var, Apply and Lambda. A call-by-value
evaluator for lambda expressions could then be written as follows.

type Env = String => Value
case class Value(e: Expr, env: Env)

def eval(e: Expr, env: Env): Value = e match {
case Var (x) =>
env(x)
case Apply(f, g) =
val Value(Lambda (x, el), envl) = eval(f, env)
val v = eval(g, env)
eval (el, (v => if (y == x) v else envl(y)))
case Lambda(_, _) =>
Value(e, env)

It is possible to define further case classes that extend type Expr in other parts of the
program, for instance

case class Number(x: Int) extends Expr
This form of extensibility can be excluded by declaring the base class Expr sealed;

in this case, all classes that directly extend Expr must be in the same source file as
Expr.

5.3.3 Traits
Syntax:
TmplDef ::= trait TraitDef
TraitDef ::= 1id [TypeParamClause]
[ ‘requires’ AnnotType] TraitTemplateOpt
TraitTemplateOpt ::= extends TraitTemplate | [[extends] TemplateBody]

A trait is a class that is meant to be added to some other class as a mixin. Unlike
normal classes, traits cannot have constructor parameters. Furthermore, no con-
structor arguments are passed to its superclass. This is not necessary as traits are
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initialized after the superclass is initialized.

Assume a trait D defines some aspect of an instance x of type C (i.e. D is a base class
of C). Then the actual supertype of D in x is the compound type consisting of all
the base classes in Z(C) that succeed D. The actual supertype gives the context for
resolving a super reference in a trait (§6.4). Note that the actual supertype depends
on the type to which the trait is added in a mixin composition; it is not statically
known at the time the trait is defined.

If D is not a trait, then its actual supertype is simply its least proper supertype (which
is statically known).

Example 5.3.5 The following trait defines the property of being comparable to ob-
jects of some type. It contains an abstract method < and default implementations
of the other comparison operators <=, >, and >=.

trait Comparable[t <: Comparable[t]] requires t {
def < (that: t): boolean
def <=(that: t): boolean = this < that || this == that
def > (that: t): boolean = that < this
def >=(that: t): boolean = that <= this

}

Example 5.3.6 Consider an abstract class Table that implements maps from a type
of keys A to a type of values B. The class has a method set to enter a new key /
value pair into the table, and a method get that returns an optional value matching
a given key. Finally, there is a method apply which is like get, except that it returns
a given default value if the table is undefined for the given key. This class is imple-
mented as follows.

abstract class Table[A, B](defaultValue: B) {
def get(key: A): Option[B]
def set(key: A, value: B)
def apply(key: A) = get(key) match {
case Some(value) => value
case None => defaultValue
}
}

Here is a concrete implementation of the Table class.

class ListTable[A, B](defaultValue: B) extends Table[A, B](defaultValue) {
private var elems: List[(A, B)]
def get(key: A) = elems.find(._1.==(key)).map(._2)
def set(key: A, value: B) = { elems = (key, value) :: elems }

}
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Here is a trait that prevents concurrent access to the get and set operations of its
parent class:

trait SynchronizedTable[A, B] extends Table[A, B] {
abstract override def get(key: A): B =
synchronized { super.get(key) }
abstract override def set((key: A, value: B) =
synchronized { super.set(key, value) }

}

Note that SynchronizedTable does not pass an argument to its superclass, Table,
even though Table is defined with a formal parameter. Note also that the super calls
in SynchronizedTable’s get and set methods statically refer to abstract methods in
class Table. Thisis legal, as long as the calling method is labeled abstract override

(85.2).

Finally, the following mixin composition creates a synchronized list table with
strings as keys and integers as values and with a default value 0:

object MyTable extends ListTable[String, int](0) with SynchronizedTable

The object MyTable inherits its get and set method from SynchronizedTable. The
super calls in these methods are re-bound to refer to the corresponding imple-
mentations in ListTable, which is the actual supertype of SynchronizedTable in
MyTable.

5.4 Object Definitions

Syntax:

ObjectDef ::= 1id ClassTemplate

An object definition defines a single object of a new class. Its most general form is
object m extends f. Here, m is the name of the object to be defined, and ¢ is a
template (§5.1) of the form

sc¢ with mi#; with ... with mr, { stats }

which defines the base classes, behavior and initial state of m. The extends
clause extends sc with mit; with ... with mt, can be omitted, in which case
extends scala.AnyRef is assumed. The class body {stats} may also be omitted,
in which case the empty body {} is assumed.

The object definition defines a single object (or: module) conforming to the tem-
plate ¢. It is roughly equivalent to the following three definitions, which together
define a class and create a single object of that class on demand:
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final class m$cls extends ¢

private var m$instance = null

final def m = {
if (m$instance == null) mS$instance = new m$cls
m$instance

Here, the final modifiers are omitted if the definition occurs as part of a block. The
names m$cls and m$instance are inaccessible for user programs.

Note that the value defined by an object definition is instantiated lazily. The
new m$cls constructor is evaluated not at the point of the object definition, but is
instead evaluated the first time m is dereferenced during execution of the program
(which might be never at all). An attempt to dereference m again in the course of
evaluation of the constructor leads to a infinite loop or run-time error.

However, the expansion given above is not accurate for top-level objects. It cannot
be because variable and method definition cannot appear on the top-level. Instead,
top-level objects are translated to static fields.

Example 5.4.1 Classes in Scala do not have static members; however, an equivalent
effect can be achieved by an accompanying object definition E.g.

abstract class Point {
val x: Double
val y: Double
def isOrigin = (x == 0.0 && vy == 0.0)
}
object Point {
val origin = new Point() { val x = 0.0; val vy = 0.0 }

}

This defines a class Point and an object Point which contains origin as a member.
Note that the double use of the name Point is legal, since the class definition defines
the name Point in the type name space, whereas the object definition defines a
name in the term namespace.

This technique is applied by the Scala compiler when interpreting a Java class with
static members. Such a class C is conceptually seen as a pair of a Scala class that
contains all instance members of C and a Scala object that contains all static mem-
bers of C.

Generally, a companion module of a class is an object which has the same name as
the class and is defined in the same scope and compilation unit. Conversely, the
class is called the companion class of the module.



Chapter 6
Expressions

SimpleExpr TypeArgs
SimpleExprl ArgumentExprs
XmlExpr

Syntax:
Expr = [(Bindings | Id) ‘=>'] Expr
| Exprl
Exprl i:= if ‘(C Expr ‘)’ {nl} Expr [[‘;’] else Expr]
| while ‘(’ Expr ‘)’ {nl} Expr
| try ‘{’ Block ‘}’ [catch ‘{’ CaseClauses ‘}’]
[finally Expr]
| do Expr [semi] while ‘(’ Expr ')’
| for (‘(C’ Enumerators ‘)’ | ‘{’ Enumerators ‘}’)
{nl} [yield] Expr
| throw Expr
| return [Expr]
| [SimpleExpr ‘.’] id ‘=’ Expr
| SimpleExprl ArgumentExprs ‘=’ Expr
| PostfixExpr Ascription
| PostfixExpr match ‘{’ CaseClauses ‘}’
PostfixExpr ::= InfixExpr [id [nl]]
InfixExpr = PrefixExpr
| InfixExpr id [nl] InfixExpr
PrefixExpr = [‘=7 | ‘47 | ~7 | ‘I’ | ‘&] SimpleExpr
SimpleExpr ::= new ClassTemplate
| BlockExpr
| SimpleExprl
SimpleExprl ::= Literal
| Path
| “C [Exprs [‘,’]] *)’
| SimpleExpr ‘.’ id
I
I
|
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BlockExpr = ‘{’ Case(Clauses ‘}’
| ‘“{’ Block ‘}’
Block = {BlockStat semi} [ResultExpr]
ResultExpr = Exprl
| (Bindings | Id ‘:’ CompoundType) ‘=>’ Block
Ascription = ‘:’ CompoundType
I

:’ Annotation {Annotation}

Expressions are composed of operators and operands. Expression forms are dis-
cussed subsequently in decreasing order of precedence.

The typing of expressions is often relative to some expected type (which might be
undefined). When we write “expression e is expected to conform to type T”, we
mean: (1) the expected type of e is T, and (2) the type of expression e must conform
toT.

6.1 Literals

Syntax:

SimpleExpr ::= Literal
Typing of literals is as described in (§1.3); their evaluation is immediate.
A different form of literals designate classes. These are written

classOf[C]

Here, classOf is a method defined in scala.Predef (§12.5) and C is a class type.
The value of such a class literal is the run-time representation of the class type C.

6.2 The Null Value

The null value is of type scala.Null, and is thus compatible with every reference
type. It denotes a reference value which refers to a special “null” object. This object
implements the methods in class scala.AnyRef as follows:

eq(x), ==(x), equals(x) return true iff their argument x is also the “null”
object.

e isInstanceOf[ T ] always returns false.

e asInstanceOf[T] returns the “null” object itself if T conforms to
scala.AnyRef, and throws a Nul1PointerException otherwise.

* toString() returns the string “null”.



6.3 Designators 65

A reference to any other member of the “null” object causes a
NullPointerException to be thrown.

6.3 Designators

Syntax:

SimpleExpr ::= Path
| SimpleExpr ‘.’ id

A designator refers to a named term. It can be a simple name or a selection. If r is a
stable identifier (§3.1) of type T, the selection r.x refers statically to a term member
m of r that is identified in T by the name x.

For other expressions e, e.x is typed as ifitwas { val y = e; y.x }, forsome fresh
name y. The typing rules for blocks implies that in that case x’s type may not refer
to any abstract type member of e.

The expected type of a designator’s prefix is always undefined. The type of a desig-
nator is the type of the entity it refers to, with the following exception: The type of a
path (§3.1) p which occurs as the prefix of a selection, or which has a singleton type
as expected type, is the singleton type p.type.

The selection e.x is evaluated by first evaluating the qualifier expression e, which
yields an object r, say. The selection’s result is then the member r that is either
defined by m or defined by a definition overriding m.

6.4 This and Super

Syntax:

SimpleExpr ::= [id ‘.’] this
| [id ’.’] super [ClassQualifier] ‘.’ id

The expression this can appear in the statement part of a template or compound
type. It stands for the object being defined by the innermost template or compound
type enclosing the reference. If this is a compound type, the type of this is that
compound type. If it is a template of an instance creation expression, the type of
this is the type of that template. If it is a template of a class or object definition
with simple name C, the type of this is the same as the type of C. this.

The expression C.this is legal in the statement part of an enclosing class or ob-
ject definition with simple name C. It stands for the object being defined by the
innermost such definition. If the expression’s expected type is a singleton type, or
C.this occurs as the prefix of a selection, its type is C. this. type, otherwise it is the
self type of class C.
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Areference super.m refers statically to a member m in the least proper supertype
of the innermost template containing the reference. It evaluates to the member
m’ in the actual supertype of that template which is equal to m or which overrides
m. The statically referenced member m must be concrete, or the template contain-
ing the reference must have a member m’ which overrides m and which is labeled
abstract override.

A reference C.super.m refers statically to a member m in the least proper su-
pertype of the innermost enclosing class or object definition named C which en-
closes the reference. It evaluates to the member m' in the actual supertype of that
class or object which is equal to m or which overrides m. The statically referenced
member m must be concrete, or the innermost enclosing class or object defini-
tion named C must have a member m’ which overrides m and which is labeled
abstract override.

The super prefix may be followed by a class qualifier [C ], asin C.super[C]. x. This
is called a static super reference. In this case, the reference is to the member of x in
the parent class of C whose simple name is M. That member must be uniquely
defined and concrete.

Example 6.4.1 Consider the following class definitions

class Root { val x = "Root" }
class A extends Root { override val x = "A" ; val superA = super.x }
trait B extends Root { override val x = "B" ; val superB = super.x }
class C extends Root with B {
override val x = "C" ; val superC = super.x }
}
class D extends A with B {
override val x = "D" ; val superD = super.x }
}

The linearization of class C is {C, B, Root} and the linearization of class D is
{D, B, A, Root}. Then we have:

(new A).superA == "Root",
(new C).superA == "Root", (new C).superB = "Root", (new C).superC = "B",
(new D) .superA == "Root", (new D).superB = "A", (new D) .superD = "B",

Note that the superB function returns different results depending on whether B is
mixed in with class Root or A.

6.5 Function Applications

Syntax:
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SimpleExpr = SimpleExprl ArgumentExprs
ArgumentExprs ::= ‘(' [Exprs [‘,’]1] ’)’
|  “C [Exprs “,’] PostfixExpr ‘:’ ‘_’ ‘=’ ')’
| [nl] BlockExpr
Exprs = Expr {‘,’ Expr}
An application f(ey, ..., e;) applies the function f to the argument expressions

el ..., ex. If f has a method type (T, ..., T,)U, the type of each argument expres-
sion e; must conform to the corresponding parameter type T;. If f has some value
type, the application is taken to be equivalent to f.apply(ey,..., e,), i.e. the appli-
cation of an apply method defined by f.

Evaluation of f(ey, ..., e,) usually entails evaluation of f and ey, ..., e, in that or-
der. Each argument expression is converted to the type of its corresponding formal
parameter. After that, the application is rewritten to the function’s right hand side,
with actual arguments substituted for formal parameters. The result of evaluating
the rewritten right-hand side is finally converted to the function’s declared result
type, if one is given.

A function application usually allocates a new frame on the program’s run-time
stack. However, if a local function or a final method calls itself as its last action,
the call is executed using the stack-frame of the caller.

The case of a formal parameter with a parameterless method type =>T is treated
specially. In this case, the corresponding actual argument expression is not eval-
uated before the application. Instead, every use of the formal parameter on the
right-hand side of the rewrite rule entails a re-evaluation of the actual argument
expression. In other words, the evaluation order for =>-parameters is call-by-name
whereas the evaluation order for normal parameters is call-by-value.

The last argument in an application may be marked as a sequence argument, e.g.
e: _=. Such an argument must correspond to a repeated parameter (§4.6.2) of type
S# and it must be the only argument matching this parameter (i.e. the number of
formal parameters and actual arguments must be the same). Furthermore, the type
of e must conform to scala.Seq[T], for some type T which conforms to S. In this
case, the argument list is transformed by replacing the sequence e with its elements.

Example 6.5.1 Assume the following function which computes the sum of a vari-
able number of arguments:

def sum(xs: int*) = (0 /: xs) ((x, V) = X + V)

Then

sum(1l, 2, 3, 4)
sum(List(1, 2, 3, 4): _*)

both yield 10 as result. On the other hand,
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sum(List(1, 2, 3, 4))

would not typecheck.

6.6 Method Values

Syntax:

SimpleExpr 1= SimpleExprl ‘_

The expression e _ is well-formed if e is of method type or if e is a call-by-name
parameter. If e is a method with parameters, e _ represents e converted to a func-
tion type by eta expansion (§6.24.5). If e is a parameterless method or call-by-name
parameter of type =>T, e _ represents the function of type () => T, which evalu-
ates e when it is applied to the empty parameterlist ().

Example 6.6.1 The method values in the left column are each equivalent to the
anonymous functions (§6.22) on their right.

Math.sin _ X => Math.sin(x)

Array.range _ (x1, x2) => Array.range(x1l, x2)

List.map2 _ (x1, x2) => (x3) => List.map2(x1, x2)(x3)
List.map2(xs, vys)_ x => List.map2(xs, vs)(x)

Note that a space is necessary between a method name and the trailing underscore
because otherwise the underscore would be considered part of the name.

6.7 Type Applications

Syntax:

SimpleExpr ::= SimpleExpr TypeArgs

A type application e[Ty,..., T,] instantiates a polymorphic value e of type
[ap >: Ly <: Uy,...,ay >: L, <: U,1S with argument types Ti,..., T,,. Every
argument type T; must obey the corresponding bounds L; and U;. That is, for
each i = 1,..., n, we must have oL; <: T; <: ocU;, where o is the substitution
la,:=Th, ..., an:= Ty]. The type of the application is o S.

If the function part e is of some value type, the type application is taken to be equiv-
alent to e.apply[Ty,..., T,], i.e. the application of an apply method defined by
e.

Type applications can be omitted if local type inference (§6.24.4) can infer best type
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parameters for a polymorphic functions from the types of the actual function argu-
ments and the expected result type.

6.8 Tuples
Syntax:

SimpleExpr ::= ‘(’ [Exprs [‘,’1] ‘)’
A tuple expression (ej,...,e,) is an alias for the class instance creation
scala.Tuplen(ey,..., e;), where n = 2. The expression may also be written with
a trailing comma, i.e. (ey, ..., e,;,). Unary tuples can be expressed in this syntax

only by using a trailing comma, i.e. (e, ). Finally, the empty tuple () is the unique
value of type scala.Unit.

6.9 Instance Creation Expressions

Syntax:

SimpleExpr ::= new Template
A simple instance creation expression is of the form new ¢ where c is a constructor
invocation (§5.1.1). Let T be the type of c. Then T must denote a (a type instance
of) a non-abstract subclass of scala.AnyRef which conforms to its self type (§5.3).

The expression is evaluated by creating a fresh object of type T which is is initialized
by evaluating c. The type of the expression is 7.

A general instance creation expression is of the form new ¢ for some template ¢
(§5.1). Such an expression is equivalent to the block

{ class a extends f; new a }

where a is a fresh name of an anonymous class.

