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Chapter 1

Introduction

Scala smoothly integrates object-oriented and functional programming. It is de-
signed to express common programming patterns in a consise, elegant, and type-
safe way. Scala introduces several innovative language constructs. For instance:

* Abstract types and mixin composition unify concepts from object and module
systems.

e Pattern matching over class hierarchies unifies functional and object-
oriented data access. It greatly simplifies the processing of XML trees.

* A flexible syntax and type system enables the construction of advanced li-
braries and new domain specific languages.

At the same time, Scala is compatible with Java. Java libraries and frameworks can
be used without glue code or additional declarations.

This document introduces Scala in an informal way, through a sequence of exam-
ples.

Chapters 2 and 3 highlight some of the features that make Scala interesting. The fol-
lowing chapters introduce the language constructs of Scala in a more thorough way,
starting with simple expressions and functions, and working up through objects and
classes, lists and streams, mutable state, pattern matching to more complete exam-
ples that show interesting programming techniques. The present informal exposi-
tion is meant to be complemented by the Scala Language Reference Manual which
specifies Scala in a more detailed and precise way.

Acknowledgment. We owe a great debt to Abelson’s and Sussman’s wonderful
book “Structure and Interpretation of Computer Programs”[ASS96]. Many of their
examples and exercises are also present here. Of course, the working language has
in each case been changed from Scheme to Scala. Furthermore, the examples make
use of Scala’s object-oriented constructs where appropriate.






Chapter 2
A First Example

As a first example, here is an implementation of Quicksort in Scala.

def sort(xs: Array[int]): unit = {
def swap(i: int, j: int): unit = {
val t = xs(i); xs(i) = xs(j); xs(j)
}
def sortl(l: int, r: int): unit = {
val pivot = xs((1 + r) / 2)
var i = 1; var j =r
while (i <= j) {
while (xs(i) < pivot) { i
while (xs(j) > pivot) { j
if (1 <=J) {
swap(i, j)
i=1+1
i=3-1
}

1]
+

1}
. K-

+ 13}

1]
[
|
=
-

}
if (1 < j) sortl(l, j)
if (j < r) sortl(i, r)
}
sortl(0, xs.length - 1)
}

The implementation looks quite similar to what one would write in Java or C. We
use the same operators and similar control structures. There are also some minor
syntactical differences. In particular:

* Definitions start with a reserved word. Function definitions start with def,
variable definitions start with var and definitions of values (i.e. read only vari-
ables) start with val.
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The declared type of a symbol is given after the symbol and a colon. The de-
clared type can often be omitted, because the compiler can infer it from the
context.

We use unit instead of void to define the result type of a procedure.

Array types are written Array[T] rather than T[ ], and array selections are writ-
ten a(i) rather than a[i].

Functions can be nested inside other functions. Nested functions can access
parameters and local variables of enclosing functions. For instance, the name
of the array a is visible in functions swap and sort1, and therefore need not be
passed as a parameter to them.

So far, Scala looks like a fairly conventional language with some syntactic peculiar-
ities. In fact it is possible to write programs in a conventional imperative or object-
oriented style. This is important because it is one of the things that makes it easy
to combine Scala components with components written in mainstream languages
such as Java, C# or Visual Basic.

However, it is also possible to write programs in a style which looks completely dif-
ferent. Here is Quicksort again, this time written in functional style.

def sort(xs: Array[int]): Array[int] =
if (xs.length <= 1) xs
else {

val pivot = xs(xs.length / 2)
Array.concat(
sort(xs filter (pivot >))
xs filter (pivot ==),
sort(xs filter (pivot <)))

The functional program captures the essence of the quicksort algorithm in a concise

way:

If the list is empty or consists of a single element, it is already sorted, so return
itimmediately.

If the list is not empty, pick an an element in the middle of it as a pivot.

Partition the lists into two sub-lists containing elements that are less than,
respectively greater than the pivot element, and a third list which contains
elements equal to pivot.

Sort the first two sub-lists by a recursive invocation of the sort function.!

The result is obtained by appending the three sub-lists together.

IThis is not quite what the imperative algorithm does; the latter partitions the array into two
sub-arrays containing elements less than or greater or equal to pivot.



Both the imperative and the functional implementation have the same asymptotic
complexity — O(N log(N)) in the average case and O(N?) in the worst case. But
where the imperative implementation operates in place by modifying the argument
array, the functional implementation returns a new sorted list and leaves the argu-
ment list unchanged. The functional implementation thus requires more transient
memory than the imperative one.

The functional implementation makes it look like Scala is a language that’s special-
ized for functional operations on lists. In fact, it is not; all of the operations used
in the example are simple library methods of a class List[t] which is part of the
standard Scala library, and which itself is implemented in Scala.

In particular, there is the method filter which takes as argument a predicate func-
tion that maps array elements to boolean values. The result of filter is an array
consisting of all the elements of the original array for which the given predicate
function is true. The filter method of an object of type Array[t] thus has the
signature

def filter(p: t => boolean): Array[t]

Here, t => booleanis the type of functions that take an element of type t and return
a boolean. Functions like filter that take another function as argument or return
one as result are called higher-order functions.

Scala does not distinguish between identifiers and operator names. An identifier
can be either a sequence of letters and digits which begins with a letter, or it can be
a sequence of special characters, such as “+”, “«”, or “:”. Any identfier can be used
as an infix operator in Scala. The binary operation E op E' is always interpreted as
the method call E.op(E"). This holds also for binary infix operators which start with
a letter. Hence, the expression xs filter (pivot >) is equivalent to the method
call xs.filter(pivot >).

In the quicksort program, filter is applied three times to an anonymous function
argument. The first argument, pivot >, represents a function that takes an argu-
ment x and returns the value pivot > x. Another way to write this function which
makes the missing argument explicit is x => pivot > x. The function is anony-
mous, i.e. it is not defined with a name. The type of the x parameter is omitted
because a Scala compiler can infer it automatically from the context where the func-
tion is used. To summarize, xs.filter(pivot >) returns a list consisting of all ele-
ments of the list xs that are smaller than pivot.

Looking again in detail at the first, imperative implementation of Quicksort, we find
that many of the language constructs used in the second solution are also present,
albeit in a disguised form.

For instance, “standard” binary operators such as +, -, or < are not treated in any
special way. Like append, they are methods of their left operand. Consequently, the
expressioni + lisregarded as the invocation i.+(1) of the + method of the integer
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value x. Of course, a compiler is free (if it is moderately smart, even expected) to
recognize the special case of calling the + method over integer arguments and to
generate efficient inline code for it.

For efficiency and better error diagnostics the while loop is a primitive construct in
Scala. But in principle, it could have just as well been a predefined function. Here is
a possible implementation of it:

def While (p: => boolean) (s: => unit): unit =
if (p) { s ; While(p)(s) }

The While function takes as first parameter a test function, which takes no parame-
ters and yields a boolean value. As second parameter it takes a command function
which also takes no parameters and yields a trivial result. While invokes the com-
mand function as long as the test function yields true.



Chapter 3

Programming with Actors and Mes-
sages

Here’s an example that shows an application area for which Scala is particularly well
suited. Consider the task of implementing an electronic auction service. We use
an Erlang-style actor process model to implement the participants of the auction.
Actors are objects to which messages are sent. Every process has a “mailbox” of
its incoming messages which is represented as a queue. It can work sequentially
through the messages in its mailbox, or search for messages matching some pattern.