6.10 Blocks

Syntax:
BlockExpr = ‘{’ Block ‘}’
Block = [{BlockStat semi} ResultExpr]
A block expression {s;; ...; sp; e} isconstructed from a sequence of block state-

ments sy, ..., S, and a final expression e. The statement sequence may not contain
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two definitions or declarations that bind the same name in the same namespace.
The final expression can be omitted, in which case the unit value {} is assumed.

The expected type of the final expression e is the expected type of the block. The
expected type of all preceding statements is undefined.

The type of ablock s;; ...; s,; e isusually the type of e. That type must be equiv-
alent to a type which does not refer to an entity defined locally in the block. If this
condition is violated, there are two other possibilities:

1. If a fully defined expected type is given, the type of the block is instead as-
sumed to be the expected type.

2. Otherwise, if the type of e is an anonymous class a introduced by the expan-
sion of an instance creation expression (§6.9), the type of the block is taken to
be the least class type or refinement type which is a proper supertype of the

type a.

It is a compile-time error if neither of the previous two clauses applies.

Evaluation of the block entails evaluation of its statement sequence, followed by an
evaluation of the final expression e, which defines the result of the block.

Example 6.10.1 Written in isolation, the block

{ class C extends B {...} ; new C }

is illegal, since its type refers to class C, which is defined locally in the block.

However, when used in a definition such as

val x: B = { class C extends B {...} ; new C }

the block is well-formed, since the problematic type C can be replaced by the ex-
pected type B.

6.11 Prefix, Infix, and Postfix Operations

Syntax:
PostfixExpr = InfixExpr [id [nl]]
InfixExpr = PrefixExpr
| InfixExpr id [nl] InfixExpr
PrefixExpr = [*=7 ] “+7 | V| ‘~" | ‘& ] SimpleExpr

Expressions can be constructed from operands and operators.
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6.11.1 Prefix Operations

A prefix operation op e consists of a prefix operator op, which must be one of the
identifiers ‘+, =’ ‘1" or ‘~". The expression op e is equivalent to the postfix method

application e.unary_op.

Prefix operators are different from normal function applications in that their
operand expression need not be atomic. For instance, the input sequence -sin(x)
is read as -(sin(x)), whereas the function application negate sin(x) would be
parsed as the application of the infix operator sin to the operands negate and (x).

6.11.2 Postfix Operations

An postfix operator can be an arbitrary identifier. The postfix operation e op is in-
terpreted as e.op.

6.11.3 Infix Operations
An infix operator can be an arbitrary identifier. Infix operators have precedence and
associativity defined as follows:

The precedence of an infix operator is determined by the operator’s first character.
Characters are listed below in increasing order of precedence, with characters on
the same line having the same precedence.

(all letters)

A R > —

+ -
* / %
(all other special characters)

That is, operators starting with a letter have lowest precedence, followed by opera-
tors starting with ‘|, etc.
The associativity of an operator is determined by the operator’s last character. Op-

erators ending in a colon ‘:’ are right-associative. All other operators are left-
associative.

Precedence and associativity of operators determine the grouping of parts of an ex-
pression as follows.

e If there are several infix operations in an expression, then operators with
higher precedence bind more closely than operators with lower precedence.
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* If there are consecutive infix operations ey op; e; op, ... op,, e, with operators
opy, ..., op,, of the same precedence, then all these operators must have the
same associativity. If all operators are left-associative, the sequence is inter-
preted as (...(ep op; e1) op,...) op,, e,. Otherwise, if all operators are right-
associative, the sequence is interpreted as ey op; (e; op, (...0p,, e,)...).

* Postfix operators always have lower precedence than infix operators. E.g.
e1 op; e2 op, is always equivalent to (e; op; e2) op,.

The right-hand operand of a left-associative operator may consist of several argu-
ments enclosed in parentheses, e.g. e op (e,...,e,). This expression is then inter-
preted as e.op(ey,..., e,).

A left-associative binary operation e; op ey is interpreted as e;.op(e»). If op is right-
associative, the same operation is interpreted as { val x=e;; e».op(x) }, where
x is a fresh name.

6.11.4 Assignment Operators

An assignment operator is an operator symbol (syntax category op in (§1.1)) that
ends in an equals sign “=". Assignment operators are treated specially in that they
can be expanded to assignments if no other interpretation is valid.

Let’s consider an assignment operator such as += in an infix operation [ += r,
where [, r are expressions. This operation can be re-interpreted as an operation
which corresponds to the assignment

IL=1+r

except that the operation’s left-hand-side [ is evaluated only once.

The re-interpretation occurs if the following two conditions are fulfilled.

1. The left-hand-side ! does not have a member named +=, and also cannot be
converted by an implicit conversion (§6.24) to a value with a member named
+=,

2. The assignment [ = [ + r is type-correct. In particular this implies that /
refers to a variable or object that can be assigned to, and that is convertible
to a value with a member named +.

6.12 Typed Expressions

Syntax:

Exprl ::= PostfixExpr ‘:’ CompoundType
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The typed expression e: T has type T. The type of expression e is expected to con-
form to T. The result of the expression is the value of e converted to type T.

Example 6.12.1 Here are examples of well-typed and illegally typed expressions.

1: int // legal, of type int
1: long // legal, of type long
// 1: string /) wwwwx 1llegal

6.13 Annotated Expressions

Syntax:
Exprl ::= PostfixExpr ‘:’ Annotation {Annotation}
An annotated expression e: @a; ... @a, attaches annotations a, ..., a, to the ex-

pression e (§11).

6.14 Assignments

Syntax:

Exprl ::= [SimpleExpr ‘.’] id ‘=’ Expr
| SimpleExprl ArgumentExprs ‘=’ Expr

The interpretation of an assignment to a simple variable x = e depends on the
definition of x. If x denotes a mutable variable, then the assignment changes the
current value of x to be the result of evaluating the expression e. The type of e is
expected to conform to the type of x. If x is a parameterless function defined in
some template, and the same template contains a setter function x_= as member,
then the assignment x = e is interpreted as the invocation x_=(e) of that setter
function. Analogously, an assignment f.x = e to a parameterless function x is
interpreted as the invocation f.x_=(e).

An assignment f(args) = e with a function application to the left of the “=’ oper-
ator is interpreted as f.update(args, e), i.e.the invocation of an update function
defined by f.

Example 6.14.1 Here is the usual imperative code for matrix multiplication.

def matmul (xss: Array[Array[double]], yss: Array[Array[double]]) = {
val zss: Array[Array[double]] = new Array(xss.length, yss.length)
var i = 0
while (i < xss.length) {
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var j = 0
while (j < yss(0).length) {
var acc = 0.0
var k = 0
while (k < yss.length) {
acc = acc + xs(i)(k) = yss(k)(3)
k=k+1
}
zss(i)(j) = acc
j=j+1
}
i

=1i+1

ZSS

}

Desugaring the array accesses and assignments yields the following expanded ver-
sion:

def matmul (xss: Array[Array[double]], yss: Array[Array[double]]) = {
val zss: Array[Array[double]] = new Array(xss.length, yss.length)
var i = 0
while (i < xss.length) {
var j = 0
while (j < yss(0).length) {
var acc = 0.0
var k = 0
while (k < yss.length) {
acc = acc + xss.apply(i).apply(k) = yss.apply(k).apply(j)
k=k+1
}
zss.apply(i) .update(j, acc)
j=j+1

=1i+1

6.15 Conditional Expressions

Syntax:

Exprl i:= if “(’ Expr ‘)’ {nl} Expr [[semi] else Expr]
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The conditional expression if (e;) e, else es choosesone of the values of e; and
e3, depending on the value of e;. The condition e; is expected to conform to type
boolean. The then-part e, and the else-part e3 are both expected to conform to the
expected type of the conditional expression. The type of the conditional expression
is the least upper bound of the types of e; and e». A semicolon preceding the else
symbol of a conditional expression is ignored.

The conditional expression is evaluated by evaluating first e;. If this evaluates to
true, the result of evaluating e is returned, otherwise the result of evaluating e; is
returned.

A short form of the conditional expression eliminates the else-part. The conditional
expression if (e;) ey is evaluated as if it was if (e;) e; else (). The type of
this expression is unit and the then-part ey is also expected to conform to type unit.

6.16 While Loop Expressions

Syntax:
Exprl ::= while ‘(’ Expr ’)’ {nl} Expr
The while loop expression while (e;) ey is typed and evaluated as if it was an

application of whileLoop (e;) (e2) where the hypothetical function whileLoop is
defined as follows.

def whileLoop(cond: => Boolean)(body: => Unit): Unit =
if (cond) { body ; whileLoop(cond)(body) } else {}

6.17 Do Loop Expressions
Syntax:
Exprl ::= do Expr [semi] while ‘(’ Expr ’)’

The do loop expression do e; while (e;) is typed and evaluated as if it was the
expression (e; ; while (ez) e;). A semicolon preceding the while symbol of a
do loop expression is ignored.

6.18 For-Comprehensions

Syntax:

Exprl ::= for ‘(’ Enumerators ‘)’ {nl} [yield] Expr
| for ‘{’ Enumerators ‘}’ {nl} [yield] Expr
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Enumerators = Generator {semi Enumerator}
Enumerator = Generator

| Guard

| wval Patternl ‘=’ Expr
Generator = Patternl ‘<-’ Expr [Guard]
Guard = ‘if’ PostfixExpr

A comprehension for (enums) yield e evaluates expression e for each binding
generated by the enumerators enums. An enumerator sequence always starts with
a generator; this can be followed by further generators, value definitions, or guards.
A generator p <- e produces bindings from an expression e which is matched in
some way against pattern p. A value definition val p = e binds the value name
p (or several names in a pattern p) to the result of evaluating the expression e. A
guard if e contains a boolean expression which restricts enumerated bindings.
The precise meaning of generators and guards is defined by translation to invoca-
tions of four methods: map, filter, flatMap, and foreach. These methods can be
implemented in different ways for different carrier types.

The translation scheme is as follows. In a first step, every generator p <- e, where
p is not irrefutable (§8.1) for the type of e is replaced by

p <- e.filter { case p => true; case _ => false }

Then, the following rules are applied repeatedly until all comprehensions have been
eliminated.

e A for-comprehension for (p <- e) yield ¢ is translated to
e.map { case p => ¢ }.

* A for-comprehension for (p <- e) ¢ is translated to
e.foreach { case p => ¢ }.

e Afor-comprehension

for (p <- e; p' <- € ..) yield ¢" ,

where ... is a (possibly empty) sequence of generators or guards, is translated
to

e.flatmap { case p => for (p' <- € ...) yield ¢’ } .

e Afor-comprehension

for (p <-e; p' <-¢€..0) ¢

where ... is a (possibly empty) sequence of generators or guards, is translated
to

e.foreach { case p => for (p' <- ¢ ...) &' } .
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* Agenerator p <- e followed byaguard if g istranslated to a single genera-
tor p <- e.filter((xy,..., X,) => g) where xy, ..., X, are the free variables
of p.

e Agenerator p <- e followed by a value definition val p’ = ¢ is translated
to the following generator of pairs of values, where x and x are fresh names:

val (p, p) <-
for (x@p <- e) yield { val X¥@p’ = ¢'; (x, x) }

Example 6.18.1 The following code produces all pairs of numbers between 1 and
n—1whose sums are prime.

for { i <- 1 until n
j <- 1 until i
if isPrime(i+j)

} yield (i, j)

The for-comprehension is translated to:

(1 until n)
.flatMap {
case 1 => (1 until i)
filter { j => isPrime(i+j) }
.map { case j = (i, j) } }

Example 6.18.2 For comprehensions can be used to express vector and matrix al-
gorithms concisely. For instance, here is a function to compute the transpose of a
given matrix:

def transpose[a](xss: Array[Array[a]]) {
for (i <- Array.range(0, xss(0).length)) yield
Array(for (xs <- xss) yield xs(i))

Here is a function to compute the scalar product of two vectors:

def scalprod(xs: Array[double], ys: Array[double]) {
var acc = 0.0
for ((x, y) <- Xs zip ys) acc = acCc + X * y
acc

}

Finally, here is a function to compute the product of two matrices. Compare with
the imperative version of Example 6.14.1.

def matmul(xss: Array[Array[double]], yss: Array[Array[double]]) = {
val ysst = transpose(yss)
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for (xs <- xs) yield
for (yst <- ysst) yield
scalprod(xs, yst)

The code above makes use of the fact that map, flatmap, filter, and foreach are
defined for members of class scala.Array.

6.19 Return Expressions

Syntax:

Exprl ::= return [Expr]

Areturn expression return e mustoccur inside the body of some enclosing named
method or function. The innermost enclosing named method or function, f, must
have an explicitly declared result type, and the type of e must conform to it. The
return expression evaluates the expression e and returns its value as the result of f.
The evaluation of any statements or expressions following the return expression is
omitted. The type of a return expression is scala.Nothing.

If the return expression is itself part of a closure, it is possible that the enclosing
instance of f has already returned before the return expression is executed. In that
case, a scala.runtime.NonLocalReturnException is thrown.

6.20 Throw Expressions

Syntax:

Exprl ::= throw Expr

A throw expression throw e evaluates the expression e. The type of this expression
must conform to Throwable. If e evaluates to an exception reference, evaluation
is aborted with the thrown exception. If e evaluates to null, evaluation is instead
aborted with a NullPointerException. If there is an active try expression (§6.21)
which handles the thrown exception, evaluation resumes with the handler; other-
wise the thread executing the throw is aborted. The type of a throw expression is
scala.Nothing.

6.21 Try Expressions

Syntax:



6.22 Anonymous Functions 79

Exprl ::= try ‘{’ Block ‘}’ [catch ‘{’ CaseClauses ‘}’]
[finally Expr]

A try expression is of the form try { b } catch h where the handler # is a pattern
matching anonymous function (§8.5)

{ case p; => by ... case p, => b, } .

This expression is evaluated by evaluating the block b. If evaluation of b does not
cause an exception to be thrown, the result of b is returned. Otherwise the handler
h is applied to the thrown exception. If the handler contains a case matching the
thrown exception, the first such case is invoked. If the handler contains no case
matching the thrown exception, the exception is re-thrown.

Let pt be the expected type of the try expression. The block b is ex-
pected to conform to pt. The handler h is expected conform to type
scala.PartialFunction[scala.Throwable, pt]. The type of the try expression is
the least upper bound of the type of b and the result type of h.

A try expression try { b } finally e evaluates the block b. If evaluation of b
does not cause an exception to be thrown, the expression e is evaluated. If an excep-
tion is thrown during evaluation of e, the evaluation of the try expression is aborted
with the thrown exception. If no exception is thrown during evaluation of e, the
result of b is returned as the result of the try expression.

If an exception is thrown during evaluation of b, the finally block e is also evalu-
ated. If another exception e is thrown during evaluation of e, evaluation of the try
expression is aborted with the thrown exception. If no exception is thrown during
evaluation of e, the original exception thrown in b is re-thrown once evaluation of e
has completed. The block b is expected to conform to the expected type of the try
expression. The finally expression e is expected to conform to type unit.

A try expression try { b } catch e; finally e, is a shorthand for
try { try { b } catch e; } finally e».

6.22 Anonymous Functions

Syntax:
Exprl ::= (Bindings | Id) ‘=>" Expr
ResultExpr ::= (Bindings | Id [‘:’ CompoundType]) ‘=>’ Block
Bindings ::= ‘(' Binding {‘,’ Binding} ‘)’
Binding i:= id [“:’ Typel
The anonymous function (x;: Ti,...,x,: T,) => e maps parameters x; of types

T; to a result given by expression e. The scope of each formal parameter x; is e.
Formal parameters must have pairwise distinct names.
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If the expected type of the anonymous function is of the form
scala.Functionn[Sy,..., S, R1, the expected type of e is R and the type T;
of any of the parameters x; can be omitted, in which case T; = S; is assumed. If the
expected type of the anonymous function is some other type, all formal parameter
types must be explicitly given, and the expected type of e is undefined. The type
of the anonymous function is scala.Functionn[S,...,S,, T1, where T is the
type of e. T must be equivalent to a type which does not refer to any of the formal
parameters x;.

The anonymous function is evaluated as the instance creation expression
new scala.Functionn[Ti,..., T, T] {

def applv(x;: Ti,...,x5: Tp): T = e
}

In the case of a single untyped formal parameter, (x) => e can be abbreviated to
x => e. If an anonymous function (x: T) => e with a single typed parameter
appears as the result expression of a block, it can be abbreviatedto x: T => e.

Example 6.22.1 Examples of anonymous functions:

X => X // The identity function
f=¢g=x= f(g(x)) // Curried function composition
(x: Int,y: Int) => x + vy // A summation function

() => { count = count + 1; count } // The function which takes an
// empty parameter 1list (),
// increments a non-local variable
// ‘count’ and returns the new value.

Implicit Anonymous Functions

Syntax:

SimpleExprl

An expression (of syntactic category Expr) may contain embedded underscore sym-
bols _ at places where identifiers are legal. Such an expression represents an anony-
mous function where subsequent occurrences of underscores denote successive
parameters.

Define an underscore section to be an expression of the form _: T where T is a type,
or else of the form _, provided the underscore does not appear as the expression
part of a type ascription _: T'.

An expression e of syntactic category Expr binds an underscore section u, if the fol-
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lowing two conditions hold: (1) e properly contains u«, and (2) there is no other ex-
pression of syntactic category Expr which is properly contained in e and which itself
properly contains u.

If an expression e binds underscore sections uy, ..., U, in this order, it is equivalent
to the anonymous function (u, ... u;) => €' where each u/ results from u; by
replacing the underscore with a fresh identifier and e’ results from e by replacing
each underscore section u; by u’.

Example 6.22.2 The implicit anonymous functions in the left column are each
equivalent to the anonymous functions on their right.

_+1 X =X+ 1

_ % _ (x1, x2) => x1 * x2

(_: int) = 2 (x: int) => (x: int) = 2
if (L) x else vy z => if (z) x else y
_.map(f) x => x.map(f)

_.map(_ + 1) x => x.map(y => vy + 1)

6.23 Statements

Syntax:
BlockStat Import
[implicit] Def
{LocalModifier} TmplDef
Exprl
TemplateStat :: Import

|
|
|
|
| {Annotation} {Modifier} Def

| {Annotation} {Modifier} Dcl

| Expr

|

Statements occur as parts of blocks and templates. A statement can be an import,
a definition or an expression, or it can be empty. Statements used in the template
of a class definition can also be declarations. An expression that is used as a state-

ment can have an arbitrary value type. An expression statement e is evaluated by
evaluating e and discarding the result of the evaluation.

Block statements may be definitions which bind local names in the block. The
only modifiers allowed in block-local definitions are modifiers abstract, final, or
sealed preceding a class or object definition.

Evaluation of a statement sequence entails evaluation of the statements in the order
they are written.



82 Expressions

6.24 Implicit Conversions

Implicit conversions can be applied to expressions whose type does not match their
expected type, as well as to unapplied methods. The available implicit conversions
are given in the next two sub-sections.

We say, a type T is compatible to a type U if T conforms to U after applying eta-
expansion (§6.24.5) and view applications (§7.3).

6.24.1 Value Conversions

The following five implicit conversions can be applied to an expression e which has
some value type T and which is type-checked with some expected type pt.

Overloading Resolution. If an expression denotes several possible members of a
class, overloading resolution (§6.24.3) is applied to pick a unique member.

Type Instantiation. An expression e of polymorphic type

[ay >: Ly <: Uq,...,a, >: L, <: Uy,1T

which does not appear as the function part of a type application is converted to a
type instance of T by determining with local type inference (§6.24.4) instance types
Ty, ..., T, for the type variables ay, ..., a, and implicitly embedding e in the type
application e[ Ty, ..., T,1 (§6.7).

Numeric Literal Narrowing. If the expected type is byte, short or char, and the
expression e is an integer literal fitting in the range of that type, it is converted to the
same literal in that type.

Value Discarding. 1f e has some value type and the expected type is unit, e is con-
verted to the expected type by embedding itin the term { e; () }.

View Application. If none of the previous conversions applies, and the e’s type
does not conform to the expected type pt, it is attempted to convert e to the ex-
pected type with a view (§7.3).

6.24.2 Method Conversions

The following four implicit conversions can be applied to methods which are not
applied to some argument list.
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Evaluation. A parameterless method m of type => T is always converted to type
T by evaluating the expression to which m is bound.

Implicit Application. 1f the method takes only implicit parameters, implicit argu-
ments are passed following the rules of §7.2.

Eta Expansion. Otherwise, if the method is not a constructor, and the expected
type pt is a function type (Ts') = T’ eta-expansion (§6.24.5) is performed on the
expression e.

Empty Application. Otherwise, if e has method type () T, it is implicitly applied to
the empty argument list, yielding e().

6.24.3 Overloading Resolution

If an identifier or selection e references several members of a class, the context of
the reference is used to identify a unique member. The way this is done depends on
whether or not e is used as a function. Let o/ be the set of members referenced by e.

Assume first that e appears as a function in an application, as in e(args). If there
is precisely one alternative in <« which is a (possibly polymorphic) method type
whose arity matches the number of arguments given, that alternative is chosen.

Otherwise, let Ts be the vector of types obtained by typing each argument with an
undefined expected type. One determines first the set of applicable alternatives. A
method type alternative is applicable if each type in Ts is compatible with the cor-
responding formal parameter type in the alternative, and, if the expected type is
defined, the method’s result type is compatible to it. A polymorphic method type is
applicable if local type inference can determine type arguments so that the instan-
tiated method type is applicable.

Let 4 be the set of applicable alternatives. It is an error if 9 is empty. Otherwise,
one chooses the most specific alternative among the alternatives in 28, according to
the following definition of being “more specific”.

* Amethod type (Ts) U is more specific than some other type S if S is applicable
to arguments (ps) of types 7.

* A polymorphic method type [a; >: L; <: Uj,...,a, >: L, <: U,1T is
more specific than some other type S if T is more specific than S under the
assumption that for i = 1, ..., n each a; is an abstract type name bounded
from below by L; and from above by U;.

* Any other type is always more specific than a parameterized method type or
a polymorphic type.
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It is an error if there is no unique alternative in 98 which is more specific than all
other alternatives in %8.

Assume next that e appears as a function in a type application, as in e[ targs]. Then
we choose all alternatives in « which take the same number of type parameters as
there are type arguments in targs. It is an error if no such alternative exists. If there
are several such alternatives overloading resolution is applied again to the whole
expression e[ targs].

Assume finally that e does not appear as a function in either an application or a type
application. If an expected type is given, let 28 be the set of those alternatives in <«
which are compatible (§6.24) to it. Otherwise, let 28 be the same as «/. We choose
in this case the most specific alternative among all alternatives in 98. It is an error if
there is no unique alternative in 28 which is more specific than all other alternatives
in 4.

In both cases, it is an error if the most specific alternative is defined in a class C, and
there is another applicable alternative which is defined in a true subclass of C.

Example 6.24.1 Consider the following definitions:

class A extends B {}
def f(x: B, y: B) = ...
def f(x: A, y: B) = ...
val a: A

val b: B

Then the application f(b, b) refers to the first definition of f whereas the applica-
tion f(a, a) refers to the second. Assume now we add a third overloaded definition

def f(x: B, y: A) = ...

Then the application f(a, a) is rejected for being ambiguous, since no most spe-
cific applicable signature exists.

6.24.4 Local Type Inference

Local type inference infers type arguments to be passed to expressions of polymor-
phic type. Say e is of type [a; >: L) <: Uy, ..., a, >: L, <: Uy]T and no explicit type
parameters are given.

Local type inference converts this expression to a type application e[T3,..., T,].
The choice of the type arguments T, ..., T, depends on the context in which the
expression appears and on the expected type pt. There are three cases.

Case 1: Selections. If the expression appears as the prefix of a selection with a
name Xx, then type inference is deferred to the whole expression e.x. That is, if e.x
has type S, it is now treated as having type [a; >: L <t Uy, ..., a, >: L, <: U,]S, and
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local type inference is applied in turn to infer type arguments for ay, ..., a,, using
the context in which e.x appears.

Case 2: Values. If the expression e appears as a value without being applied to
value arguments, the type arguments are inferred by solving a constraint system
which relates the expression’s type T with the expected type pt. Without loss of
generality we can assume that T is a value type; if it is a method type we apply
eta-expansion (§6.24.5) to convert it to a function type. Solving means finding a
substitution o of types T; for the type parameters a; such that

* All type parameter bounds are respected, i.e. 0L; <: 0a; and oa; <: cU; for
i=1,..., n.

* The expression’s type conforms to the expected type, i.e. 0 T <: opt.

It is a compile time error if no such substitution exists. If several substitutions exist,
local-type inference will choose for each type variable a; a minimal or maximal type
T; of the solution space. A maximal type T; will be chosen if the type parameter a;
appears contravariantly (§4.5) in the type T of the expression. A minimal type T;
will be chosen in all other situations, i.e. if the variable appears covariantly, non-
variantly or not at all in the type T. We call such a substitution an optimal solution
of the given constraint system for the type T.

Case 3: Methods. The last case applies if the expression e appears in an applica-
tion e(dy, ..., d;;). In that case T is a method type (R, ..., R;,) T'. Without loss of
generality we can assume that the result type T’ is a value type; if it is a method type
we apply eta-expansion (§6.24.5) to convert it to a function type. One computes
first the types S; of the argument expressions d;, using two alternative schemes.
Each argument expression d; is typed first with the expected type R;, in which the

type parameters ay, ..., a, are taken as type constants. If this fails, the argument d;
is typed instead with an expected type R;. which results from R; by replacing every
type parameter in a,, ..., a, with undefined.

In a second step, type arguments are inferred by solving a constraint system
which relates the method’s type with the expected type pt and the argument types
S1, ..., Sm. Solving the constraint system means finding a substitution o of types T;
for the type parameters a; such that

* All type parameter bounds are respected, i.e. 0L; <: 0a; and oa; <: oU; for
i=1,..., n.

e The method’s result type T’ conforms to the expected type, i.e. o T’ <: o pt.

* Each argument type conforms to the corresponding formal parameter type,
ie.gSj<ioRjforj=1,..., m.
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It is a compile time error if no such substitution exists. If several solutions exist, an
optimal one for the type T’ is chosen.

All or parts of an expected type pt may be undefined. The rules for conformance
(§3.5.2) are extended to this case by adding the rule that for any type T the following
two statements are always true:

undefined<: T and T <: undefined.

Itis possible that no minimal or maximal solution for a type variable exists, in which
case a compile-time error results. Because <: is a pre-order, it is also possible that a
solution set has several optimal solutions for a type. In that case, a Scala compiler is
free to pick any one of them.

Example 6.24.2 Consider the two methods:

def cons[a](x: a, xs: List[a]): List[a] = x :: XS
def nil[b]: List[b] = Nil

and the definition
val xs = cons(1, nil) .
The application of cons is typed with an undefined expected type. This application

is completed by local type inference to cons[int](1, nil). Here, one uses the
following reasoning to infer the type argument int for the type parameter a:

First, the argument expressions are typed. The first argument 1 has type int
whereas the second argument nil is itself polymorphic. One tries to type-check
nil with an expected type List[a]. This leads to the constraint system

List[b?] <: List[a]
where we have labeled b? with a question mark to indicate that it is a variable in

the constraint system. Because class List is covariant, the optimal solution of this
constraint is

b = scala.Nothing .

In a second step, one solves the following constraint system for the type parameter
a of cons:

int <: a?
List[scala.Nothing] <: List[a?]
List[a?] <: undefined

The optimal solution of this constraint system is

a = int ,
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so int is the type inferred for a.

Example 6.24.3 Consider now the definition

val ys = cons("abc", xs)

where xs is defined of type List[int] as before. In this case local type inference
proceeds as follows.

First, the argument expressions are typed. The first argument "abc" has type
String. The second argument xs is first tried to be typed with expected type
List[a]. This fails, as List[int] is not a subtype of List[a]. Therefore, the sec-
ond strategy is tried; xs is now typed with expected type List[undefined]. This
succeeds and yields the argument type List[int].

In a second step, one solves the following constraint system for the type parameter
a of cons:

String <: a?
List[int] <: List[a?]
List[a?] <: undefined

The optimal solution of this constraint system is

a = scala.Any ,

so scala.Any is the type inferred for a.

6.24.5 Eta Expansion

Eta-expansion converts an expression of method type to an equivalent expression
of function type. It proceeds in two steps.

First, one identifes the maximal sub-expressions of e; let’s say these are e, ..., .
For each of these, one creates a fresh name x;. Let ¢’ be the expression resulting
from replacing every maximal subexpression e; in e by the corresponding fresh
name x;. Second, one creates a fresh name y; for every argument type 7; of the
method (i =1, ..., n). The result of eta-conversion is then:

{ val x; = e;

val x;,; = en;
DTy, e, YniTw) = €y, eess yn)
}

If the expression e has a single call-by-name parameter (i.e. it is of type (=>T) U, for
some types T and U), eta-expansion of e yields a value of type ByNameFunction. The
latter is defined as follows.
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trait ByNameFunction[-A, +B] extends AnyRef {
def apply(x: => A): B
override def toString() = "<function>"

}

Eta expansion is not applicable to methods where a call-by-name parameter ap-
pears together with other parameters in one parameter section. Neither is it appli-
cable to methods with repeated parameters x: T (§4.6.2).



Chapter 7
Implicit Parameters and Views

7.1 The Implicit Modifier

Syntax:
LocalModifier = implicit
ParamClauses = {ParamClause} [nl] ‘(’ implicit Params ‘)’

Template members and parameters labeled with an implicit modifier can be
passed to implicit parameters (§7.2) and can be used as implicit conversions called
views (§7.3). The implicit modifier is illegal for all type members, as well as for
top-level (§9.2) objects.

Example 7.1.1 The following code defines an abstract class of monoids and two
concrete implementations, StringMonoid and IntMonoid. The two implementa-
tions are marked implicit.

abstract class Monoid[a] extends SemiGroup[a] {
def unit: a
}
object Monoids {
implicit object StringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""
}
implicit object IntMonoid extends Monoid[int] {
def add(x: Int, y: Int): Int = x +Vy
def unit: Int = 0
}
}
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7.2 Implicit Parameters

An implicit parameter list (implicit p;,...,p,) marks the parameters p;, ..., pn
as implicit. A method or constructor can have only one implicit parameter list, and
it must be the last parameter list given.

A method with implicit parameters can be applied to arguments just like a normal
method. In this case the implicit label has no effect. However, if such a method
misses arguments for its implicit parameters, such arguments will be automatically
provided.

The actual arguments that are eligible to be passed to an implicit parameter of type
T fall into two categories. First, eligible are all identifiers x that can be accessed at
the point of the method call without a prefix and that denote an implicit definition
(§7.1) or an implicit parameter. An eligible identifier may thus be a local name, or a
member of an enclosing template, or it may be have been made accessible without a
prefix through an import clause (§4.7). Second, eligible are also all implicit mem-
bers of some object that belongs to the implicit scope of the implicit parameter’s
type, T.

The implicit scope of a type T consists of all companion modules (§5.4) of classes
that are associated with the implicit parameter’s type. Here, we say a class C is asso-
ciated with a type T, ifitis a base class (§5.1.2) of some part of T. The parts of a type
T are:

e if T is a compound type 7; with ... with T,, the union of the parts of
Ty, ..., Ty, as well as T itself,

e if T is a parameterized type S[Ti,..., T,1, the union of the parts of S and
Tl) ceey Tl’l)

e if T is a singleton type p.type, the parts of the type of p,
e if T is a type projection S#U, the parts of S as well as T itself,

in all other cases, just T itself.

If there are several eligible arguments which match the implicit parameter’s type,
a most specific one will be chosen using the rules of static overloading resolution
(§6.24.3).

Example 7.2.1 Assuming the classes from Example 7.1.1, here is a method which
computes the sum of a list of elements using the monoid’s add and unit operations.

def sum[a](xs: List)(implicit m: Monoid[a]): a =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail))

The monoid in question is marked as an implicit parameter, and can therefore be
inferred based on the type of the list. Consider for instance the call
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sum(List(1, 2, 3))

in a context where stringMonoid and intMonoid are visible. We know that the formal
type parameter a of sum needs to be instantiated to Int. The only eligible object
which matches the implicit formal parameter type Monoid[Int] is intMonoid so this
object will be passed as implicit parameter.

This discussion also shows that implicit parameters are inferred after any type ar-
guments are inferred (§6.24.4).

Implicit methods can themselves have implicit parameters. An example is the fol-
lowing method from module scala.List, which injects lists into the scala.Ordered
class, provided the element type of the list is also convertible to this type.

implicit def list2ordered[a](x: List[a])
(implicit elem2ordered: a => Ordered[a]): Ordered[List[a]] =

Assume in addition a method

implicit def int2ordered(x: int): Ordered[int]

that injects integers into the Ordered class. We can now define a sort method over
ordered lists:

sort(xs: List[a])(implicit a2ordered: a => Ordered[a]) = ...

We can apply sort to alist of lists of integers yss: List[List[int]] as follows:

sort(yss)

The call above will be completed by passing two nested implicit arguments:
sort(yss)(xs: List[int] => list2ordered[int](xs) (int2ordered)) .
The possibility of passing implicit arguments to implicit arguments raises the pos-

sibility of an infinite recursion. For instance, one might try to define the following
method, which injects every type into the Ordered class:

def magic[a](x: a)(implicit a2ordered: a => Ordered[a]): Ordered[a] =
a2ordered(x)

Now, if one tried to apply sort to an argument arg of a type that did not have an-
other injection into the Ordered class, one would obtain an infinite expansion:

sort(arg) (x => magic(x)(x => magic(x)(x => ... )))

To prevent such infinite expansions, we require that every implicit method defini-
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tion is contractive.

A method definition is contractive if the type of every implicit parameter type is
properly contained in the type that is obtained by removing all implicit parameters
from the method type and converting the rest to a function type.

A type T is contained in a type U if one of the following holds:

T is the same as some part of U,

U is a function type and T is not.

U and T are both function types, and the arity of U is greater than the arity of
T.

U and T both parameterized types (including function types) with the same
type constructor, and each type argument of T is contained in the corre-
sponding type argument of U.