For every traded item there is an auctioneer process that publishes information
about the traded item, that accepts offers from clients and that communicates with
the seller and winning bidder to close the transaction. We present an overview of a
simple implementation here.

As a first step, we define the messages that are exchanged during an auction. There
are two abstract base classes AuctionMessage for messages from clients to the auc-
tion service, and AuctionReply for replies from the service to the clients. For both
base classes there exists a number of cases, which are defined in Figure 3.1.

For each base class, there are a number of case classes which define the format of
particular messages in the class. These messages might well be ultimately mapped
to small XML documents. We expect automatic tools to exist that convert between
XML documents and internal data structures like the ones defined above.

Figure 3.2 presents a Scala implementation of a class Auction for auction processes
that coordinate the bidding on one item. Objects of this class are created by indi-
cating

 aseller process which needs to be notified when the auction is over,

¢ aminimal bid,

¢ the date when the auction is to be closed.
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abstract class AuctionMessage
case class Offer(bid: int, client: Actor) extends AuctionMessage
case class Inquire(client: Actor) extends AuctionMessage

abstract class AuctionReply
case class Status(asked: int, expire: Date) extends AuctionReply
case object BestOffer extends AuctionReply
case class BeatenOffer(maxBid: int) extends AuctionReply
case class AuctionConcluded(seller: Actor, client: Actor)
extends AuctionReply
case object AuctionFailed extends AuctionReply
case object AuctionOver extends AuctionReply

Listing 3.1: Message Classes for an Auction Service

The process behavior is defined by its run method. That method repeatedly selects
(using receiveWithin) a message and reacts to it, until the auction is closed, which
is signaled by a TIMEOUT message. Before finally stopping, it stays active for another
period determined by the timeToShutdown constant and replies to further offers that
the auction is closed.

Here are some further explanations of the constructs used in this program:

* The receiveWithin method of class Actor takes as parameters a time span
given in milliseconds and a function that processes messages in the mailbox.
The function is given by a sequence of cases that each specify a pattern and
an action to perform for messages matching the pattern. The receiveWithin
method selects the first message in the mailbox which matches one of these
patterns and applies the corresponding action to it.

* The last case of receiveWithin is guarded by a TIMEOUT pattern. If no other
messages are received in the meantime, this pattern is triggered after the time
span which is passed as argument to the enclosing receiveWithin method.
TIMEOUT is a particular instance of class Message, which is triggered by the
Actor implementation itself.

* Reply messages are sent using syntax of the form
destination send SomeMessage. send is used here as a binary operator
with a process and a message as arguments. This is equivalent in Scala to the
method call destination.send(SomeMessage), i.e. the invocation of the send
of the destination process with the given message as parameter.

The preceding discussion gave a flavor of distributed programming in Scala. It
might seem that Scala has a rich set of language constructs that support actor pro-
cesses, message sending and receiving, programming with timeouts, etc. In fact, the



class Auction(seller: Actor, minBid: int, closing: Date) extends Actor
val timeToShutdown = 36000000; // msec
val bidIncrement = 10
override def run() = {
var maxBid = minBid - bidIncrement
var maxBidder: Actor = _
var running = true
while (running) {
receiveWithin ((closing.getTime() - new Date().getTime())) {
case Offer(bid, client) =>
if (bid >= maxBid + bidIncrement) {
if (maxBid >= minBid) maxBidder send BeatenOffer(bid)
maxBid = bid; maxBidder = client; client send BestOffer
} else {
client send BeatenOffer(maxBid)
}
case Inquire(client) =>
client send Status(maxBid, closing)
case TIMEOUT =>
if (maxBid >= minBid) {
val reply = AuctionConcluded(seller, maxBidder)
maxBidder send reply; seller send reply
} else {
seller send AuctionFailed
}
receiveWithin(timeToShutdown) {
case Offer(_, client) => client send AuctionOver
case TIMEOUT => running = false

¥

Listing 3.2: Implementation of an Auction Service
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opposite is true. All the constructs discussed above are offered as methods in the li-
brary class Actor. That class is itself implemented in Scala, based on the underlying
thread model of the host language (e.g. Java, or .NET). The implementation of all
features of class Actor used here is given in Section 16.11.

The advantages of the library-based approach are relative simplicity of the core lan-
guage and flexibility for library designers. Because the core language need not spec-
ify details of high-level process communication, it can be kept simpler and more
general. Because the particular model of messages in a mailbox is a library module,
it can be freely modified if a different model is needed in some applications. The
approach requires however that the core language is expressive enough to provide
the necessary language abstractions in a convenient way. Scala has been designed
with this in mind; one of its major design goals was that it should be flexible enough
to act as a convenient host language for domain specific languages implemented
by library modules. For instance, the actor communication constructs presented
above can be regarded as one such domain specific language, which conceptually
extends the Scala core.



Chapter 4
Expressions and Simple Functions

The previous examples gave an impression of what can be done with Scala. We now
introduce its constructs one by one in a more systematic fashion. We start with the
smallest level, expressions and functions.

4.1 Expressions And Simple Functions

A Scala system comes with an interpreter which can be seen as a fancy calculator.
A user interacts with the calculator by typing in expressions. The calculator returns
the evaluation results and their types. Example:

> 87 + 145
232: scala.Int

>5 4+ 2 % 3
11: scala.Int

> "hello" + " world!"
hello world: scala.String

It is also possible to name a sub-expression and use the name instead of the expres-
sion afterwards:

> def scale = 5
def scale: int

> 7 * scale
35: scala.Int

> def pi = 3.141592653589793
def pi: scala.Double



12 Expressions and Simple Functions

> def radius = 10
def radius: scala.Int

> 2 * pi * radius
62.83185307179586: scala.Double

Definitions start with the reserved word def; they introduce a name which stands
for the expression following the = sign. The interpreter will answer with the intro-
duced name and its type.

Executing a definition such as def x = e will not evaluate the expression e. In-
stead e is evaluated whenever x is used. Alternatively, Scala offers a value defini-
tionval x = e, which does evaluate the right-hand-side e as part of the evaluation
of the definition. If x is then used subsequently, it is immediately replaced by the
pre-computed value of e, so that the expression need not be evaluated again.

How are expressions evaluated? An expression consisting of operators and
operands is evaluated by repeatedly applying the following simplification steps.

* pick the left-most operation
 evaluate its operands

 apply the operator to the operand values.

A name defined by def is evaluated by replacing the name by the (unevaluated)
definition’s right hand side. A name defined by val is evaluated by replacing the
name by the value of the definitions’s right-hand side. The evaluation process stops
once we have reached a value. A value is some data item such as a string, a number,
an array, or a list.

Example 4.1.1 Here is an evaluation of an arithmetic expression.

(2 % pi) » radius

(2 % 3.141592653589793) * radius
6.283185307179586 = radius
6.283185307179586 * 10
62.83185307179586

Ll

The process of stepwise simplification of expressions to values is called reduction.

4.2 Parameters

Using def, one can also define functions with parameters. Example:
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> def square(x: double) = x * x
def (x: double): scala.Double

> square(2)
4.0: scala.Double

> square(5 + 3)
64.0: scala.Double

> square(square(4))
256.0: scala.Double

> def sumOfSquares(x: double, y: double) = square(x) + square(y)
def sumOfSquares(scala.Double,scala.Double): scala.Double

> sumOfSquares(3, 2 + 2)
25.0: scala.Double

Function parameters follow the function name and are always enclosed in paren-
theses. Every parameter comes with a type, which is indicated following the param-
eter name and a colon. At the present time, we only need basic numeric types such
as the type scala.Double of double precision numbers. Scala defines type aliases for
some standard types, so we can write numeric types as in Java. For instance double
is a type alias of scala.Double and int is a type alias for scala.Int.