A type T is properly contained in a type U if T is contained in U and different from
U.

Example 7.2.2 The type of 1ist2ordered is

(List[a]) (implicit a => Ordered[a]): Ordered[List[a]] .

This type is contractive, because the type of the implicit parameter,
a => Ordered[a], is properly contained in the function type of the method
without implicit parameters, List[a] => Ordered[List[a]].

The type of magic is

(a) (implicit a => Ordered[a]): Ordered[a] .

This type is not contractive, because the type of the implicit parameter,
a => Ordered[a], is the same as the function type of the method without implicit
parameters.

7.3 Views

Implicit parameters and methods can also define implicit conversions called views.
A view from type S to type T is defined by an implicit value which has function type
S=>T or (=>S)=>T or by a method convertible to a value of that type.

Views are applied in two situations.

1. If an expression e is of type T, and T does not conform to the expression’s
expected type pt. In this case an implicit v is searched which is applicable to
e and whose result type conforms to pt. The search proceeds as in the case of
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implicit parameters, where the implicit scope is the one of T => pt. If such a
view is found, the expression e is converted to v(e).

2. Inaselection e.m with e of type T, if the selector m does not denote a member
of T. In this case, a view v is searched which is applicable to e and whose result
contains a member named m. The search proceeds as in the case of implicit
parameters, where the implicit scope is the one of T. If such a view is found,
the selection e.m is converted to v(e) . m.

As for implicit parameters, overloading resolution is applied if there are several pos-
sible candidates.

Example 7.3.1 Class scala.Ordered[a] contains a method

def <= [b >: a](that: b)(implicit b2ordered: b => Ordered[b]): boolean .

Assume two lists xs and ys of type List[int] and assume that the list2ordered
and int2ordered methods defined in §7.2 are in scope. Then the operation

XS <= VS

is legal, and is expanded to:

list2ordered(xs) (int2ordered) .<=

(vs)
(xs => list2ordered(xs) (int2ordered))

The first application of 1ist2ordered converts the list xs to an instance of class
Ordered, whereas the second occurrence is part of an implicit parameter passed
to the <= method.

7.4 View Bounds

Syntax:
TypeParam ::= id [>: Type] [<: Type] [<% Typel]
A type parameter a of a method or non-trait class may have a view bound a <% T.

In this case the type parameter may be instantiated to any type S which is convert-
ible by application of a view to the bound T.

A method or class containing such a type parameter is treated as being equivalent
to a method with a view parameter. E.g.

def f[a <% T1(ps): R = ...

is expanded to
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def f[al(ps)(implicit v: a => T): R = ...

where v is a fresh name for the implicit parameter. Since traits do not take con-
structor parameters, this translation does not work for them. Consequently, type-
parameters in traits may not be view-bounded.

Example 7.4.1 The <= method mentioned in Example 7.3.1 can be declared more
concisely as follows:

def <= [b >: a <% Ordered[b]](that: b): boolean



Chapter 8
Pattern Matching

8.1 Patterns

Syntax:
Pattern ::= Patternl { ‘|’ Patternl }
Patternl ::= varid ‘:’ TypePat
| ‘.7 “:’ TypePat
| Pattern2
Pattern2 = varid [‘@" Pattern3]
| Pattern3
Pattern3 = SimplePattern
| SimplePattern {id [nl] SimplePattern}
SimplePattern ::= ‘_’
| wvarid
| Literal
| StableId
| StableId ‘(’ [Patterns [‘,’]1] )’
| StableId ‘(’ [Patterns ‘,’] ‘_" ‘=’ *)’
| “C [Patterns [‘,’]] )’
| XmlPattern
Patterns = Pattern {‘,’ Patterns}

A pattern is built from constants, constructors, variables and type tests. Pattern
matching tests whether a given value (or sequence of values) has the shape defined
by a pattern, and, if it does, binds the variables in the pattern to the corresponding
components of the value (or sequence of values). The same variable name may not
be bound more than once in a pattern.

Example 8.1.1 Some examples of patterns are:

1. The pattern ex: IOException matches all instances of class T0Exception,
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binding variable ex to the instance.

2. The pattern Some(x) matches values of the form Some(v), binding x to the
argument value v of the Some constructor.

3. The pattern (x, _) matches pairs of values, binding x to the first component
of the pair. The second component is matched with a wildcard pattern.

4. The pattern x :: y :: xs matches lists of length = 2, binding x to the list’s
first element, y to the list’s second element, and xs to the remainder.

5. The pattern 1 | 2 | 3 matches the integers between 1 and 3.

Pattern matching is always done in a context which supplies an expected type of the
pattern. We distinguish the following kinds of patterns.

8.1.1 Variable Patterns

Syntax:

SimplePattern ::=
| wvarid

A variable pattern x is a simple identifier which starts with a lower case letter. It
matches any value, and binds the variable name to that value. The type of x is the
expected type of the pattern as given from outside. A special case is the wild-card
pattern _ which is treated as if it was a fresh variable on each occurrence.

8.1.2 Typed Patterns
Syntax:

Patternl ::= varid ‘:’ TypePat
| ‘_7 ‘:’ TypePat

A typed pattern x : T consists of a pattern variable x and a type pattern T. This pat-
tern matches any value matched by the type pattern T (§8.2); it binds the variable
name to that value.

8.1.3 Literal Patterns
Syntax:

SimplePattern ::= Literal

A literal pattern L matches any value that is equal (in terms of ==) to the literal L.
The type of L type must conform to the expected type of the pattern.
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8.1.4 Stable Identifier Patterns
Syntax:

SimplePattern ::= Stableld

A stable identifier pattern is a stable identifier r (§3.1). The type of r must conform
to the expected type of the pattern. The pattern matches any value v such that
r == v (§12.1).

To resolve the syntactic overlap with a variable pattern, a stable identifier pattern
may not be a simple name starting with a lower-case letter. However, it is possible to
enclose a such a variable name in backquotes; then it is treated as a stable identifier
pattern.

Example 8.1.2 Consider the following function definition:

def f(x: int, y: int) = x match {
case y => ...

}

Here, vy is a variable pattern, which matches any value. If we wanted to turn the
pattern into a stable identifier pattern, this can be achieved as follows:

def f(x: int, y: int) = x match {
case ‘y‘ => ...

}

Now, the pattern matches the y parameter of the enclosing function f. That is, the
match succeeds only if the x argument and the y argument of f are equal.

8.1.5 Constructor Patterns

Syntax:

SimplePattern ::= Stableld ‘(’ [Patterns [‘,’]] “)
A constructor pattern is of the form c(py, ..., pn) where n = 0. It consists of a stable
identifier c, followed by element patterns py, ..., p,. The constructor c is a simple

or qualified name which denotes a case class (§5.3.2). If the case class is monomor-
phic, then it must conform to the expected type of the pattern, and the formal pa-
rameter types of x’s primary constructor (§5.3) are taken as the expected types of the
element patterns py, ..., p,. If the case class is polymorphic, then its type parame-
ters are instantiated so that the instantiation of ¢ conforms to the expected type of
the pattern. The instantiated formal parameter types of ¢’s primary constructor are
then taken as the expected types of the component patterns py, ..., p,. The pattern
matches all objects created from constructor invocations c(vy, ..., v,) where each
element pattern p; matches the corresponding value v;.
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A special case arises when ¢’s formal parameter types end in a repeated parameter.
This is further discussed in (§8.1.8).

8.1.6 Tuple Patterns

Syntax:

SimplePattern = ‘(C’ [Patterns [“,’]] 9’
A tuple pattern (py,...,pn) is an alias for the constructor pattern
scala.Tuplen(ps, ..., pn), where n = 2. The pattern may also be written with
a trailing comma, i.e. (py, ..., pn,). Unary tuple patterns can be expressed in this

syntax only by using a trailing comma, i.e. (p,). Finally, the empty tuple () is the
unique value of type scala.Unit.

8.1.7 Extractor Patterns

Syntax:
SimplePattern ::= Stableld ‘(’ [Patterns [‘,’]] ‘)’
An extractor pattern x(py, ..., pn) where n = 0 is of the same syntactic form as a

constructor pattern. However, instead of a case class, the stable identifier x denotes
an object which has a member method named unapply or unapplySeq that matches
the pattern.

Anunapply method in an object x matchesthe pattern x(py, ..., p,) ifit takes exactly
one argument and one of the following applies:

n = 0 and unapply’s result type is boolean. In this case the extractor pattern
matches all values v for which x.unapply(v) yields true.

n =1 and unapply’s result type is Option[ T'], for some type T. In this case,
the (only) argument pattern p; is typed in turn with expected type T. The
extractor pattern matches then all values v for which x.unapply(v) yields a
value of form Some(v;), and p; matches v;.

n > 1 and unapply’s result type is Option[{Tj,..., T,}1, for some types
Ti, ..., Ty. In this case, the argument patterns py, ..., p, are typed in turn
with expected types T1, ..., T,,. The extractor pattern matches then all values
v for which x.unapply(v) yields a value of form Some({vy, ..., v,}), and each
pattern p; matches the corresponding value v;.

An unapplySeq method in an object x matches the pattern x(py, ..., p,) if it takes
exactly one argument and its result type is of the form Option[S], where S is a sub-
type of Seq[ T'] for some element type T. This case is further discussed in (§8.1.8).
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8.1.8 Pattern Sequences
Syntax:

SimplePattern ::= StableId ‘(’ [Patterns ‘,’] ‘_’ ‘=’ )’

A pattern sequence py, ..., p, appears in two contexts. First, in a constructor pat-
tern c(qy, ..., Gm, P1, ---, Pn), Where c is a case class which has m + 1 primary con-
structor parameters, ending in a repeated parameter (§4.6.2) of type S*. Second,
in an extractor pattern x(p, ..., pn) if the extractor object x has an unapplySeq
method with a result type conforming to Seq[S], but does not have an unapply
method that matches py, ..., pn. The expected type for the pattern sequence is in
each case the type S.

The last pattern in a pattern sequence may be a sequence wildcard _«. Each ele-
ment pattern p; is type-checked with S as expected type, unless it is a sequence
wildcard. If a final sequence wildcard is present, the pattern matches all values v

that are sequences which start with elements matching patterns py, ..., pn-1. If no
final sequence wildcard is given, the pattern matches all values v that are sequences
of length n which consist of elements matching patterns py, ..., pn.

8.1.9 Infix Operation Patterns
Syntax:

Pattern3 ::= SimplePattern {id [nl] SimplePattern}

An infix operation pattern p op g is a shorthand for the constructor or extractor
pattern op(p, q). The precedence and associativity of operators in patterns is the
same as in expressions (§6.11).

An infix operation pattern p op (qi, ..., qn) is a shorthand for the constructor or
extractor pattern op(p, g1, ..., qn)-

8.1.10 Pattern Alternatives

Syntax:
Pattern ::= Patternl { ‘|’ Patternl }
A pattern alternative p; | ... | p, consists of a number of alternative patterns

pi. All alternative patterns are type checked with the expected type of the pattern.
They may no bind variables other than wildcards. The alternative pattern matches
avalue v if at least one its alternatives matches v.

8.1.11 XML Patterns

XML patterns are treated in §10.2.
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8.1.12 Regular Expression Patterns

Regular expression patterns have been discontinued in Scala from version 2.0.

Later version of Scala provide a much simplified version of regular expression pat-
terns that cover most scenarios of non-text sequence processing. A sequence pattern
is a pattern that stands in a position where either (1) a pattern of a type T which is
conforming to Seq[A] for some A is expected, or (2) a case class constructor that has
an iterated formal parameter Ax. A wildcard star pattern _= in the rightmost posi-
tion stands for arbitrary long sequences. It can be bound to variables, as usual, in
which case the variable will have the type Seq[A].

8.1.13 Irrefutable Patterns

A pattern p is irrefutable for a type T, if one of the following applies:

1. pisavariable pattern,
2. pisatypedpattern x: T',and T <: T',

3. pisaconstructor pattern c¢(py, ..., pn), the type T is an instance of class c, the
primary constructor (§5.3) of type T has argument types 11, ..., Ty, and each
pi is irrefutable for T;.

8.2 Type Patterns

Syntax:

TypePat ::= CompoundTypePat {id [nl] CompoundTypePat}
CompoundTypePat = AnnotTypePat {with AnnotTypePat}
AnnotTypePat ::= {Annotation} SimpleTypePat
SimpleTypePat = SimpleTypePatl [TypePatArgs]
SimpleTypePatl ::= SimpleTypePatl ‘#’ id

| Stableld

| Path ‘.’ type

| “C ArgTypePats [“,’] ‘)’
TypePatArgs = ‘[’ ArgTypePats ']’
ArgTypePats ::= ArgTypePat {‘,’ ArgTypePat}
ArgTypePat := varid

| (] _ ’

| Type

Type patterns consist of types, type variables, and wildcards. A type pattern T is of
one of the following forms:
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* Areference to a class C, p.C, or T#C. This type pattern matches any non-null
instance of the given class. Note that the prefix of the class, if it is given, is rel-
evant for determining class instances. For instance, the pattern p.C matches
only instances of classes C which were created with the path p as prefix.

The bottom types scala.Nothing and scala.Null cannot be used as type pat-
terns, because they would match nothing in any case.

* A singleton type p.type. This type pattern matches only the value denoted
by the path p (that is, a pattern match involved a comparison of the matched
value with p using method eq in class AnyRef).

* A compound type pattern 77 with ... with T}, where each T; is a type pat-
tern. This type pattern matches all values that are matched by each of the type
patterns T;.

* A parameterized type pattern T'[a,, ..., a,], where the a; are type variable pat-
terns or wildcards _. This type pattern matches all values which match T for
some arbitrary instantiation of the type variables and wildcards. The bounds
or alias type of these type variable are determined as described in (§8.3).

* A parameterized type pattern scala.Array[7;], where T is a type pattern.
This type pattern matches any non-null instance of type scala.Array[U;],
where U, is a type matched by 7.

Also accepted is a parameterized type pattern of the form T[Uy, ..., U,] where T is
different from scala.Array and some of the U; are types instead of type variable
patterns or wildcards. However, such a type pattern will be translated to the erasure
(§3.6) of T[Uy, ..., Uyl. The Scala compiler will issue an “unchecked” warning for
these patterns to flag the possible loss of type-safety.

A type variable pattern is a simple identifier which starts with a lower case letter.
However, the predefined primitive type aliases unit, boolean, byte, short, char,
int, long, float, and double are not classified as type variable patterns.

8.3 Type Parameter Inference in Patterns

Type parameter inference is the process of finding bounds for the bound type vari-
ables in a typed pattern or constructor pattern. Inference takes into account the
expected type of the pattern.

Type parameter inference for typed patterns.. Assume a typed pattern p: T'. Let
T result from T’ where all wildcards in T’ are renamed to fresh variable names. Let
ai, ..., a, be the type variables in T. These type variables are considered bound in
the pattern. Let the expected type of the pattern be pt.
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Type parameter inference constructs first a set of subtype constraints over the type
variables a;. The initial constraints set 6, reflects just the bounds of these type vari-

ables. That is, assuming T has bound type variables ay, ..., a, which correspond
to class type parameters a’l, ..., a,, with lower bounds Ly, ..., L,, and upper bounds
Ui, ..., Uy, 6 contains the constraints
a; <. oU; i=1,...,n
oL; <. a; (i=1,...,n
where o is the substitution [a] 1= ay, ..., a), 1= a,].

The set 6 is then augmented by further subtype constraints. There are two cases.

Case 1:. If there exists a substitution o over the type variables a;, ..., a, such that
oT conforms to pt, one determines the weakest subtype constraints 46; over the
type variables ay, ..., a, such that €y A 6, implies that T conforms to pt.

Case 2:. Otherwise, if T can not be made to conform to pt by instantiating its type
variables, one determines all type variables in pt which are defined as type param-
eters of a method enclosing the pattern. Let the set of such type parameters be
by, ..., by. Let 6, be the subtype constraints reflecting the bounds of the type vari-
ables b;. If T denotes an instance type of a final class, let 6> be the weakest set
of subtype constraints over the type variables ay, ..., a, and by, ..., by, such that
o N\ 6, A 6 implies that T conforms to pt. If T does not denote an instance type
of a final class, let 6> be the weakest set of subtype constraints over the type vari-
ables ay, ..., a, and by, ..., b,, such that 6, A <€6 A 6> implies that it is possible to
construct a type T’ which conforms to both T and pt. It is a static error if there is no
satisfiable set of constraints %> with this property.

The final step consists in choosing type bounds for the type variables which imply
the established constraint system. The process is different for the two cases above.

Case 1:. We take a; >: L; <: U; where each L; is minimal and each U; is maximal
wrt <:such that a; >: L; <: U; for i =1, ..., n implies 6y A 6.

Case 2:. We take a; >: L; <: U; and b; >: L <: U] where each L; and L’j is minimal
and each U; and U]'. is maximal such that a; >: L; <: U; for i = 1,..., n and b; >:
L’j < U} for j=1,..., mimplies €y A €y A 6.

In both cases, local type inference is permitted to limit the complexity of inferred

bounds. Minimality and maximality of types have to be understood relative to the
set of types of acceptable complexity.
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Type parameter inference for constructor patterns.. Assume a constructor pat-
tern C(py, ..., pn) where class C has type type parameters aj, ..., a,. These type pa-
rameters are inferred in the same way as for the typed pattern (_: Clay, ..., a,l).

Example 8.3.1 Consider the program fragment:

val x: Any
x match {
case y: List[a] = ...

}

Here, the type pattern List[a] is matched against the expected type Any. The pat-
tern binds the type variable a. Since List[a] conforms to Any for every type argu-
ment, there are no constraints on a. Hence, a is introduced as an abstract type with
no bounds. The scope of a is the case clause containing it.

On the other hand, if x is declared as

val x: List[List[String]],

this generates the constraint List[a] <: List[List[String]], which simplifies to
a <: List[String], because List is covariant. Hence, a is introduced with upper
bound List[String].

Example 8.3.2 Consider the program fragment:

val x: Any
X match {
case y: List[String] => ...

}

Scala does not maintain information about type arguments at run-time, so there is
no way to check that x is a list of strings. Instead, the Scala compiler will erase (§3.6)
the pattern to List[_]; that is, it will only test whether the top-level runtime-class
of the value x conforms to List, and the pattern match will succeed if it does. This
might lead to a class cast exception later on, in the case where the list x contains
elements other than strings. The Scala compiler will flag this potential loss of type-
safety with an “unchecked” warning message.

Example 8.3.3 Consider the program fragment

class Term[a]
class Number(val n: int) extends Term[int]
def f[b](t: Term[b]): b = t match {

case y: Number => y.n

}
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The expected type of the pattern y: Number is Term[b]. The type Number does not
conform to Term[b]; hence Case 2 of the rules above applies. This means that b
is treated as another type variable for which subtype constraints are inferred. In
our case the applicable constraint is Number <: Term[b], which entails b = int.
Hence, b is treated in the case clause as an abstract type with lower and upper bound
int. Therefore, the right hand side of the case clause, y.n, of type int, is found to
conform to the function’s declared result type, Number.

8.4 Pattern Matching Expressions

Syntax:
Expr = PostfixExpr match ‘{’ CaseClauses ‘}’
CaseClauses = CaseClause {CaseClause}
CaseClause = case Pattern [Guard] ‘=>’ Block

A pattern matching expression

e match { case p; => by ... case p, => b, }

consists of a selector expression e and a number n > 0 of cases. Each case consists
of a (possibly guarded) pattern p; and a block b;. Each p; might be complemented
by aguard if e where e is a boolean expression. The scope of the pattern variables
in p; comprises the pattern’s guard and the corresponding block b;.

Let T be the type of the selector expression e and let ay, ..., a,, be the type param-
eters of all methods enclosing the pattern matching expression. For every a;, let L;
be its lower bound and Uj; be its higher bound. Every pattern p € {p,,, ..., ps} can
be typed in two ways. First, it is attempted to type p with T as its expected type. If
this fails, p is instead typed with a modified expected type T’ which results from T
by replacing every occurrence of a type parameter a; by undefined. If this second
step fails also, a compile-time error results. If the second step succeeds, let T, be
the type of pattern p seen as an expression. One then determines minimal bounds
L, ..., L', and maximal bounds Uj, ..., Uy, such that for all i, L; <: L’l. and Ulf <:U;
and the following constraint system is satisfied:

Li<ai<UAN...ANLp<tam<:Up > Tp<:T

If no such bounds can be found, a compile time error results. If such bounds are
found, the pattern matching clause starting with p is then typed under the assump-
tion that each a; has lower bound L', instead of L; and has upper bound U’ instead
of U;.

The expected type of every block b; is the expected type of the whole pattern match-
ing expression. The type of the pattern matching expression is then the least upper
bound of the types of all blocks b;.
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When applying a pattern matching expression to a selector value, patterns are tried
in sequence until one is found which matches the selector value (§8.1). Say this case
is case p; = b;. The result of the whole expression is then the result of evaluating b;,
where all pattern variables of p; are bound to the corresponding parts of the selector
value. If no matching pattern is found, a scala.MatchError exception is thrown.

The pattern in a case may also be followed by a guard suffix if e with a boolean
expression e. The guard expression is evaluated if the preceding pattern in the case
matches. If the guard expression evaluates to true, the pattern match succeeds as
normal. If the guard expression evaluates to false, the pattern in the case is con-
sidered not to match and the search for a matching pattern continues.

In the interest of efficiency the evaluation of a pattern matching expression may try
patterns in some other order than textual sequence. This might affect evaluation
through side effects in guards. However, it is guaranteed that a guard expression is
evaluated only if the pattern it guards matches.

If the selector of a pattern match is an instance of a sealed class (§5.2), the com-
pilation of pattern matching can emit warnings which diagnose that a given set of
patterns is not exhaustive, i.e. that there is a possibility of aMatchError being raised
at run-time.

Example 8.4.1 Consider the following definitions of arithmetic terms:

abstract class Term[T]
case class Lit(x: int) extends Term[int]
case class Succ(t: Term[int]) extends Term[int]
case class IsZero(t: Term[int]) extends Term[boolean]
case class If[T](c: Term[boolean],
tl: Term[T],
t2: Term[T]) extends Term[T]

There are terms to represent numeric literals, incrementation, a zero test, and a
conditional. Every term carries as a type parameter the type of the expression it
representes (either int or boolean).

A type-safe evaluator for such terms can be written as follows.

def eval[T](t: Term[T]): T = t match {

case Lit(n) => n

case Succ(u) => eval(u) + 1

case IsZero(u) => eval(u) ==

case If(c, ul, u2) => eval(if (eval(c)) ul else u2)

}

Note that the evaluator makes crucial use of the fact that type parameters of enclos-
ing methods can acquire new bounds through pattern matching.

For instance, the type of the pattern in the second case, Succ(u), is int. It conforms
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to the selector type T only if we assume an upper and lower bound of int for T.
Under the assumption int <: T <: int we can also verify that the type right hand
side of the second case, int conforms to its expected type, T.

8.5 Pattern Matching Anonymous Functions

Syntax:

BlockExpr ::= ‘{’ CaseClauses ‘}’

An anonymous function can be defined by a sequence of cases

{ case p; => by ... case p, => b, }
which appear as an expression without a prior match. The ex-
pected type of such an expression must in part be defined. It
must be either scala.Functionk[Sy,..., S, R] for some k > 0, or
scala.PartialFunction[S;, R], where the argument type(s) Si,..., Sy must

be fully determined, but the result type R may be undetermined.

If the expected type is scala.Functionk[Sy,..., Sk, R], the expression is taken to
be equivalent to the anonymous function:

(x1:81, ..., X : Sg) = (x1,..., Xx) match {
case p; => by ... case p, => by

}

Here, each x; is a fresh name. As was shown in (§6.22), this anonymous function is
in turn equivalent to the following instance creation expression, where T is the least
upper bound of the types of all b;.

new scala.Functionk[Sy,..., Sk, T1 {
def apply(x;:Si, ..., x:Sp): T = (x1,..., x) match {
case p; => by ... case p, => by
}
}

If the expected type is scala.PartialFunction[S, R], the expression is taken to
be equivalent to the following instance creation expression:

new scala.PartialFunction[S, T] {
def apply(x: S): T = x match {

case p; => by ... case p, => by

}

def isDefinedAt(x: S): boolean = {
case p; => true ... case p, => true

case _ => false
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}
}

Here, x is a fresh name and T is the least upper bound of the types of all b;. The final
default case in the isDefinedAt method is omitted if one of the patterns p;, ..., px
is already a variable or wildcard pattern.

Example 8.5.1 Here is a method which uses a fold-left operation /: to compute the
scalar product of two vectors:

def scalarProduct(xs: Array[Double], ys: Array[Double]) =
(0.0 /: (xs zip vys)) {
case (a, (b, ¢)) =>a +b = ¢

}

The case clauses in this code are equivalent to the following anonymous funciton:

(x, v) = (x, y) match {
case (a, (b, ¢)) = a +b * ¢

}






Chapter 9
Top-Level Definitions

9.1 Compilation Units

Syntax:

CompilationUnit = [package QualIld semi] TopStatSeq

TopStatSeq = TopStat {semi TopStat}

TopStat ::= {Annotation} {Modifier} TmplDef
| Import
| Packaging
|

Qualld ii= did {‘.’ id}

A compilation unit consists of a sequence of packagings, import clauses, and class
and object definitions, which may be preceded by a package clause.

A compilation unit package p; stats starting with a package clause is equivalent
to a compilation unit consisting of a single packaging package p { stats }.

Implicitly imported into every compilation unit are, in that order : the package
java.lang, the package scala, and the object scala.Predef (§12.5). Members of
a later import in that order hide members of an earlier import.

9.2 Packagings
Syntax:
Packaging ::= package Qualld [nl] ‘{’ TopStatSeq ‘}’

A package is a special object which defines a set of member classes, objects and
packages. Unlike other objects, packages are not introduced by a definition. In-
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stead, the set of members of a package is determined by packagings.

A packaging package p { ds } injects all definitions in ds as members into the
package whose qualified name is p. Members of a package are called top-level def-
initions. If a definition in ds is labeled private, it is visible only for other members
in the package.

Selections p.m from p as well as imports from p work as for objects. However, unlike
other objects, packages may not be used as values. Itisillegal to have a package with
the same fully qualified name as a module or a class.

Top-level definitions outside a packaging are assumed to be injected into a special
empty package. That package cannot be named and therefore cannot be imported.
However, members of the empty package are visible to each other without qualifi-
cation.

9.3 Package References

Syntax:
QualId ::= did {‘.” id}

A reference to a package takes the form of a qualified identifier. Like all other ref-
erences, package references are relative. That is, a package reference starting in
a name p will be looked up in the closest enclosing scope that defines a member
named p.

The special predefined name _root_ refers to the outermost root package which
contains all top-level packages.

Example 9.3.1 Consider the following program:

package b {
class B

}

package a.b {
class A {
val x = new _root_b.B
3
¥

Here, the reference _root_b.B refers to class B in the toplevel package b. If the
_root_ prefix had been omitted, the name b would instead resolve to the package
a.b, and, provided that package does not also contain a class B, a compiler-time
error would result.
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9.4 Programs

A program is a top-level object that has a member method main of type
(Array[String])unit. Programs can be executed from a command shell. The pro-
gram’s command arguments are are passed to the main method as a parameter of
type Array[String].

The main method of a program can be directly defined in the object, or it can be in-
herited. The scala library defines a class scala.Application that defines an empty
inherited main method. An objects m inheriting from this class is thus a program,
which executes the initializaton code of the object m.

Example 9.4.1 The following example will create a hello world program by defining
amethod main in module test.HelloWorld.

package test

object HelloWord {
def main(args: Array[String]) = System.out.println("hello world")
}

This program can be started by the command

scala test.HelloWorld

In a Java environment, the command

java test.HelloWorld

would work as well.

HelloWorld can also be defined without a main method by inheriting from
Application instead:

package test

object HelloWord extends Application {
System.out.println("hello world")

3






Chapter 10
XML expressions and patterns

By Burak Emir

This chapter describes the syntactic structure of XML expressions and patterns. It
follows as close as possible the XML 1.0 specification [W3C], changes being man-
dated by the possibility of embedding Scala code fragments.

10.1 XML expressions

XML expressions are expressions generated by the following production, where the
opening bracket ‘<’ of the first element must be in a position to start the lexical XML
mode (§1.5).

Syntax:

XmlExpr ::= XmlContent {Element}

Well-formedness constraints of the XML specification apply, which means for in-
stance that start tags and end tags must match, and attributes may only be defined
once, with the exception of constraints related to entity resolution.

The following productions describe Scala’s extensible markup language, designed
as close as possible to the W3C extensible markup language standard. Only the
productions for attribute values and character data are changed. Scala does not
support neither declarations, CDATA sections nor processing instructions. Entity
references are not resolved at runtime.

Syntax:

Element 1= EmptyElemTag
| STag Content ETag
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EmptyElemTag = ‘<’ Name {S Attribute} [S] ‘/>’
STag 1= ‘<’ Name {S Attribute} [S] ‘>’
ETag 1= ‘</’ Name [S] ’>’
Content ti= [CharData] {Contentl [CharData]}
Contentl = XmlContent

| Reference

| ScalaExpr
XmlContent 1= Element

| CDSect

| PI

| Comment

If an XML expression is a single element, its value is a runtime representation of
an XML node (an instance of a subclass of scala.xml.Node). If the XML expression
consists of more than one element, then its value is a runtime representation of a
sequence of XML nodes (an instance of a subclass of scala.Seq[scala.xml.Node]).

If an XML expression is an entity reference, CDATA section, processing instructions
or a comments, it is represented by an instance of the corresponding Scala runtime
class.

By default, beginning and trailing whitespace in element content is removed, and
consecutive occurrences of whitespace are replaced by a single space character
\u0020. This behavior can be changed to preserve all whitespace with a compiler
option. Syntax:

Attribute ::= Name Eq AttValue

AttValue " fCharQ | CharRef} ‘"’

| 7’ {CharA | CharRef} ¢’
|

ScalaExp
ScalaExpr = “{" expr ‘}’
CharData = { CharNoRef } without {CharNoRef}‘{’CharB {CharNoRef}

and without {CharNoRef}‘]]1>’{CharNoRef}

XML expressions may contain Scala expressions as attribute values or within nodes.
In the latter case, these are embedded using a single opening brace ‘{’ and ended by
a closing brace ‘}’. To express a single opening braces within XML text as generated
by CharData, it must be doubled. Thus, ‘{{ represents the XML text  and does not
introduce an embedded Scala expression.

Syntax:

BaseChar, Char, Comment, CombiningChar, Ideographic, NameChar, S, Reference
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1:=  ‘asin W3C XML"
Charl ::= Char without ‘<’ | ‘&’
CharQ ::= Charl without ‘'’
CharA ::= Charl without ‘"’
CharB ::= Charl without ’{’
Name ::= XNameStart {NameChar}
XNameStart ::= ‘_" | BaseChar | Ideographic

(as in W3C XML, but without *:’

10.2 XML patterns

XML patterns are patterns generated by the following production, where the open-
ing bracket ‘<’ of the element patterns must be in a position to start the lexical XML
mode (§1.5).

Syntax:

XmlPattern ::= ElementPattern

Well-formedness constraints of the XML specification apply.

An XML pattern has to be a single element pattern. It matches exactly those runtime
representations of an XML tree that have the same structure as described by the
pattern. XML patterns may contain Scala patterns(§8.4).

Whitespace is treated the same way as in XML expressions. Patterns that are entity
references, CDATA sections, processing instructions and comments match runtime
representations which are the the same.

By default, beginning and trailing whitespace in element content is removed, and
consecutive occurrences of whitespace are replaced by a single space character
\u0020. This behavior can be changed to preserve all whitespace with a compiler
option.

Syntax:
ElemPattern 1= EmptyElemTagP
| STagP ContentP ETagP
EmptyElemTagP ::= ’<’ Name [S] ’/>’
STagP 1= ’<’ Name [S] ’>’
ETagP HEES ’</’ Name [S] ’>’
ContentP 1= [CharData] {(ElemPattern|ScalaPatterns) [CharData]}

ContentPl S ElemPattern
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XML expressions and patterns

ScalaPatterns ::

Reference
CDSect

PI

Comment
ScalaPatterns
’{’ patterns '}’
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User-Defined Annotations

Syntax:
Annotation ::= ‘@ AnnotationExpr [nl]
AnnotationExpr ::= Constr [‘{’ {NameValuePair} ‘}’]
NameValuePair ::= val id ‘=’ PrefixExpr

User-defined annotations associate meta-information with definitions. A simple
annotation has the form @c or @c(ay, ..., a,). Here, c is a constructor of a class C,
which must conform to the class scala.Annotation. All given constructor argu-
ments ay, ..., a, must be constant expressions. The constructor may be optionally
followed by a list of name/value pairs in braces, e.g. {n;=c,..., nx = cr}. All val-
ues ¢; in that list must be constant expressions.

Annotations may apply to definitions or declarations, types, or expressions. An an-
notation of a definition or declaration appears in front of that definition. An annota-
tion of a type appears in front of that type. An annotation of an expression e appears
after the expression e, separated by a colon. More than one annotation clause may
apply to an entity. The order in which these annotations are given does not matter.

Examples:
@serializable class C { ... } // A class annotation.
@transient @volatile var m: int // A variable annotation
@local String // A type annotation
(e: @unchecked) match { ... } // An expression annotation

The meaning of annotation clauses is implementation-dependent. On the Java plat-
form, the following annotations have a standard meaning.

@transient

Marks a field to be non-persistent; this is equivalent to the transient
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modifier in Java.
@volatile

Marks a field which can change its value outside the control of the pro-
gram; this is equivalent to the volatile modifier in Java.

@serializable

Marks a class to be serializable; this is equivalent to inheriting from the
java.io.Serializable interface in Java.

@SerialVersionUID(<longlit>)

Attaches a serial version identifier (a long constant) to a class. This is
equivalent to a the following field definition in Java:

private final static SerialVersionUID = <longlit>

@throws(<classlit>)

A Java compiler checks that a program contains handlers for checked
exceptions by analyzing which checked exceptions can result from exe-
cution of a method or constructor. For each checked exception which is
a possible result, the throws clause for the method or constructor must
mention the class of that exception or one of the superclasses of the
class of that exception. Since Scala has no checked exceptions, Scala
methods must be annotated with one or more throws annotations such
that Java code can catch exceptions thrown by a Scala method.