Functions with parameters are evaluated analogously to operators in expressions.
First, the arguments of the function are evaluated (in left-to-right order). Then, the
function application is replaced by the function’s right hand side, and at the same
time all formal parameters of the function are replaced by their corresponding ac-
tual arguments.

Example 4.2.1

sumOfSquares(3, 2+2)
sumOfSquares(3, 4)
square(3) + square(4)
3 % 3 + square(4)

9 + square(4)
9+4 « 4

9 + 16

25

e bbb

The example shows that the interpreter reduces function arguments to values be-
fore rewriting the function application. One could instead have chosen to apply the
function to unreduced arguments. This would have yielded the following reduction
sequence:
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sumOfSquares(3, 2+2)
square(3) + square(2+2)
3 + square(2+2)
square(2+2)

(2+42) * (2+2)

4 % (2+2)

4 % 4

16

*

© © © O O W
+ + + 4+ +

Ll bbb

25

The second evaluation order is known as call-by-name, whereas the first one is
known as call-by-value. For expressions that use only pure functions and that there-
fore can be reduced with the substitution model, both schemes yield the same final
values.

Call-by-value has the advantage that it avoids repeated evaluation of arguments.
Call-by-name has the advantage that it avoids evaluation of arguments when the
parameter is not used at all by the function. Call-by-value is usually more efficient
than call-by-name, but a call-by-value evaluation might loop where a call-by-name
evaluation would terminate. Consider:

> def loop: int = loop
def loop: scala.Int

> def first(x: int, y: int) = x
def first(x: scala.Int, y: scala.Int): scala.Int

Then first(1, loop) reduces with call-by-name to 1, whereas the same term re-
duces with call-by-value repeatedly to itself, hence evaluation does not terminate.

first(1, loop)
— first(1, loop)
— first(1, loop)

—

Scala uses call-by-value by default, but it switches to call-by-name evaluation if the
parameter type is preceded by =>.

Example 4.2.2

> def constOne(x: int, y: => int) =1
constOne(x: scala.Int, y: => scala.Int): scala.Int

> constOne(1, loop)
1: scala.Int

> constOne(loop, 2) // gives an infinite loop.
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AC

4.3 Conditional Expressions

Scala’s if-else lets one choose between two alternatives. Its syntax is like Java’s
if-else. But where Java’s if-else can be used only as an alternative of state-
ments, Scala allows the same syntax to choose between two expressions. That’s

why Scala’s if-else serves also as a substitute for Java’s conditional expression
?

Example 4.3.1

> def abs(x: double) = if (x >= 0) x else -x
abs(x: double): double

Scala’s boolean expressions are similar to Java’s; they are formed from the constants
true and false, comparison operators, boolean negation ! and the boolean opera-
tors & and | |.

4.4 Example: Square Roots by Newton’s Method

We now illustrate the language elements introduced so far in the construction of a
more interesting program. The task is to write a function

def sqrt(x: double): double = ...

which computes the square root of x.

A common way to compute square roots is by Newton’s method of successive ap-
proximations. One starts with an initial guess y (say: y = 1). One then repeatedly
improves the current guess y by taking the average of y and x/y. As an example, the
next three columns indicate the guess y, the quotient x/y, and their average for the
first approximations of v/2.

1 2/1 =2 1.5

1.5 2/1.5 = 1.3333 1.4167
1.4167 2/1.4167 = 1.4118 1.4142
1.4142

y xly (y+x/y)l2

One can implement this algorithm in Scala by a set of small functions, which each
represent one of the elements of the algorithm.

We first define a function for iterating from a guess to the result:
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def sqrtIter(guess: double, x: double): double =
if (isGoodEnough(guess, X)) guess
else sqrtIter(improve(guess, X), X)

Note that sqrtIter calls itself recursively. Loops in imperative programs can always
be modeled by recursion in functional programs.

Note also that the definition of sqrtIter contains a return type, which follows the
parameter section. Such return types are mandatory for recursive functions. For a
non-recursive function, the return type is optional; if it is missing the type checker
will compute it from the type of the function’s right-hand side. However, even for
non-recursive functions it is often a good idea to include a return type for better
documentation.

As a second step, we define the two functions called by sqrtIter: a function to
improve the guess and a termination test isGoodEnough. Here is their definition.

def improve(guess: double, x: double) =
(guess + x / guess) / 2

def isGoodEnough(guess: double, x: double) =
abs(square(guess) - x) < 0.001

Finally, the sqrt function itself is defined by an application of sqrtIter.

def sqrt(x: double) = sqrtIter(1.0, x)

Exercise 4.4.1 The isGoodEnough test is not very precise for small numbers and
might lead to non-termination for very large ones (why?). Design a different ver-
sion of isGoodEnough which does not have these problems.

Exercise 4.4.2 Trace the execution of the sqrt(4) expression.

45 Nested Functions

The functional programming style encourages the construction of many small
helper functions. In the last example, the implementation of sqrt made use of the
helper functions sqrtIter, improve and isGoodEnough. The names of these func-
tions are relevant only for the implementation of sqrt. We normally do not want
users of sqrt to access these functions directly.

We can enforce this (and avoid name-space pollution) by including the helper func-
tions within the calling function itself:

def sqrt(x: double) = {
def sqgrtIter(guess: double, x: double): double =



4.5 Nested Functions 17

if (isGoodEnough(guess, x)) guess
else sqrtIter(improve(guess, X), X)

def improve(guess: double, x: double) =
(guess + x / guess) / 2

def isGoodEnough(guess: double, x: double) =
abs(square(guess) - x) < 0.001

sqrtlIter(1.0, x)

}

In this program, the braces { ... } enclose a block. Blocks in Scala are themselves
expressions. Every block ends in a result expression which defines its value. The
result expression may be preceded by auxiliary definitions, which are visible only in
the block itself.

Every definition in a block must be followed by a semicolon, which separates this
definition from subsequent definitions or the result expression. However, a semi-
colon is inserted implicitly if the definition ends in a right brace and is followed by
anew line. Therefore, the following are all legal:

def f(x) = x + 1; /* *;’ mandatory =/
f(1) + £(2)

def g(x) = {x + 1}
g(1) + g(2)

def h(x) = {x + 1}; /+ ‘;’ mandatory */ h(1) + h(2)

Scala uses the usual block-structured scoping rules. A name defined in some outer
block is visible also in some inner block, provided it is not redefined there. This rule
permits us to simplify our sqrt example. We need not pass x around as an additional
parameter of the nested functions, since it is always visible in them as a parameter
of the outer function sqrt. Here is the simplified code:

def sqgrt(x: double) = {

def sqrtIter(guess: double): double =
if (isGoodEnough(guess)) guess
else sqgrtlter(improve(guess))

def improve(guess: double) =
(guess + x / guess) / 2

def isGoodEnough(guess: double) =
abs(square(guess) - x) < 0.001

sqrtlter(1.0)
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4.6 Tail Recursion

Consider the following function to compute the greatest common divisor of two
given numbers.

def gcd(a: int, b: int): int = if (b == 0) a else gcd(b, a % b)