@deprecated

Marks a definition as deprecated. Accesses to the defined entity will
then cause a deprecated warnig to be issued from the compiler. Depre-
cated warnings are suppressed in code that belongs itself to a definition
that is labeled deprecated.

@scala.reflect.BeanProperty

When prefixed to a definition of some variable X, this annotation causes
getter and setter methods getX, setX in the Java bean style to be added
in the class containing the variable. The first letter of the variable ap-
pears capitalized after the get or set. When the annotation is added to
the definition of an immutable value definition X, only a getter is gen-
erated. The construction of these methods is part of code-generation;
therefore, these methods become visible only once a classfile for the
containing class is generated.
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@unchecked

When applied to the selector of a match expression, this attribute sup-
presses any warnings about non-exhaustive pattern matches which
would otherwise be emitted. For instance, no warnings would be pro-
duced for the method definition below.

def f(x: Option[int]) = (x: @unchecked) match {
case Some(y) => vy

}

Without the @unchecked annotation, a Scala compiler could infer that
the pattern match is non-exhaustive, and could produce a warning be-
cause Option is a sealed class.

Other annotations may be interpreted by platform- or application-dependent
tools. Class scala.Annotation has two sub-traits which are used to indicate
how these annotations are retained. Instances of an annotation class inheriting
from trait scala.ClassfileAnnotation will be stored in the generated class files.
Instances of an annotation class inheriting from trait scala.StaticAnnotation
will be visible to the Scala type-checker in every compilation unit where the
annotationd symbol is accessed. An annotation class can inherit from both
scala.ClassfileAnnotation and scala.StaticAnnotation. If an annotation class
inherits from neither scala.ClassfileAnnotation nor scala.StaticAnnotation,
its instances are visible only locally during the compilation run that analyzes them.

Classes inheriting from scala.ClassfileAnnotation may be subject to further re-
strictions in order to assure that they can be mapped to the host environment. In
particular, on both the Java and the .NET platforms, such classes must be toplevel;
i.e. they may not be contained in another class or object.






Chapter 12
The Scala Standard Library

The Scala standard library consists of the package scala with a number of classes
and modules. Some of these classes are described in the following.

12.1 Root Classes

The root of the Scala class hierarchy is formed by class Any. Every class in a Scala
execution environment inherits directly or indirectly from this class. Class Any has
two direct subclasses: AnyRef andAnyVal.

The subclass AnyRef represents all values which are represented as objects in the
underlying host system. Every user-defined Scala class inherits directly or indi-
rectly from this class. Furthermore, every user-defined Scala class also inherits
the trait scala.ScalaObject. Classes written in other languages still inherit from
scala.AnyRef, but not from scala.ScalaObject.

The class AnyVal has a fixed number subclasses, which describe values which are
not implemented as objects in the underlying host system.

Classes AnyRef and AnyVal are required to provide only the members declared in
class Any, but implementations may add host-specific methods to these classes (for
instance, an implementation may identify class AnyRef with its own root class for
objects).

The signatures of these root classes are described by the following definitions.
package scala

/##% The universal root class */
abstract class Any {

/#*+ Defined equality; abstract here =/
def equals(that: Any): boolean
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/*+ Semantic equality between values of same type */
final def == (that: Any): boolean = this equals that

/#*+* Semantic inequality between values of same type +*/
final def != (that: Any): boolean = !(this == that)

/+** Hash code; abstract here %/
def hashCode(): Int = ...

/#** Textual representation; abstract here =/
def toString(): String = ...

/#+% Type test; needs to be inlined to work as given =/
def isInstanceOf[a]: Boolean = this match {

case x: a => true

case _ => false

/#% Type cast; needs to be inlined to work as given =/ =/
def asInstanceOf[a]: a = this match {
case x: a => X
case _ => if (this eq null) this
else throw new ClassCastException()

/*% The root class of all value types */
final class AnyVal extends Any

/#*+* The root class of all reference types =/
class AnyRef extends Any {

def equals(that: Any): Boolean = this eq that

final def eq(that: AnyRef): Boolean = ... // reference equality

def hashCode(): Int = ... // hashCode computed from allocation address

def toString(): String = ... // toString computed from hashCode and class name

/*% A mixin class for every user-defined Scala class */
trait ScalaObject extends AnyRef

The test x.asInstanceOf[T] is treated specially if T is a numeric value type
(§12.2. In this case the cast will be translated to an application of a conversion
method x.toT (§12.2.1). For non-numeric values x the operation will raise a
ClassCastException.
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12.2 Value Classes

Value classes are classes whose instances are not represented as objects by the un-
derlying host system. All value classes inherit from class AnyVal. Scala implemen-
tations need to provide the value classes Unit, Boolean, Double, Float, Long, Int,
Char, Short, and Byte (but are free to provide others as well). The signatures of
these classes are defined in the following.

12.2.1 Numeric Value Types

Classes Double, Float, Long, Int, Char, Short, and Byte are together called numeric
value types. Classes Byte, Short, or Char are called subrange types. Subrange types,
as well as Int and Long are called integer types, whereas Float and Double are called

floating point types.
Numeric value types are ranked in the following partial order:

Byte - Short

\
Int - Long - Float - Double

/
Char

Byte and Short are the lowest-ranked types in this order, whereas Double is the
highest-ranked. Ranking does not imply a conformance (§3.5.2) relationship; for
instance Int is not a subtype of Long. However, object Predef (§12.5) defines views
(§7.3) from every numeric value type to all higher-ranked numeric value types.
Therefore, lower-ranked types are implicitly converted to higher-ranked types when
required by the context (§6.24).

Given two numeric value types S and T, the operation type of S and T is defined as
follows: If both S and T are subrange types then the operation type of S and T is Int.
Otherwise the operation type of S and T is the larger of the two types wrt ranking.
Given two numeric values v and w the operation type of v and w is the operation
type of their run-time types.

Any numeric value type T supports the following methods.

* Comparison methods for equals (==), not-equals (!=), less-than (<), greater-
than (>), less-than-or-equals (<=), greater-than-or-equals (>=), which each ex-
ist in 7 overloaded alternatives. Each alternative takes a parameter of some
numeric value type. Its result type is type Boolean. The operation is evalu-
ated by converting the receiver and its argument to their operation type and
performing the given comparison operation of that type.

e Arithmetic methods addition (+), subtraction (-), multiplication (x), division
(/), and remainder (%), which each exist in 7 overloaded alternatives. Each
alternative takes a parameter of some numeric value type U. Its result type is



124

The Scala Standard Library

the operation type of T and U. The operation is evaluated by converting the
receiver and its argument to their operation type and performing the given
arithmetic operation of that type.

Parameterless arithmethic methods identity (+) and negation (-), with result
type T. The first of these returns the receiver unchanged, whereas the second
returns its negation.

Conversion methods toByte, toShort, toChar, tolInt, toLong, toFloat,
toDouble which convert the receiver object to the target type, using the rules
of Java’s numeric type cast operation. The conversion might truncate the nu-
meric value (as when going from Long to Int or from Int to Byte) or it might
lose precision (as when going from Double to Float or when converting be-
tween Long and Float).

Integer numeric value types support in addition the following operations:

e Bit manipulation methods bitewise-and (&), bitwise-or |, and bitwise-

exclsuive-or (), which each exist in 5 overloaded alternatives. Each alterna-
tive takes a parameter of some integer numeric value type. Its result type is
the operation type of T and U. The operation is evaluated by converting the
receiver and its argument to their operation type and performing the given
bitwise operation of that type.

* A parameterless bit-negation method (~). Its result type is the reciver type

T or Int, whichevery is larger. The operation is evaluated by converting the
receiver to the result type and negating every bit in its value.

Bit-shift methods left-shift (<<), arithmetic right-shift (>>), and unsigned
right-shift (>>>). Each of these methods of has two overloaded alternatives,
which take a parameter n of type Int, respectively Long. The result type of
the operation is the reciver type T, or Int, whichever is larger. The operation
is evaluated by converting the receiver to the result type and performing the
specified shift by 7 bits.

Numeric value types also implement operations equals, hashCode, and toString

from class Any.

The equals method tests whether the argument is a numeric value type. If this is
true, it will perform the == operation which is appropriate for that type. That is, the
equals method of a numeric value type can be thought of being defined as follows:

def equals(other: Any): Boolean = other match {
case that: Byte => this == that
case that: Short => this == that
case that: Char => this == that
case that: Int => this == that
case that: Long => this == that
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case that: Float => this == that
case that: Double => this == that
case _ => false

}

The hashCode method returns an integer hashcode that maps equal numeric val-
ues to equal results. It is guaranteed to be the identity for for type Int and for all
subrange types.

The toString method displays its receiver as an integer or floating point number.

Example 12.2.1 As an example, here is the signature of the numeric value type Int:

package scala

abstract sealed class Int extends AnyVal {
def == (that: Double): Boolean // double equality
def == (that: Float): Boolean // float equality
def == (that: Long): Boolean // long equality
def == (that: Int): Boolean // int equality
def == (that: Short): Boolean // int equality
def == (that: Byte): Boolean // int equality
def == (that: Char): Boolean // int equality

/% analogous for !=, <, >, <=, >= %/

def + (that: Double): Double // double addition
def + (that: Float): Double // float addition
def + (that: Long): Long // long addition
def + (that: Int): Int // int addition
def + (that: Short): Int // int addition
def + (that: Byte): Int // int addition
def + (that: Char): Int // int addition

/% analogous for -, *, /, % */

def & (that: Long): Long // long bitwise and
def & (that: Int): Int // int bitwise and
def & (that: Short): Int // int bitwise and
def & (that: Byte): Int // int bitwise and
def & (that: Char): Int // int bitwise and

/% analogous for [, * =/

def << (cnt: Int): Int // int left shift
def << (cnt: Long): Int // long left shift
/* analogous for >>, >>> */

def unary_+ : Int // int identity
def unary_- : Int // int negation
def unary_~ : Int // int bitwise negation
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def toByte: Byte // convert to Byte
def toShort: Short // convert to Short
def toChar: Char // convert to Char
def toInt: Int // convert to Int
def tolong: Long // convert to Long
def toFloat: Float // convert to Float
def toDouble: Double // convert to Double

12.2.2 Class Boolean

Class Boolean has only two values: true and false. It implements operations as
given in the following signature:

package scala

abstract sealed class Boolean extends AnyVal {
def && (p: => Boolean): Boolean // boolean and
def || (p: => Boolean): Boolean // boolean or

def & (x: Boolean): Boolean // boolean strict and
def | (x: Boolean): Boolean // boolean strict or
def == (x: Boolean): Boolean // boolean equality
def != (x: Boolean): Boolean // boolean inequality
def unary_!: Boolean // boolean negation

The class also implements operations equals, hashCode, and toString from class
Any.

The equals method returns true if the argument is the same boolean value as the re-
ceiver, false otherwise. The hashCode method returns 1 when invoked on true, and
0 when invokend on false. The toString method returns the receiver converted to
a string, i.e. either "true" or "false".

12.2.3 Class Unit

Class Unit has only one value: (). It implements only the three methods equals,
hashCode, and toString from class Any.

The equals method returns true if the argument is the unit value {3}, false oth-
erwise. The hashCode method returns a fixed, implementation-specific hash-code,
The toString method returns "()".
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12.3 Standard Reference Classes

This section presents some standard Scala reference classes which are treated in a
special way in Scala compiler — either Scala provides syntactic sugar for them, or
the Scala compiler generates special code for their operations. Other classes in the
standard Scala library are documented in the Scala library documentation by HTML

pages.

12.3.1 Class String

Scala’s String class is usually derived from the standard String class of the underly-
ing host system (and may be identified with it). For Scala clients the class is taken
to support in each case a method

def + (that: Any): String

which concatenates its left operand with the textual representation of its right
operand.

12.3.2 The Tuple classes

Scala defines tuple classes Tuplen for n =2, ..., 9. These are defined as follows.

package scala
case class Tuplen[+a_1l, ..., +a_n](_1: a_1, ..., _n: a_n) {

def toString = "(" ++ _1 ++ "," ++ ... ++ ", +n ++ )"

}

The implicitly imported Predef object (§12.5) defines the names Pair as an alias of
Tuple2 and Triple as an alias for Tuple3.

12.3.3 The Function Classes

Scala defines function classes Functionn for n =1, ...,9. These are defined as fol-
lows.

package scala

trait Functionn[-a_1, ..., -a_n, +b] {
def apply(x_1: a_1l, ..., x_n: a_n): b
def toString = "<function>"

}

A subclass of Functionl represents partial functions, which are undefined on some
points in their domain. In addition to the apply method of functions, partial func-
tions also have a isDefined method, which tells whether the function is defined at
the given argument:
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class PartialFunction[-a,+b] extends Functionl[a, b] {
def isDefinedAt(x: a): Boolean
}

The implicitly imported Predef object (§12.5) defines the name Function as an alias
of Functionl.

12.3.4 Class Array

The class of generic arrays is given as follows.

final class Array[A](len: Int) extends Seq[A] {
def length: Int = len
def apply(i: Int): A = ...
def update(i: Int, x: A): Unit = ...
def elements: Iterator[A] = ...
def subArray(from: Int, end: Int): Array[a] = ...
def filter(p: a => Boolean): Array[a] = ...
def map[b](f: a => b): Array[b] = ...
def flatMap[b](f: a => Array[b]): Array[b] = ...
}

If T is not a type parameter or abstract type, the type Array[T] is represented as the
native array type [ 17 in the underlying host system. In that case length returns the
length of the array, apply means subscribting, and update means element update.
Because of the syntactic sugar for apply and update operations (§6.24, we have the
following correspondences between Scala and Java/C# code for operations on an
array xs:

Scala Java/C#
xs.length xs.length
xs(1) xs[i]
xs(i) = e xs[i] = e

Arrays also implement the sequence trait scala.Seq by defining an elements
method which returns all elements of the array in an Iterator.

Because of the tension between parametrized types in Scala and the ad-hoc imple-
mentation of arrays in the host-languages, some subtle points need to be taken into
account when dealing with arrays. These are explained in the following.

First, unlike arrays in Java or C#, arrays in Scala are not co-variant; Thatis, S <: T
does not imply Array[S] <: Array[T] in Scala. However, it is possible to cast an
array of S to an array of T if such a cast is permitted in the host enironment.

For instance Array[String] does not conform to Array[Object], even though
String conforms to Object. However, it is possible to cast an expression of type
Array[String] to Array[Object], and this cast will succeed withiout raising a
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ClassCastException. Example:

val xs = new Array[String](2)
// val ys: Array[Object] = xs // w»%%% error: incompatible types
val ys: Array[Object] = xs.asInstanceOf[Array[Object]] // OK

Second, for polymorphic arrays, that have a type parameter or abstract type T as
their element type, a representation different from [ 1T might be used. However, it is
guaranteed that isInstanceOf and asInstanceOf still work as if the array used the
standard representation of monomorphic arrays:

val ss = new Array[String](2)

def f[T](xs: Array[T]): Array[String] =
if (xs.isInstanceOf[Array[String]]) xs.asInstanceOf[Array[String])
else throw new Error(''not an instance")

f(ss) // returns ss

The representatuon chosen for polymorphic arrays also guarantees that polymor-
phic array creations work as expected. An example is the following implementation
of method mkArray, which creates an array of an arbitrary type T, given a sequence
of T’s which defines its elements.

def mkArray[T](elems: Seq[T]): Array[T] = {
val result = new Array[T](elems.length)
var i = 0
for (elem <- elems) {
result(i) = elem
i=1+1

Note that under Java’s erasure model of arrays the method above would not work as
expected —in fact it would always return an array of Object.

Third, in a Java environment there is a method System.arraycopy which takes two
objects as parameters together with start indices and a length argument, and copies
elements from one object to the other, provided the objects are arrays of compatible
element types. System.arraycopy will not work for Scala’s polymorphic arrays be-
cause of their different representation. One should instead use method Array. copy,
defined as follows:

package scala
object Array {
def copy(src: AnyRef, srcPos: Int,
dest: AnyRef, destPos: Int,
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length: Int): Unit = ...