Using our substitution model of function evaluation, gcd(14, 21) evaluates as fol-
lows:

gcd(14, 21)
if (21 == 0) 14 else gcd(21, 14 % 21)
if (false) 14 else gcd(21, 14 % 21)
ged(21, 14 % 21)
gcd(21, 14)
if (14 == 0) 21 else gcd(14, 21 % 14)
— gcd(14, 21 % 14)
gcd(14, 7)
if (7 == 0) 14 else gcd(7, 14 % 7)
— gcd(7, 14 % 7)
gcd(7, 0)
if (0 == 0) 7 else gcd(0, 7 % 0)
- 7

A A

Contrast this with the evaluation of another recursive function, factorial:

def factorial(n: int): int = if (n == 0) 1 else n * factorial(n - 1)

The application factorial(5) rewrites as follows:

factorial(5)
if (5 ==0) 1 else 5 « factorial(5 - 1)
5 % factorial(5 - 1)
5 % factorial(4)
5 * (4 = factorial(3))
5% (4 = (3 » factorial(2)))
5% (4% (3 * (2 % factorial(1))))
5+ (4% (3% (2 (1~ factorial(0))))
5% (4« (B (2« (@A=1))
120

Prrbbird

T

There is an important difference between the two rewrite sequences: The terms in
the rewrite sequence of gcd have again and again the same form. As evaluation pro-
ceeds, their size is bounded by a constant. By contrast, in the evaluation of factorial
we get longer and longer chains of operands which are then multiplied in the last
part of the evaluation sequence.
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Even though actual implementations of Scala do not work by rewriting terms, they
nevertheless should have the same space behavior as in the rewrite sequences. In
the implementation of gcd, one notes that the recursive call to ged is the last action
performed in the evaluation of its body. One also says that gcd is “tail-recursive”.
The final call in a tail-recursive function can be implemented by a jump back to the
beginning of that function. The arguments of that call can overwrite the parameters
of the current instantiation of gcd, so that no new stack space is needed. Hence,
tail recursive functions are iterative processes, which can be executed in constant
space.

By contrast, the recursive call in factorial is followed by a multiplication. Hence,
a new stack frame is allocated for the recursive instance of factorial, and is deallo-
cated after that instance has finished. The given formulation of the factorial func-
tion is not tail-recursive; it needs space proportional to its input parameter for its
execution.

More generally, if the last action of a function is a call to another (possibly the same)
function, only a single stack frame is needed for both functions. Such calls are called
“tail calls”. In principle, tail calls can always re-use the stack frame of the calling
function. However, some run-time environments (such as the Java VM) lack the
primitives to make stack frame re-use for tail calls efficient. A production quality
Scala implementation is therefore only required to re-use the stack frame of a di-
rectly tail-recursive function whose last action is a call to itself. Other tail calls might
be optimized also, but one should not rely on this across implementations.

Exercise 4.6.1 Design a tail-recursive version of factorial.






Chapter 5

First-Class Functions

A function in Scala is a “first-class value”. Like any other value, it may be passed as
a parameter or returned as a result. Functions which take other functions as pa-
rameters or return them as results are called higher-order functions. This chapter
introduces higher-order functions and shows how they provide a flexible mecha-
nism for program composition.

As a motivating example, consider the following three related tasks:

1. Write a function to sum all integers between two given numbers a and b:

def sumInts(a: int, b: int): int =
if (a > b) 0 else a + sumInts(a + 1, b)

2. Write a function to sum the squares of all integers between two given numbers
a and b:

def square(x: int): int = x * X
def sumSquares(a: int, b: int): int =
if (a > b) 0 else square(a) + sumSquares(a + 1, b)

3. Write a function to sum the powers 2" of all integers n between two given
numbers a and b:

def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x -
def sumPowersOfTwo(a: int, b: int): int =
if (a > b) 0 else powerOfTwo(a) + sumPowersOfTwo(a + 1, b)

These functions are all instances of ZZ f (n) for different values of f. We can factor
out the common pattern by defining a function sum:

def sum(f: int => int, a: int, b: int): double =
if (a > b) 0 else f(a) + sum(f, a + 1, b)

1
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The type int => int is the type of functions that take arguments of type int and
return results of type int. So sum is a function which takes another function as a
parameter. In other words, sum is a higher-order function.

Using sum, we can formulate the three summing functions as follows.

def sumInts(a: int, b: int): int = sum(id, a, b)
def sumSquares(a: int, b: int): int = sum(square, a, b)
def sumPowersOfTwo(a: int, b: int): int = sum(powerOfTwo, a, b)

where

def id(x: int): int = x
def square(x: int): int = x * X
def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x - 1)

5.1 Anonymous Functions

Parameterization by functions tends to create many small functions. In the previous
example, we defined id, square and power as separate functions, so that they could
be passed as arguments to sum.

Instead of using named function definitions for these small argument functions, we
can formulate them in a shorter way as anonymous functions. An anonymous func-
tion is an expression that evaluates to a function; the function is defined without
giving it a name. As an example consider the anonymous square function:

X: int => x * X

The part before the arrow ‘=>’ is the parameter of the function, whereas the part
following the ‘=>’ is its body. If there are several parameters, we need to enclose
them in parentheses. For instance, here is an anonymous function which multiples
its two arguments.

(x: int, y: int) => x * y

Using anonymous functions, we can reformulate the first two summation functions
without named auxiliary functions:

def sumInts(a: int, b: int): int = sum(x: int => x, a, b)
def sumSquares(a: int, b: int): int = sum(x: int => x * X, a, b)

Often, the Scala compiler can deduce the parameter type(s) from the context of the
anonymous function in which case they can be omitted. For instance, in the case
of sumInts or sumSquares, one knows from the type of sum that the first parameter
must be a function of type int => int. Hence, the parameter type int is redundant
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and may be omitted:

def sumInts(a: int, b: int): int = sum(x => x, a, b)
def sumSquares(a: int, b: int): int = sum(x => x * X, a, b)

Generally, the Scala term (x;: T, ..., x,: Tp) => E defines a function which
maps its parameters x;, ..., X, to the result of the expression E (where E may
refer to x;, ..., X,). Anonymous functions are not essential language elements

of Scala, as they can always be expressed in terms of named functions. Indeed, the
anonymous function

(x1: Ty, ..., Xp: Tp) = E

is equivalent to the block

{ def f (x3: Ty, ..., Xp: Typ) =E ; £}

where f is fresh name which is used nowhere else in the program. We also say,
anonymous functions are “syntactic sugar”.

5.2 Currying

The latest formulation of the summing functions is already quite compact. But we
can do even better. Note that a and b appear as parameters and arguments of every
function but they do not seem to take part in interesting combinations. Is there a
way to get rid of them?

Let’s try to rewrite sum so that it does not take the bounds a and b as parameters:

def sum(f: int => int) = {
def sumF(a: int, b: int): int =
if (a > b) 0 else f(a) + sumF(a + 1, b)
sumF

In this formulation, sum is a function which returns another function, namely the
specialized summing function sumF. This latter function does all the work; it takes
the bounds a and b as parameters, applies sum’s function parameter f to all integers
between them, and sums up the results.

Using this new formulation of sum, we can now define:

def sumInts = &sum(x => Xx)
def sumSquares = &sum(x => x * X)
def sumPowersOfTwo = &sum(powerOfTwo)

Or, equivalently, with value definitions:
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val sumInts = &sum(x => X)
val sumSquares = &sum(x => X * X)
val sumPowersOfTwo = &sum(powerOfTwo)

Note the prefix operator & in front of the right-hand sides of the definitions above.
This operator expresses that the partial applications of sum should be treated as
function values. If it is omitted, the Scala compiler would complain that the appli-
cations of sum lack some of their arguments. The & operator can however be omitted
if the expected type of an expression is a function type.

sumInts, sumSquares, and sumPowersOfTwo can be applied like any other function.
For instance,

> sumSquares(1l, 10) + sumPowersOfTwo(10, 20)
267632001: scala.Int

How are function-returning functions applied? As an example, in the expression

sum(x => x * x)(1, 10) ,

the function sum is applied to the squaring function (x => x * x). The resulting
function is then applied to the second argument list, (1, 10).