Example 12.3.1 The following method duplicates a given argument array and re-
turns a pair consisting of the original and the duplicate:

def duplicate[T](xs: Array[T]) = {
val ys = new Array[T](xs.length)
Array.copy(xs, 0, ys, 0, xs.length)
(xs, ys)

3

12.4 Class Node

package scala.xml
trait Node {

/*% the label of this node =/
def label: String

/#*#% attribute axis */
def attribute: Map[String, String]

/#*+ child axis (all children of this node) =*/
def child: Seq[Node]

/## descendant axis (all descendants of this node) =/
def descendant: Seq[Node] = child.toList.flatMap {
X => X::X.descendant.asInstanceOf[List[Node]]

/#*# descendant axis (all descendants of this node) +*/
def descendant_or_self: Seq[Node] = this::child.tolList.flatMap {
X => X::X.descendant.asInstanceOf[List[Node]]

override def equals(x: Any): boolean = x match {
case that:Node =>
that.label == this.label &&
that.attribute.sameElements(this.attribute) &&
that.child.sameElements(this.child)
case _ => false
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/#% XPath style projection function. Returns all children of this node
% that are labeled with ’that. The document order 1is preserved.
%/

def \(that: Symbol): NodeSeq = {
new NodeSeq({
that.name match {
case "_" => child.tolist
case _ =>
var res:List[Node] = Nil
for (x <- child.elements if x.label == that.name) {
res = X::res
3
res.reverse
}
D)
¥

/#*+ XPath style projection function. Returns all nodes labeled with the
# name ’that from the descendant_or_self axis. Document order is preserved.
%/
def \\(that: Symbol): NodeSeq = {
new NodeSeq(
that.name match {

case "_" => this.descendant_or_self
case _ => this.descendant_or_self.asInstanceOf[List[Node]].
filter(x => x.label == that.name)

D)

/*# hashcode for this XML node =/
override def hashCode() =
Utility.hashCode(label, attribute.toList.hashCode(), child)

/*% string representation of this node */
override def toString() = Utility.toXML(this)
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12.5 The Predef Object

The Predef object defines standard functions and type aliases for Scala programs.
It is always implicitly imported, so that all its defined members are available with-
out qualification. Its definition for the JVM environment conforms to the following
signature:

package scala
object Predef {

// classOf —————-----"—--"—-"-""">"--"—""t oo : it .. £!} 1 i

/#** Return the runtime representation of a class type. =/
def classOf[T]: Class = null // this is a dummy, classOf is handled by compiler.

// Standard type aliases ——————————————————

type byte = scala.Byte

type short = scala.Short
type char = scala.Char

type int = scala.Int

type long = scala.long

type float = scala.Float
type double = scala.Double
type boolean = scala.Boolean
type unit = scala.Unit

type String = java.lang.String
type NullPointerException = java.lang.NullPointerException

type Throwable = java.lang.Throwable

type Pair[+p, +q] = Tuple2[p, q]
type Triple[+a, +b, +c] = Tuple3[a, b, c]

type Function[-a,+b] = Functionl[a,b]
// Factory methods ——————————————— =

def Pair[a, b](x: a, y: b) = Tuple2(x, V)
def Triple[a, b, c](x: a, v: b, z: ¢) = Tuple3(x, vy, z)

def Tuple[al, a2](x1: al, x2: a2) = Tuple2(x1l, x2)
def Tuple[al, a2, a3](x1l: al, x2: a2, x3: a3) = Tuple3(x1l, x2, x3)

// analogous for tuples of length 4-9:



12.5 The Predef Object 133

def Array[A <: AnyRef](xs: Ax): Array[A] = {
val array = new Array[A](xs.length);
var i = 0
for (x <- xs.elements) { array(i) = x; i =1 + 1; }
array

}

// analogous to above:
def Array(xs: boolean=*): Array[boolean]

def Array(xs: bytex) : Array[byte] =
def Array(xs: shortx) : Array[short] =
def Array(xs: charx) : Array[char] =
def Array(xs: int=x) : Array[int] =
def Array(xs: longx) : Array[long] =

def Array(xs: floatx) : Array[float]
def Array(xs: doublex) : Array[double]
def Array(xs: unitx) : Array[unit]

// The *‘catch-all’’ view —————————-———————-——————————————————————
implicit def identity[a](x: a): a = x
// Views into class Ordered

implicit def int2ordered(x: int): Ordered[int] = new Ordered[int] with Proxy
def self: Any =
def compare [b >: int <% Ordered[b]](y: b): int = y match {
case yl: int =>
if (x <yl -1
else if (x > yl) 1
else 0
case _ => -(y compare Xx)
}
}

// The implementations of following methods are analogous to the last one:

implicit def char2ordered(x: char): Ordered[char]
implicit def long2ordered(x: long): Ordered[long] =

implicit def float2ordered(x: float): Ordered[float]
implicit def double2ordered(x: double): Ordered[double] =
implicit def boolean2ordered(x: boolean): Ordered[boolean] =
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implicit def seq2ordered[A <% Ordered[A]](xs: Array[A]): Ordered[Seq[A]] =
new Ordered[Seq[A]] with Proxy {
def compare[B >: Seq[A] <% Ordered[B]](that: B): Int = that match {
case that: Seq[A] =>
var res = 0
val these = this.elements
val those = that.elements
while (res == 0 && these.hasNext)
res = if (!those.hasNext) 1 else these.next compare those.next
case _ => - (that compare xs)

implicit def string2ordered(x: String): Ordered[String] =
new Ordered[String] with Proxy {
def self: Any = x
def compare [b >: String <% Ordered[b]](y: b): int = y match {
case yl: String => X compare vyl
case _ => —(y compare Xx)
}
}

implicit def tuple2ordered[al <% Ordered[al], a2 <% Ordered[a2]]
(x: Tuple2[al, a2]): Ordered[Tuple2[al, a2]] =
new Ordered[Tuple2[al, a2]] with Proxy {
def self: Any = x
def compare[T >: Tuple2[al, a2] <% Ordered[T]](y: T): Int = y match {
case y: Tuple2[al, a2] =>
val res = x._1 compare y._1
if (res == 0) x._2 compare y._2
else res
case _ => —(y compare x)
}
}

// Analogous for Tuple3 to Tuple9
// Views into class Seq

implicit def string2seq(str: String): Seq[Char] = new Seq[Char] {
def length = str.length()
def elements = Iterator.fromString(str)
def apply(n: Int) = str.charAt(n)
override def hashCode(): Int = str.hashCode()
override def equals(y: Any): Boolean = (str == y)
override protected def stringPrefix: String = "String"
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// Views from primitive types to Java’s boxed types

implicit
implicit
implicit
implicit
implicit
implicit
implicit
implicit

def byte2Byte(x: byte) = new java.lang.Byte(x)

def short2Short(x: short) = new java.lang.Short(x)

def char2Character(x: char) = new java.lang.Character(x)
def int2Integer(x: int) = new java.lang.Integer(x)

def long2Long(x: long) = new java.lang.Long(x)

def float2Float(x: float) = new java.lang.Float(x)

def double2Double(x: double) = new java.lang.Double(x)
def boolean2Boolean(x: boolean) = new java.lang.Boolean(x)

// Numeric conversion views

implicit
implicit
implicit
implicit
implicit

implicit
implicit
implicit
implicit

implicit
implicit
implicit
implicit
implicit
implicit

implicit

implicit
implicit

implicit

def byte2short(x: byte): short = x.toShort
def byte2int(x: byte): int = x.tolInt

def byte2long(x: byte): long = x.toLong

def byte2float(x: byte): float = x.toFloat
def byte2double(x: byte): double = x.toDouble

def short2int(x: short): int = x.toInt

def short2long(x: short): long = x.tolLong

def short2float(x: short): float = x.toFloat
def short2double(x: short): double = x.toDouble

def char2int(x: char): int = x.tolnt

def char2long(x: char): long = x.toLong

def char2float(x: char): float = x.toFloat
def char2double(x: char): double = x.toDouble

def int2long(x: int): long = x.tolLong
def int2float(x: int): float = x.toFloat
def int2double(x: int): double = x.toDouble

def long2float(x: long): float = x.toFloat
def long2double(x: long): double = x.toDouble

def float2double(x: float): double = x.toDouble
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// Errors and asserts ———-—————————————————— e
def error(message: String): Nothing = throw new Error(message)

def exit(): Nothing = exit(0)

def exit(status: Int): Nothing = {
java.lang.System.exit(status)
throw new Throwable()

}

def assert(assertion: Boolean): Unit =
if (lassertion)
throw new Error("assertion failed")

def assert(assertion: Boolean, message: Any): Unit =
if (l!assertion)
throw new Error("assertion failed:

+ message)

def assume(assumption: Boolean): Unit =
if (l!assumption)
throw new Error("assumption failed")

def assume(assumption: Boolean, message: Any): Unit =
if (lassumption)
throw new Error("assumption failed:

+ message)
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Chapter A
Scala Syntax Summary

The lexical syntax of Scala is given by the following grammar in EBNF form.

upper = ‘A | ... | ‘2| ‘$ | ‘_’ and Unicode Lu
lower = ‘a’ | ... | ‘2z’ and Unicode Ll
letter = upper | lower and Unicode categories Lo, Lt, NI
digit = ‘0" | ... | 9
opchar = ‘“all other characters in\u0020-007F and Unicode categories
Sm, So except parentheses ([]) and periods”
op = opchar {opchar}
varid = lower idrest
plainid ::= upper idrest
|  varid
| op
id ::= plainid
| “\‘’ stringLit “\*‘’
idrest i:= {letter | digit} [‘_’ op]
integerLiteral = (decimalNumeral | hexNumeral | octalNumeral) [’L’ | ’1’]
decimalNumeral = ‘0’ | nonZeroDigit {digit}
hexNumeral = ‘0’ ‘x’ hexDigit {hexDigit}
octalNumeral = ‘0’ octalDigit {octalDigit}
digit = ‘0’ | nonZeroDigit
nonZeroDigit = ‘17 | ... ] ‘9
octalDigit = ‘0| ... | ‘7
floatingPointLiteral
1:= digit {digit} ‘.’ {digit} [exponentPart] [floatType]
| “.” digit {digit} [exponentPart] [floatTypel]
| digit {digit} exponentPart [floatType]
| digit {digit} [exponentPart] floatType
exponentPart = (CE | ’e’) [’+" | ’-’] digit {digit}

floatType

IF! | !f! | 1D1 | )dy
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booleanlLiteral = true | false
characterLiteral ::= ‘\’’ printableChar ‘\’’
| “\’’ charEscapeSeq ‘\’’
stringliteral = ‘"’ {stringElement} ‘"’
| [BIRIRI] multiLineChars crrrny
stringElement = printableCharNoDoubleQuote
| charEscapeSeq
multilineChars = {[’™’] [’"’] charNoDoubleQuote}
symbolLiteral ::= 77 plainid
comment 1:= ‘' /+’ ‘any sequence of characters” ‘+/’
| ‘//’ ‘any sequence of characters up to end of line”
nl = ‘“new line character”
semi i= 37 | nl {nl}

The context-free syntax of Scala is given by the following EBNF grammar.

Literal = integerLiteral

| floatingPointLiteral

| booleanLiteral

| characterlLiteral

| stringliteral

| symbolLiteral

| null
Qualld ii= did {‘.’ id}
ids = id {*‘,’ id}
Path = Stableld

| [id “.’] this
Stableld = id

| Path ‘.’ id

| [id ’.’] super [ClassQualifier] ‘.’ id
ClassQualifier = ‘[’ dd ‘1’
Type = InfixType [‘=>’ Type]

| “C [*=’ Typel] ‘)’ ‘=>’ Type
InfixType = CompoundType {id [nl] CompoundType}
CompoundType = AnnotType {with AnnotType} [Refinement]
AnnotType = {Annotation} SimpleType
SimpleType SimpleType TypeArgs

SimpleType ‘#’ id
Stableld
Path ‘.’ type
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TypeArgs
Types
Refinement
RefineStat

TypePat

CompoundTypePat

AnnotTypePat

SimpleTypePat
SimpleTypePatl

TypePatArgs
ArgTypePats
ArgTypePat

Ascription

Expr

Exprl

PostfixExpr
InfixExpr

PrefixExpr
SimpleExpr

SimpleExprl

‘(" Types [“,’] ’)’

‘[’ Types ‘]’

Type {‘,’ Type}

[n1] ‘{’ RefineStat {semi RefineStat} ‘}’
Dcl

type TypeDef

CompoundTypePat {id [nl] CompoundTypePat}
AnnotTypePat {with AnnotTypePat}
{Annotation} SimpleTypePat
SimpleTypePatl [TypePatArgs]
SimpleTypePatl ‘#’ id

Stableld

Path ‘.’ type

‘(’ ArgTypePats [‘,’] )’

‘[’ ArgTypePats ']’
ArgTypePat {‘,’ ArgTypePat}
varid

Type
“:’ CompoundType
:’ Annotation {Annotation}

[ R B |

(Bindings | id) ‘=>" Expr

Exprl

if ‘(C’ Expr ‘)’ {nl} Expr [[semi] else Expr]
while ‘(’ Expr ‘)’ {nl} Expr

try ‘{’ Block ‘}’ [catch ‘{’ CaseClauses ‘}’]
[finally Expr]

do Expr [semi] while ‘(’ Expr ’)’

for (‘(C’ Enumerators ‘)’ | ‘{’ Enumerators ‘}’)
{nl} [yield] Expr

throw Expr
return [Expr]
[SimpleExpr °
SimpleExprl ArgumentExprs
PostfixExpr Ascription
PostfixExpr match ‘{’ CaseClauses ‘}’
InfixExpr [id [nl]]

PrefixExpr

InfixExpr id [nl] InfixExpr

=" | “+7 | “~7 | “1" | ‘&"] SimpleExpr
new ClassTemplate

BlockExpr

SimpleExprl [‘_’"]

Literal

.71 id ‘=’ Expr
‘=’ Expr
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Exprs
ArgumentExprs

BlockExpr

Block
BlockStat

Resul tExpr

Enumerators
Enumerator
Generator
CaseClauses
CaseClause
Guard
Pattern
Patternl
Pattern2

Pattern3

SimplePattern

Patterns

Path

‘¢’ [Exprs [,’]1]1 )’
SimpleExpr ‘.’ id
SimpleExpr TypeArgs
SimpleExprl ArgumentExprs
XmlExpr

Expr {‘,’ Expr}

‘C’ [Exprs [“,’11 )’
[n1] BlockExpr

“{’ CaseClauses ‘}’

‘{” Block ‘}’

{BlockStat semi} [ResultExpr]
Import

[implicit] Def
{LocalModifier} TmplDef
Exprl

Exprl

(Bindings | id ‘:’ CompoundType) ‘=>’ Block

Generator {semi Enumerator}
Generator

Guard

val Patternl ‘=’ Expr
Patternl ‘<-’ Expr [Guard]

CaseClause { CaseClause }
case Pattern [Guard] ‘=>’ Block
‘if’ PostfixExpr

Patternl { ‘|’ Patternl }

varid ‘:’ TypePat

‘.7 ‘7 TypePat

Pattern2

varid [ ‘@’ Pattern3]

Pattern3

SimplePattern

SimplePattern { id [nl] SimplePattern }

varid

Literal

Stableld

StableId ‘(’ [Patterns [‘,’]] )’
StableId ‘(’ [Patterns ‘,’] ‘_" ‘%’ ‘)’
‘(’ [Patterns [‘,’]1] )’

XmlPattern

Pattern [‘,’ Patterns]

(I B
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TypeParamClause

FunTypeParamClause: :

VariantTypeParam
TypeParam
ParamClauses
ParamClause
Params

Param

ParamType

ClassParamClauses ::

ClassParamClause
ClassParams
ClassParam

Bindings
Binding

Modifier

LocalModifier

AccessModifier
AccessQualifier

Annotation
AnnotationExpr
NameValuePair

TemplateBody

TemplateStat

Import
ImportExpr
ImportSelectors
ImportSelector

Dcl

‘[’ VariantTypeParam {‘,’ VariantTypeParam} ‘]’
‘[’ TypeParam {‘,’ TypeParam} ‘]’

[+’ | “=’] TypeParam

id [>: Type] [<: Type] [<% Type]

{ParamClause} [[nl] ‘(’ implicit Params ‘)’]

[n1] ‘¢’ [Params] ’)’}

Param {‘,’ Param}

{Annotation} id [‘:’ ParamType]
Type

‘=>’ Type

Type ‘=’

{ClassParamClause}

[[n1] “C’ dimplicit ClassParams ‘)’]
[n1] “(C’ [ClassParams] ’)’
ClassParam {‘’ ClassParam}
{Annotation} [{Modifier} (‘val’ |
id [“:’ ParamTypel]

“(’ Binding {‘,’ Binding ‘)’

id [‘:’ Typel

‘var’)]

LocalModifier

AcessModifier

override

abstract

final

sealed

implicit

(private | protected) [AccessQualifier]
‘[’ (dd | this) ‘]’

‘@’ AnnotationExpr [nl]
Constr [[nl] “{’ {NameValuePair} ‘}’]
val id ‘=’ PrefixExpr

[nl] “{’ [id [*:’ Type]l ‘=>’]
TemplateStat {semi TemplateStat} ‘}’
Import

{Annotation} {Modifier} Def
{Annotation} {Modifier} Dcl

Expr

import ImportExpr {‘,’ ImportExpr}
StableId ‘.’ (id | ‘_’ | ImportSelectors)
‘{’ {ImportSelector ‘,’} (ImportSelector |
id [‘=7 dd | ‘=" ‘_’]

val ValDcl

i_!) 5}7
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| wvar VarDcl
| def FunDcl
| type {nl} TypeDcl

ValDcl 1= ids ‘:’ Type
VarDcl r:= ids ‘:’ Type
FunDcl ::= FunSig [‘:’ Type]
FunSig ::= 1id [FunTypeParamClause] ParamClauses
TypeDcl = did [“>:’ Type] [‘<:’ Type]
Def ::= val PatDef

| wvar VarDef

| def FunDef

|  type {nl} TypeDef

| TmplDef
PatDef ::= Pattern2 {‘,’ Pattern2} [‘:’ Type] ‘=’ Expr
VarDef ::= ids [‘:’ Type] ‘=’ Expr

| dids ‘:’ Type ‘=" ‘_’
FunDef ::= FunSig ‘:’ Type ‘=’ Expr

| FunSig [nl] ‘{’ Block ‘}’

| this ParamClause ParamClauses

(‘=" ConstrExpr | [nl] ConstrBlock)

TypeDef = 1id [TypeParamClause] ‘=’ Type
TmplDef = [case] class ClassDef

| [case] object ObjectDef

|  trait TraitDef
ClassDef = id [TypeParamClause] {Annotation} [AccessModifier]

ClassParamClauses [requires AnnotType] ClassTemplateOpt

TraitDef = id [TypeParamClause] [requires AnnotType] TraitTemplateOpt
ObjectDef = 1id ClassTemplateOpt
ClassTemplateOpt = extends ClassTemplate | [[extends] TemplateBody]
TraitTemplateOpt = extends TraitTemplate | [[extends] TemplateBody]
ClassTemplate = [EarlyDefs] ClassParents [TemplateBody]
TraitTemplate = [EarlyDefs] TraitParents [TemplateBody]
ClassParents = Constr {with AnnotType}
TraitParents = AnnotType {with AnnotType}
Constr = AnnotType {ArgumentExprs}
EarlyDefs = “{’ [EarlyDef {semi EarlyDef}] ‘}’ with
EarlyDef = Annotations Modifiers PatDef
ConstrExpr = SelfInvocation

| ConstrBlock
ConstrBlock = ‘{’ SelfInvocation {semi BlockStat} ‘}’
SelfInvocation = this ArgumentExprs {ArgumentExprs}
TopStatSeq = TopStat {semi TopStat}
TopStat = {Annotation} {Modifier} TmplDef

| Import
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Packaging

Packaging package Qualld [nl] ‘{’ TopStatSeq ‘}’

CompilationUnit [package QualIld semi] TopStatSeq






Chapter B
Change Log

Changes in Version 2.5.0

Type constructor polymorphism!
Type parameters (§4.4) and abstract type members (§4.3) can now also abstract over
type constructors (§3.3.3).

This allows a more precise Iterable interface:

trait Iterable[+t] {
type MyType[+t] <: Iterable[t] // MyType is a type constructor

def filter(p: t => Boolean): MyType[t] = ...
def map[s](f: t => s): MyType[s] = ...
}

abstract class List[+t] extends Iterable[t] {
type MyType[+t] = List[t]
}

This definition of Iterable makes explicit that mapping a function over a certain
structure (e.g., a List) will yield the same structure (containing different elements).
Early object initialization

Itis now possible to initialize some fields of an object before any parent constructors
are called (§5.1.6). This is particularly useful for traits, which do not have normal
constructor parameters. Example:

trait Greeting {

'Implemented by Adriaan Moors
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val name: String
val msg = "How are you, "+name
}
class C extends {
val name = "Bob"
} with Greeting {
println(msg)
}

In the code above, the field name is initialized before the constructor of Greeting
is called. Therefore, field msg in class Greeting is properly initialized to
"How are you, Bob".

For-comprehensions, revised

The syntax of for-comprehensions has changed (§6.18). In the new syntax, gener-
ators do not start with a val anymore, but filters start with an if (and are called
guards). A semicolon in front of a guard is optional. For example:

for (val x <- List(1, 2, 3); x % 2 == 0) println(x)

is now written

for (x <- List(1, 2, 3) if x % 2 == 0) println(x)

The old syntax is still available but will be deprecated in the future.

Implicit anonymous functions

It is now possible to define anonymous functions using underscores in parameter
position (§Example 6.22.1). For instance, the expressions in the left column are each
function values which expand to the anonymous functions on their right.

_+1 X =>Xx+1

_ % _ (x1, x2) => x1 * x2

(_: int) = 2 (x: int) => (x: int) = 2
if (L) x elsey z => if (z) x else y
_.map(f) x => x.map(f)

_.map(_ + 1) X => x.map(y => vy + 1)

As a special case (§6.6), a partially unapplied method is now designated m _ instead
of the previous notation &n.

The new notation will displace the special syntax forms .m() for abstracting over
method receivers and &m for treating an unapplied method as a function value. For
the time being, the old syntax forms are still available, but they will be deprecated
in the future.
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Pattern matching anonymous functions, refined

It is now possible to use case clauses to define a function value directly for functions
of arities greater than one (§8.5). Previously, only unary functions could be defined
that way. Example:

def scalarProduct(xs: Array[Double], ys: Array[Double]) =
(0.0 /: (xs zip vys)) {
case (a, (b, ¢)) = a +b = ¢

}

Changes in Version 2.4.0

Object-local private and protected

The private and protected modifiers now accept a [this] qualifier (§5.2). A defini-
tion M which is labelled private[this] is private, and in addition can be accessed
only from within the current object. That is, the only legal prefixes for M are this
or C.this. Analogously, a definition M which is labelled protected[this] is pro-
tected, and in addition can be accessed only from within the current object.

Tuples, revised
The syntax for tuples has been changed from {...} to (...) (§6.8). For any sequence of
types 11, ..., Ty,
(T1,..., T,) isashorthand for Tuplen[Ty,..., T,].
Analogously, for any sequence of expressions or patterns xj, ..., Xp,

(x1,..., X,) isashorthand for Tuplen(xi,..., X;).

Access modifiers for primary constructors

The primary constructor of a class can now be marked private or protected (§5.3).
If such an access modifier is given, it comes between the name of the class and its
value parameters. Example:

class C[T] private (x: T) { ... }

Annotations

The support for attributes has been extended and its syntax changed (§11). At-
tributes are now called annotations. The syntax has been changed to follow Java’s
conventions, e.g. @attribute instead of [attribute]. The old syntax is still avail-
able but will be deprecated in the future.
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Annotations are now serialized so that they can be read by compile-time or run-
time tools. Class scala.Annotation has two sub-traits which are used to indicate
how annotations are retained. Instances of an annotation class inheriting from trait
scala.ClassfileAnnotation will be stored in the generated class files. Instances
of an annotation class inheriting from trait scala.StaticAnnotation will be visible
to the Scala type-checker in every compilation unit where the annotated symbol is
accessed.

Decidable subtyping

The implementation of subtyping has been changed to prevent infinite recursions.
Termination of subtyping is now ensured by a new restriction of class graphs to be
finitary (§5.1.5).

Case classes cannot be abstract

It is now explicitly ruled out that case classes can be abstract (§5.2). The specifica-
tion was silent on this point before, but did not explain how abstract case classes
were treated. The Scala compiler allowed the idiom.

New syntax for self aliases and self types

It is now possible to give an explicit alias name and/or type for the self reference
this (§5.1). For instance, in

class C { self: D =

the name self is introduced as an alias for this within C and the self type (§5.3) of C
is assumed to be D. This construct is introduced now in order to replace eventually
both the qualified this construct C. this and the requires clause in Scala.

Assignment Operators

It is now possible to combine operators with assignments (§6.11.4). Example:

var x: int = 0
X +=1
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Changes in Version 2.3.2 (23-Jan-2007)

Extractors

It is now possible to define patterns independently of case classes, using unapply
methods in extractor objects (§8.1.7). Here is an example:

object Twice {
def apply(x:Int): int = x*2
def unapply(z:Int): Option[int] = if (z%2==0) Some(z/2) else None
}
val x = Twice(21)
x match { case Twice(n) => Console.println(n) } // prints 21

In the example, Twice is an extractor object with two methods:

¢ The apply method is used to build even numbers.

* The unapply method is used to decompose an even number; it is in a sense
the reverse of apply. unapply methods return option types: Some(...) for a
match that suceeds, None for a match that fails. Pattern variables are returned
as the elements of Some. If there are several variables, they are grouped in a
tuple.

In the second-to-last line, Twice’s apply method is used to construct a number x.
In the last line, x is tested against the pattern Twice(n). This pattern succeeds for
even numbers and assigns to the variable n one half of the number that was tested.
The pattern match makes use of the unapply method of object Twice. More details
on extractors can be found in the paper “Matching Objects with Patterns” by Emir,
Odersky and Williams.

Tuples
A new lightweight syntax for tuples has been introduced (§6.8). For any sequence of
types 11, ..., Ty,
{T1,..., Ty} isashorthand for Tuplen[Ti,..., T,].
Analogously, for any sequence of expressions or patterns xi, ..., Xy,

{x1,..., x,} isashorthand for Tuplen(x,..., x,).

Infix operators of greater arities

It is now possible to use methods which have more than one parameter as infix
operators (§6.11). In this case, all method arguments are written as a normal pa-
rameter list in parentheses. Example:
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class C {
def +(x: int, y: String) = ...
}

val ¢ = new C
c + (1, "abc")

Deprecated attribute

A new standard attribute deprecated is available (§11). If a member definition is
marked with this attribute, any reference to the member will cause a “deprecated”
warning message to be emitted.

Changes in Version 2.3.0 (23-Nov-2006)

Procedures

A simplified syntax for functions returning unit has been introduced (§4.6.3). Scala
now allows the following shorthands:

def f(params) for def f(params): unit
def f(params) { ... } for def f(params): unit = { ... }

Type Patterns

The syntax of types in patterns has been refined (§8.2). Scala now distinguishes be-
tween type variables (starting with a lower case letter) and types as type arguments
in patterns. Type variables are bound in the pattern. Other type arguments are,
as in previous versions, erased. The Scala compiler will now issue an “unchecked”
warning at places where type erasure might compromise type-safety.

Standard Types

The recommended names for the two bottom classes in Scala’s type hierarchy have
changed as follows:

All ==> Nothing
AllRef == Null

The old names are still available as type aliases.
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Changes in Version 2.1.8 (23-Aug-2006)

Visibility Qualifier for protected

Protected members can now have a visibility qualifier (§5.2), e.g.
protected[<qualifier>]. In particular, one can now simulate package protected
access as in Java writing

protected[P] def X ...

where P would name the package containing X.

Relaxation of Private Acess

Private members of a class can now be referenced from the companion module of
the class and vice versa (§5.2)

Implicit Lookup

The lookup method for implicit definitions has been generalized (§7.2). When

searching for an implicit definition matching a type T, now are considered

1. all identifiers accessible without prefix, and
2. all members of companion modules of classes associated with T.
(The second clause is more general than before). Here, a class is associated with a

type T if it is referenced by some part of T, or if it is a base class of some part of T.
For instance, to find implicit members corresponding to the type

HashSet[List[Int], String]

one would now look in the companion modules (aka static parts) of HashSet, List,
Int, and String. Before, it was just the static part of HashSet.

Tightened Pattern Match

A typed pattern match with a singleton type p.type now tests whether the selector
value is reference-equal to p (§8.1). Example:

val p = List(1, 2, 3)
val q = List(1, 2)
valr = g

r match {

case _: p.type => Console.println("p")

case _: q.type => Console.println("q")
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This will match the second case and hence will print "q". Before, the singleton types
were erased to List, and therefore the first case would have matched, which is non-
sensical.

Changes in Version 2.1.7 (19-Jul-2006)

Multi-Line string literals

It is now possible to write multi-line string-literals enclosed in triple quotes (§1.3.5).
Example:

"""this is a
multi-line
string literal"""

No escape substitutions except for unicode escapes are performed in such string
literals.
Closure Syntax

The syntax of closures has been slightly restricted (§6.22). The form

x: T =E

is valid only when enclosed in braces, i.e. { x: T => E }. The following is illegal,
because it might be read as the value x typed with the type T => E:

val f = x: T = E

Legal alternatives are:

val f = { x: T=E}
val f = (x: T) => E

Changes in Version 2.1.5 (24-May-2006)

Class Literals

There is a new syntax for class literals (§6.1): For any class type C, classOf[C] des-
ignates the run-time representation of C.
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Changes in Version 2.0 (12-Mar-2006)

Scala in its second version is different in some details from the first version of the
language. There have been several additions and some old idioms are no longer
supported. This appendix summarizes the main changes.

New Keywords

The following three words are now reserved; they cannot be used as identifiers (§1.1)

implicit match requires

Newlines as Statement Separators

Newlines can now be used as statement separators in place of semicolons (§1.2)

Syntax Restrictions

There are some other situations where old constructs no longer work:

Pattern matching expressions. The match keyword now appears only as infix op-
erator between a selector expression and a number of cases, as in:

expr match {
case Some(x) => ...
case None => ...

Variants such as expr.match {...} or just match {...} are no longer sup-
ported.

“With” in extends clauses. . The idiom

class Cwith M { ... }

is no longer supported. A with connective is only allowed following an extends
clause. For instance, the line above would have to be written

class C extends AnyRef with M { ... } .

However, assuming M is a trait (see 5.3.3), it is also legal to write

class C extends M { ... }

The latter expression is treated as equivalent to
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class C extends S with M { ... }
where S is the superclass of M.
Regular Expression Patterns. The only form of regular expression pattern that is

currently supported is a sequence pattern, which might end in a sequence wildcard
_*. Example:

case List(1, 2, _*) => ... // will match all 1lists starting with \code{1,2}.

It is at current not clear whether this is a permanent restriction. We are evaluating
the possibility of re-introducing full regular expression patterns in Scala.

Selftype Annotations

The recommended syntax of selftype annotations has changed.

class C: T extends B { ... }
becomes
class C requires T extends B { ... }

That is, selftypes are now indicated by the new requires keyword. The old syntax is
still available but is considered deprecated. Conversions

For-comprehensions

For-comprehensions (§6.18) now admit value and pattern definitions. Example:

for {
val x <- List.range(1l, 100)
val y <- List.range(1l, x)
val z = x + Yy
isPrime(z)

} yield Pair(x, vy)

Note the definition val z = x + y as the third item in the for-comprehension.

Conversions

The rules for implicit conversions of methods to functions (§6.24) have been tight-
ened. Previously, a parameterized method used as a value was always implicitly
converted to a function. This could lead to unexpected results when method argu-
ments where forgotten. Consider for instance the statement below:

show(x.toString)
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where show is defined as follows:

def show(x: String) = Console.println(x) .

Most likely, the programmer forgot to supply an empty argument list () to toString.
The previous Scala version would treat this code as a partially applied method, and
expand it to:

show(() => x.toString())

As aresult, the address of a closure would be printed instead of the value of s.

Scala version 2.0 will apply a conversion from partially applied method to function
value only if the expected type of the expression is indeed a function type. For in-
stance, the conversion would not be applied in the code above because the expected
type of show’s parameter is String, not a function type.

The new convention disallows some previously legal code. Example:

def sum(f: int => double)(a: int, b: int): double =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

val sumInts = sum(x => x) // error: missing arguments

The partial application of sum in the last line of the code above will not be converted
to a function type. Instead, the compiler will produce an error message which states
that arguments for method sum are missing. The problem can be fixed by providing
an expected type for the partial application, for instance by annotating the defini-
tion of sumInts with its type:

val sumInts: (int, int) => double = sum(x => x) // OK

On the other hand, Scala version 2.0 now automatically applies methods with empty
parameter lists to () argument lists when necessary. For instance, the show expres-
sion above will now be expanded to

show(x.toString()) .

Scala version 2.0 also relaxes the rules of overriding with respect to empty parameter
lists. The revised definition of matching members (§5.1.3) makes it now possible to
override a method with an explicit, but empty parameter list () with a parameterless
method, and vice versa. For instance, the following class definition is now legal:

class C {
override def toString: String = ...

}

Previously this definition would have been rejected, because the toString method
as inherited from java.lang.Object takes an empty parameter list.
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Class Parameters

A class parameter may now be prefixed by val or var (§5.3).

Private Qualifiers

Previously, Scala had three levels of visibility: private, protected and public. There
was no way to restrict accesses to members of the current package, as in Java. Scala
2 now defines access qualifiers that let one express this level of visibility, among
others. In the definition

private[C] def f(...)

access to f is restricted to all code within the class or package C (which must contain
the definition of f) (§5.2)

Changes in the Mixin Model

The model which details mixin composition of classes has changed significantly.
The main differences are:

1. We now distinguish between fraits that are used as mixin classes and normal
classes. The syntax of traits has been generalized from version 1.0, in that
traits are now allowed to have mutable fields. However, as in version 1.0, traits
may still do not have constructor parameters.

2. Member resolution and super accesses are now both defined in terms of a
class linearization.

3. Scala’s notion of method overloading has been generalized; in particular, it is
now possible to have overloaded variants of the same method in a subclass
and in a superclass, or in several different mixins. This makes method over-
loading in Scala conceptually the same as in Java.

The new mixin model is explained in more detail in §5.

Implicit Parameters

Views in Scala 1.0 have been replaced by the more general concept of implicit pa-
rameters (§7)

Flexible Typing of Pattern Matching

The new version of Scala implements more flexible typing rules when it comes to
pattern matching over heterogeneous class hierarchies (§8.4). A heterogeneous class
hierarchy is one where subclasses inherit a common superclass with different pa-
rameter types. With the new rules in Scala version 2.0 one can perform pattern
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matches over such hierarchies with more precise typings that keep track of the infor-
mation gained by comparing the types of a selector and a matching pattern (SExam-
ple 8.4.1). This gives Scala capabilities analogous to guarded algebraic data types.
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