This notation is possible because function application associates to the left. That is,
if args, and args, are argument lists, then

f(args;)(args,) isequivalentto (f(args;))(args,)

In our example, sum(x => x * x)(1, 10) is equivalent to the following expression:
(sum(x => x * x))(1, 10).

The style of function-returning functions is so useful that Scala has special syntax
for it. For instance, the next definition of sum is equivalent to the previous one, but
is shorter:

def sum(f: int => int)(a: int, b: int): int =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

Generally, a curried function definition

def f (args;) ... (argsy) = E

where n > 1 expands to

def f (args;) ... (args;—1) = { def g (args;) =E ; g }

where g is a fresh identifier. Or, shorter, using an anonymous function:

def f (args;) ... (args;p—1) = ( args, ) = E .



5.3 Example: Finding Fixed Points of Functions 25

Performing this step n times yields that

def f (args;) ... (args,) = E

is equivalent to

def f = (args;) => ... => (args,) = E .

Or, equivalently, using a value definition:

val f = (args;) => ... => (args,) = E .

This style of function definition and application is called currying after its promoter,
Haskell B. Curry, a logician of the 20th century, even though the idea goes back fur-
ther to Moses Schonfinkel and Gottlob Frege.

The type of a function-returning function is expressed analogously to its param-
eter list. Taking the last formulation of sum as an example, the type of sum is
(int => int) => (int, int) => int. This is possible because function types as-
sociate to the right. ILe.

Ty => Ty => T3 is equivalent to Ty = (Ty => T3)

Exercise 5.2.1 1. The sum function uses a linear recursion. Can you write a tail-
recursive one by filling in the ?22's?

def sum(f: int => double)(a: int, b: int): double = {
def iter(a, result) = {
if (??) ?°?
else iter(??, ??)
}
iter(??, ??)

}

Exercise 5.2.2 Write a function product that computes the product of the values of
functions at points over a given range.

Exercise 5.2.3 Write factorial in terms of product.

Exercise 5.2.4 Can you write an even more general function which generalizes both
sum and product?

5.3 Example: Finding Fixed Points of Functions

A number x is called a fixed point of a function f if
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f(x) = x .

For some functions f we can locate the fixed point by beginning with an initial guess
and then applying f repeatedly, until the value does not change anymore (or the
change is within a small tolerance). This is possible if the sequence

x, £(x), £(£)), £EEE))),

converges to fixed point of f. This idea is captured in the following “fixed-point
finding function”:

val tolerance = 0.0001
def isCloseEnough(x: double, y: double) = abs((x - y) / x) < tolerance
def fixedPoint(f: double => double) (firstGuess: double) = {
def iterate(guess: double): double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)
}
iterate(firstGuess)

}

We now apply this idea in a reformulation of the square root function. Let’s start
with a specification of sqrt:

sqrt(x)

the y such that vy *y = x
the y such that v=x /vy

Hence, sqrt(x) is a fixed point of the function y => x / y. This suggests that
sqrt(x) can be computed by fixed point iteration:

def sgrt(x: double) = fixedPoint(y => x / v)(1.0)

But if we try this, we find that the computation does not converge. Let’s instrument
the fixed point function with a print statement which keeps track of the current
guess value:

def fixedPoint(f: double => double)(firstGuess: double) = {
def iterate(guess: double): double = {
val next = f(guess)
System.out.println(next)
if (isCloseEnough(guess, next)) next
else iterate(next)
}
iterate(firstGuess)

}
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Then, sqrt(2) yields:

2.0
1.0
2.0
1.0
2.0

One way to control such oscillations is to prevent the guess from changing too
much. This can be achieved by averaging successive values of the original sequence:

> def sqrt(x: double) = fixedPoint(y => (v + x/vy) / 2)(1.0)
def sqgrt(x: scala.Double): scala.Double
> sqrt(2.0)

1.5

1.4166666666666665

1.4142156862745097

1.4142135623746899

1.4142135623746899

In fact, expanding the fixedPoint function yields exactly our previous definition of
fixed point from Section 4.4.

The previous examples showed that the expressive power of a language is consid-
erably enhanced if functions can be passed as arguments. The next example shows
that functions which return functions can also be very useful.

Consider again fixed point iterations. We started with the observation that v/(x) is
a fixed point of the functiony => x / y. Then we made the iteration converge by
averaging successive values. This technique of average dampingis so general that it
can be wrapped in another function.

def averageDamp(f: double => double)(x: double) = (x + f(x)) / 2

Using averageDamp, we can reformulate the square root function as follows.

def sqrt(x: double) = fixedPoint(averageDamp(y => x/vy))(1.0)

This expresses the elements of the algorithm as clearly as possible.

Exercise 5.3.1 Write a function for cube roots using fixedPoint and averageDamp.

5.4 Summary

We have seen in the previous chapter that functions are essential abstractions, be-
cause they permit us to introduce general methods of computing as explicit, named
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elements in our programming language. The present chapter has shown that these
abstractions can be combined by higher-order functions to create further abstrac-
tions. As programmers, we should look out for opportunities to abstract and to
reuse. The highest possible level of abstraction is not always the best, but it is im-
portant to know abstraction techniques, so that one can use abstractions where ap-
propriate.

5.5 Language Elements Seen So Far

Chapters 4 and 5 have covered Scala’s language elements to express expressions and
types comprising of primitive data and functions. The context-free syntax of these
language elements is given below in extended Backus-Naur form, where ‘|’ denotes
alternatives, [ . . . ] denotes option (0 or 1 occurrence), and {. . . } denotes repetition
(0 or more occurrences).

Characters

Scala programs are sequences of (Unicode) characters. We distinguish the following
character sets:

» whitespace, such as , tabulator, or newline characters,

«_ )«

¢ Jetters ‘a’ to ‘z’, ‘A’ to ‘Z),

e digits ‘0’ to 9,

the delimiter characters

, ; ( ) { ¥ [ ] AU ’

R

 operator characters, such as ‘#’ ‘+’, ‘:’. Essentially, these are printable charac-
ters which are in none of the character sets above.

Lexemes:
ident = letter {letter | digit}
| operator { operator }
| ident ’_’ ident
literal = “as in Java”

Literals are as in Java. They define numbers, characters, strings, or boolean values.
Examples of literals as 0, 1.0d10, *x’, "he said "hi!"", or true.

Identifiers can be of two forms. They either start with a letter, which is followed by a
(possibly empty) sequence of letters or symbols, or they start with an operator char-
acter, which is followed by a (possibly empty) sequence of operator characters. Both
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forms of identifiers may contain underscore characters ‘_’. Furthermore, an under-
score character may be followed by either sort of identifier. Hence, the following are
all legal identifiers:

X Rooml0a + - foldl_: +_vector

It follows from this rule that subsequent operator-identifiers need to be separated
by whitespace. For instance, the input x+-v is parsed as the three token sequence x,
+-, y. If we want to express the sum of x with the negated value of y, we need to add
atleast one space, e.g. x+ -y.

The $ character is reserved for compiler-generated identifiers; it should not be used
in source programs.

The following are reserved words, they may not be used as identifiers:

abstract case catch class def
do else extends false final
finally for if implicit import
match new null object override
package private protected requires return
sealed super this throw trait
try true type val var
while with yield
— : = => <- <: <% > # @
Types:
Type = SimpleType | FunctionType
FunctionType = SimpleType ’=>’ Type | (’ [Types] ')’ '=>’ Type
SimpleType = byte | short | char | int | long | double | float |
boolean | unit | String
Types = Type {*,’ Type}
Types can be:

* number types byte, short, char, int, long, float and double (these are as in
Java),

* the type boolean with values true and false,
¢ the type unit with the only value (),
e the type String,

e function types such as (int, int) => int or String => Int => String.
Expressions:

Expr = InfixExpr | FunctionExpr | if '(’ Expr ’)’ Expr else Expr
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InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr

Operator = ident

PrefixExpr = ['+" | =" | '!”7 | ’~’ ] SimpleExpr

SimpleExpr = ident | literal | SimpleExpr ’.’ ident | Block
FunctionExpr = Bindings ’=>’ Expr

Bindings = ident [’:’ SimpleType] | ’(’ [Binding {’,’ Binding}] ’)’
Binding = ident [’:’ Typel

Block = '{’ {Def ’;’} Expr '}’

Expressions can be:
¢ identifiers such as x, isGoodEnough, *, or +-,
e literals, such as 0,1.0, or "abc",
¢ field and method selections, such as System.out.println,
 function applications, such as sqrt(x),
e operator applications, such as -xory + x,
¢ conditionals, such asif (x < 0) -x else x,
* blocks, suchas{ val x = abs(y) ; x * 2 },

e anonymous functions, suchasx => x + lor (x: int, y: int) => x + y.

Definitions:
Def = FunDef | ValDef
FunDef = ’def’ ident {’(’ [Parameters] ’)’} [’:’ Type] ’'=’ Expr
ValDef = ’val’ ident [’:’ Type] ’=’ Expr
Parameters = Parameter {’,’ Parameter}
Parameter = ddent ’:’ ['=>"] Type

Definitions can be:
¢ function definitions such as def square(x: int): int = x * X,

¢ value definitions such asval vy = square(2).



Chapter 6

Classes and Objects

Scala does not have a built-in type of rational numbers, but it is easy to define one,
using a class. Here’s a possible implementation.

class Rational(n: int, d: int) {

private def gcd(x: int, y: int): int = {
if x=0) vy
else if (x < 0) gcd(-x, V)
else if (y < 0) -gcd(x, -V)
else gcd(y % x, x)

3

private val g = gcd(n, d)

val numer: int = n/g
val denom: int = d/g
def +(that: Rational) =
new Rational (numer * that.denom + that.numer * denom,
denom * that.denom)
def -(that: Rational) =
new Rational (numer * that.denom - that.numer * denom,
denom * that.denom)
def =(that: Rational) =
new Rational (numer * that.numer, denom * that.denom)
def /(that: Rational) =
new Rational(numer * that.denom, denom * that.numer)

This defines Rational as a class which takes two constructor arguments n and d,
containing the number’s numerator and denominator parts. The class provides
fields which return these parts as well as methods for arithmetic over rational num-
bers. Each arithmetic method takes as parameter the right operand of the opera-
tion. The left operand of the operation is always the rational number of which the
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method is a member.

Private members. The implementation of rational numbers defines a private
method gcd which computes the greatest common denominator of two integers, as
well as a private field g which contains the gcd of the constructor arguments. These
members are inaccessible outside class Rational. They are used in the implementa-
tion of the class to eliminate common factors in the constructor arguments in order
to ensure that numerator and denominator are always in normalized form.

Creating and Accessing Objects. As an example of how rational numbers can be
used, here’s a program that prints the sum of all numbers 1/i where i ranges from 1
to 10.

var i = 1
var x = new Rational(0, 1)
while (i <= 10) {
X = X + new Rational(l,i)
i=1i+1
}
System.out.println(

+ x.numer + "/" + x.denom)

The + takes as left operand a string and as right operand a value of arbitrary type. It
returns the result of converting its right operand to a string and appending it to its
left operand.

Inheritance and Overriding. Every class in Scala has a superclass which it ex-
tends. If a class does not mention a superclass in its definition, the root type
scala.AnyRef is implicitly assumed (for Java implementations, this type is an alias
for java.lang.Object. For instance, class Rational could equivalently be defined
as

class Rational(n: int, d: int) extends AnyRef {
... // as before

A class inherits all members from its superclass. It may also redefine (or: override)
some inherited members. For instance, class java.lang.0Object defines a method
toString which returns a representation of the object as a string:

class Object {

def toString: String = ...
}
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The implementation of toString in Object forms a string consisting of the object’s
class name and a number. It makes sense to redefine this method for objects that
are rational numbers:

class Rational(n: int, d: int) extends AnyRef {
... // as before
override def toString =

}

+ numer + "/" + denom

Note that, unlike in Java, redefining definitions need to be preceded by an override
modifier.

If class A extends class B, then objects of type A may be used wherever objects of
type B are expected. We say in this case that type A conformsto type B. For instance,
Rational conforms to AnyRef, so it is legal to assign a Rational value to a variable
of type AnyRef:

var x: AnyRef = new Rational(l,2)

Parameterless Methods. Unlike in Java, methods in Scala do not necessarily take
a parameter list. An example is the square method below. This method is invoked
by simply mentioning its name.

class Rational(n: int, d: int) extends AnyRef {
... // as before
def square = new Rational (numerxnumer, denom*denom)

}
val r = new Rational(3,4)
System.out.println(r.square); // prints‘‘9/16° =

That is, parameterless methods are accessed just as value fields such as numer are.
The difference between values and parameterless methods lies in their definition.
The right-hand side of a value is evaluated when the object is created, and the value
does not change afterwards. A right-hand side of a parameterless method, on the
other hand, is evaluated each time the method is called. The uniform access of
fields and parameterless methods gives increased flexibility for the implementer of
a class. Often, a field in one version of a class becomes a computed value in the next
version. Uniform access ensures that clients do not have to be rewritten because of
that change.

Abstract Classes. Consider the task of writing a class for sets of integer numbers
with two operations, incl and contains. (s incl x) should return a new set which
contains the element x together with all the elements of set s. (s contains x)
should return true if the set s contains the element x, and should return false oth-
erwise. The interface of such sets is given by:
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abstract class IntSet {
def incl(x: int): IntSet
def contains(x: int): boolean

}

IntSet is labeled as an abstract class. This has two consequences. First, abstract
classes may have deferred members which are declared but which do not have an
implementation. In our case, both incl and contains are such members. Second,
because an abstract class might have unimplemented members, no objects of that
class may be created using new. By contrast, an abstract class may be used as a base
class of some other class, which implements the deferred members.

Traits. Instead of abstract class one also often uses the keyword trait in Scala.
Traits are abstract classes that are meant to be added to some other class. This
might be because a trait adds some methods or fields to an unknown parent class.
For instance, a trait Bordered might be used to add a border to a various graphical
components. Another usage scenario is where the trait collects signatures of some
functionality provided by different classes, much in the way a Java interface would
work.

Since IntSet falls in this category, one can alternatively define it as a trait:

trait IntSet {
def incl(x: int): IntSet
def contains(x: int): boolean

}

Implementing Abstract Classes. Let’s say, we plan to implement sets as binary
trees. There are two possible forms of trees. A tree for the empty set, and a tree
consisting of an integer and two subtrees. Here are their implementations.

class EmptySet extends IntSet {

def contains(x: int): boolean = false

def incl(x: int): IntSet = new NonEmptySet(x, new EmptySet, new EmptySet)
}

class NonEmptySet(elem:int, left:IntSet, right:IntSet) extends IntSet {
def contains(x: int): boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true
def incl(x: int): IntSet =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this
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Both EmptySet and NonEmptySet extend class IntSet. This implies that types
EmptySet and NonEmptySet conform to type IntSet — a value of type EmptySet or
NonEmptySet may be used wherever a value of type IntSet is required.

Exercise 6.0.1 Write methods union and intersection to form the union and in-
tersection between two sets.

Exercise 6.0.2 Add a method

def excl(x: int)

to return the given set without the element x. To accomplish this, it is useful to also
implement a test method

def isEmpty: boolean

for sets.

Dynamic Binding. Object-oriented languages (Scala included) use dynamic dis-
patch for method invocations. That is, the code invoked for a method call depends
on the run-time type of the object which contains the method. For example, con-
sider the expression s contains 7 where s is a value of declared type s: IntSet.
Which code for contains is executed depends on the type of value of s at run-time.
If it is an EmptySet value, it is the implementation of contains in class EmptySet
that is executed, and analogously for NonEmptySet values. This behavior is a direct
consequence of our substitution model of evaluation. For instance,

(new EmptySet).contains(7)
-> (by replacing contains by its body in class EmptySet)
false

Or,
new NonEmptySet(7, new EmptySet, new EmptySet).contains(1)
-> (by replacing contains by its body in class NonEmptySet)
if (1 < 7) new EmptySet contains 1
else if (1 > 7) new EmptySet contains 1

else true

-> (by rewriting the conditional)
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new EmptySet contains 1
-> (by replacing contains by its body in class EmptySet)
false .

Dynamic method dispatch is analogous to higher-order function calls. In both
cases, the identity of code to be executed is known only at run-time. This similarity
is not just superficial. Indeed, Scala represents every function value as an object
(see Section 8.6).

Objects. In the previous implementation of integer sets, empty sets were ex-
pressed with new EmptySet; so a new object was created every time an empty set
value was required. We could have avoided unnecessary object creations by defin-
ing a value empty once and then using this value instead of every occurrence of
new EmptySet. E.g.

val EmptySetVal = new EmptySet

One problem with this approach is that a value definition such as the one above is
not a legal top-level definition in Scala; it has to be part of another class or object.
Also, the definition of class EmptySet now seems a bit of an overkill — why define
a class of objects, if we are only interested in a single object of this class? A more
direct approach is to use an object definition. Here is a more streamlined alternative
definition of the empty set:

object EmptySet extends IntSet {

def contains(x: int): boolean = false

def incl(x: int): IntSet = new NonEmptySet(x, EmptySet, EmptySet)
}

The syntax of an object definition follows the syntax of a class definition; it has
an optional extends clause as well as an optional body. As is the case for classes,
the extends clause defines inherited members of the object whereas the body de-
fines overriding or new members. However, an object definition defines a single
object only it is not possible to create other objects with the same structure using
new. Therefore, object definitions also lack constructor parameters, which might be
present in class definitions.

Object definitions can appear anywhere in a Scala program; including at top-level.
Since there is no fixed execution order of top-level entities in Scala, one might ask
exactly when the object defined by an object definition is created and initialized.
The answer is that the object is created the first time one of its members is accessed.
This strategy is called lazy evaluation.
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Standard Classes. Scalais a pure object-oriented language. This means that every
value in Scala can be regarded as an object. In fact, even primitive types such as int
or boolean are not treated specially. They are defined as type aliases of Scala classes
in module Predef:

type boolean = scala.Boolean
type int = scala.Int
type long = scala.long

For efficiency, the compiler usually represents values of type scala.Int by 32 bit
integers, values of type scala.Boolean by Java’'s booleans, etc. But it converts these
specialized representations to objects when required, for instance when a primitive
int value is passed to a function with a parameter of type AnyRef. Hence, the special
representation of primitive values is just an optimization, it does not change the
meaning of a program.

Here is a specification of class Boolean.
package scala

abstract class Boolean {
def && (x: => Boolean): Boolean

def || (x: => Boolean): Boolean
def ! : Boolean
def == (x: Boolean) : Boolean
def !'= (x: Boolean) : Boolean
def < (x: Boolean) : Boolean
def > (x: Boolean) : Boolean
def <= (x: Boolean) : Boolean
def >= (x: Boolean) : Boolean

Booleans can be defined using only classes and objects, without reference to a built-
in type of booleans or numbers. A possible implementation of class Boolean is given
below. This is not the actual implementation in the standard Scala library. For effi-
ciency reasons the standard implementation uses built-in booleans.

package scala
abstract class Boolean {
def ifThenElse(thenpart: => Boolean, elsepart: => Boolean)

def && (x: => Boolean): Boolean = ifThenElse(x, false)
def || (x: => Boolean): Boolean = ifThenElse(true, x)
def ! : Boolean = ifThenFlse(false, true)

def == (x: Boolean) : Boolean = ifThenElse(x, x.!)
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def != (x: Boolean)
def < (x: Boolean)
def > (x: Boolean)
def <= (x: Boolean)
def >= (x: Boolean)

}

case object True extends Boolean {
def ifThenElse(t: => Boolean, e:

}

case object False extends Boolean {
def ifThenElse(t: => Boolean, e:

}

Here is a partial specification of class Int.

package scala

abstract class Int extends AnyVal {

def coerce: Long
def coerce: Float
def coerce: Double

def
def

def

def << (cnt: Int): Int;

: Boolean
: Boolean
: Boolean
: Boolean
: Boolean

+ (that: Double): Double
+ (that: Float): Float
def + (that: Long): Long
+ (that: Int): Int;

def & (that: Long): Long

def & (that: Int): Int;

def == (that: Double): Boolean
def == (that: Float): Boolean
def == (that: Long): Boolean;

ifThenElse(x.!, x)
ifThenElse(false, x)
ifThenElse(x.!, false)
ifThenElse(x, true)
ifThenElse(true, x.!)

=> Boolean) = t
=> Boolean) = e
// analogous for -, *, /, %

// analogous for >>, >>>

// analogous for [, 4

// analogous for !=, <, >, <=, >=

Class Int can in principle also be implemented using just objects and classes, with-
outreference to a built in type of integers. To see how, we consider a slightly simpler
problem, namely how to implement a type Nat of natural (i.e. non-negative) num-
bers. Here is the definition of an abstract class Nat:

abstract class Nat {
def isZero: Boolean
def predecessor: Nat
def successor: Nat
def + (that: Nat): Nat
def - (that: Nat): Nat
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To implement the operations of class Nat, we define a sub-object Zero and a sub-
class Succ (for successor). Each number N is represented as N applications of the
Succ constructor to Zero:

new Succ(... new Sucg (Zero) ... )

N times

The implementation of the Zero object is straightforward:

object Zero extends Nat {
def isZero: Boolean = true
def predecessor: Nat = throw new Error("negative number")
def successor: Nat = new Succ(Zero)
def + (that: Nat): Nat = that
def - (that: Nat): Nat = if (that.isZero) Zero
else throw new Error('negative number")

The implementation of the predecessor and subtraction functions on Zero throws
an Error exception, which aborts the program with the given error message.

Here is the implementation of the successor class:

class Succ(x: Nat) extends Nat {
def isZero: Boolean = false
def predecessor: Nat = x
def successor: Nat = new Succ(this)
def + (that: Nat): Nat = x + that.successor
def - (that: Nat): Nat = x - that.predecessor

Note the implementation of method successor. To create the successor of a num-
ber, we need to pass the object itself as an argument to the Succ constructor. The
object itself is referenced by the reserved name this.

The implementations of + and - each contain a recursive call with the constructor
argument as receiver. The recursion will terminate once the receiver is the Zero
object (which is guaranteed to happen eventually because of the way numbers are
formed).

Exercise 6.0.3 Write an implementation Integer of integer numbers The imple-
mentation should support all operations of class Nat while adding two methods

def isPositive: Boolean
def negate: Integer
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The first method should return true if the number is positive. The second method
should negate the number. Do not use any of Scala’s standard numeric classes in
your implementation. (Hint: There are two possible ways to implement Integer.
One can either make use the existing implementation of Nat, representing an inte-
ger as a natural number and a sign. Or one can generalize the given implementation
of Nat to Integer, using the three subclasses Zero for 0, Succ for positive numbers
and Pred for negative numbers.)

Language Elements Introduced In This Chapter
Types:

Type = ... | ident

Types can now be arbitrary identifiers which represent classes.

Expressions:

Expr = ... | Expr ident | ’new’ Expr | ’this’

An expression can now be an object creation, or a selection E.m of a member m from
an object-valued expression E, or it can be the reserved name this.

Definitions and Declarations:

Def = FunDef | ValDef | ClassDef | TraitDef | ObjectDef

ClassDef = [’abstract’] ’class’ ident [’(’ [Parameters] ’)’]
[’extends’ Expr] [‘{’ {TemplateDef} ‘}’]

TraitDef = ’trait’ ident [’extends’ Expr] [’{’ {TemplateDef} ’}’]

ObjectDef = ’object’ ident [’extends’ Expr] [’{’ {ObjectDef} ’}’]

TemplateDef = [Modifier] (Def | Dcl)

ObjectDef = [Modifier] Def

Modifier = ’private’ | ’override’

Dcl = FunDcl | ValDcl

FunDcl = ’def’ ident {’(’ [Parameters] ’)’} ’:’ Type

ValDcl = ’val’ ident ’':’ Type

A definition can now be a class, trait or object definition such as

class C(params) extends B { defs }
trait T extends B { defs }
object O extends B { defs }

The definitions defs in a class, trait or object may be preceded by modifiers private
or override.

Abstract classes and traits may also contain declarations. These introduce deferred
functions or values with their types, but do not give an implementation. Deferred
members have to be implemented in subclasses before objects of an abstract class
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or trait can be created.






Chapter 7

Case Classes and Pattern Match-
Ing

Say, we want to write an interpreter for arithmetic expressions. To keep things sim-
ple initially, we restrict ourselves to just numbers and + operations. Such expres-
sions can be represented as a class hierarchy, with an abstract base class Expr as the
root, and two subclasses Number and Sum. Then, an expression1 + (3 + 7) would
be represented as

new Sum(new Number(1l), new Sum(new Number(3), new Number(7)))

Now, an evaluator of an expression like this needs to know of what form it is (either
Sum or Number) and also needs to access the components of the expression. The
following implementation provides all necessary methods.

abstract class Expr {
def isNumber: boolean
def isSum: boolean
def numValue: int
def leftOp: Expr
def rightOp: Expr
}
class Number(n: int) extends Expr {
def isNumber: boolean = true
def isSum: boolean = false
def numValue: int = n
def leftOp: Expr = throw new Error("Number.leftOp")
def rightOp: Expr = throw new Error("Number.rightOp")
}
class Sum(el: Expr, e2: Expr) extends Expr {
def isNumber: boolean = false
def isSum: boolean = true
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def numValue: int = throw new Error("Sum.numValue")
def leftOp: Expr = el
def rightOp: Expr = e2

}

With these classification and access methods, writing an evaluator function is sim-
ple:

def eval(e: Expr): int = {
if (e.isNumber) e.numValue
else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
else throw new Error("unrecognized expression kind")

}

However, defining all these methods in classes Sum and Number is rather tedious.
Furthermore, the problem becomes worse when we want to add new forms of ex-
pressions. For instance, consider adding a new expression form Prod for products.
Not only do we have to implement a new class Prod, with all previous classification
and access methods; we also have to introduce a new abstract method isProduct in
class Expr and implement that method in subclasses Number, Sum, and Prod. Having
to modify existing code when a system grows is always problematic, since it intro-
duces versioning and maintenance problems.

The promise of object-oriented programming is that such modifications should be
unnecessary, because they can be avoided by re-using existing, unmodified code
through inheritance. Indeed, a more object-oriented decomposition of our prob-
lem solves the problem. The idea is to make the “high-level” operation eval a
method of each expression class, instead of implementing it as a function outside
the expression class hierarchy, as we have done before. Because eval is now a mem-
ber of all expression nodes, all classification and access methods become superflu-
ous, and the implementation is simplified considerably:

abstract class Expr {
def eval: int

3

class Number(n: int) extends Expr {
def eval: int = n

}

class Sum(el: Expr, e2: Expr) extends Expr {
def eval: int = el.eval + e2.eval

Furthermore, adding a new Prod class does not entail any changes to existing code:

class Prod(el: Expr, e2: Expr) extends Expr {
def eval: int = el.eval * e2.eval



45

The conclusion we can draw from this example is that object-oriented decomposi-
tion is the technique of choice for constructing systems that should be extensible
with new types of data. But there is also another possible way we might want to ex-
tend the expression example. We might want to add new operations on expressions.
For instance, we might want to add an operation that pretty-prints an expression
tree to standard output.

If we have defined all classification and access methods, such an operation can eas-
ily be written as an external function. Here is an implementation:

def print(e: Expr): unit =

if (e.isNumber) System.out.print(e.numValue)

else if (e.isSum) {
System.out.print("(");
print(e.leftOp);
System.out.print("+")
print(e.rightOp)
System.out.print(")")

} else throw new Error("unrecognized expression kind")

However, if we had opted for an object-oriented decomposition of expressions, we
would need to add a new print method to each class:

abstract class Expr {
def eval: int
def print: unit
}
class Number(n: int) extends Expr {
def eval: int = n
def print: unit = System.out.print(n)
}
class Sum(el: Expr, e2: Expr) extends Expr {
def eval: int = el.eval + e2.eval
def print: unit = {
System.out.print("(");
print(el);
System.out.print("+")
print(e2)
System.out.print(")")

Hence, classical object-oriented decomposition requires modification of all existing
classes when a system is extended with new operations.

As yet another way we might want to extend the interpreter, consider expression
simplification. For instance, we might want to write a function which rewrites ex-
pressions of the forma * b + a « ctoa * (b + c). This operation requires in-
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spection of more than a single node of the expression tree at the same time. Hence,
it cannot be implemented by a method in each expression kind, unless that method
can also inspect other nodes. So we are forced to have classification and access
methods in this case. This seems to bring us back to square one, with all the prob-
lems of verbosity and extensibility.

Taking a closer look, one observers that the only purpose of the classification and
access functions is to reverse the data construction process. They let us determine,
first, which sub-class of an abstract base class was used and, second, what were the
constructor arguments. Since this situation is quite common, Scala has a way to
automate it with case classes.

7.1 Case Classes and Case Objects

Case classes and case objects are defined like a normal classes or objects, except that
the definition is prefixed with the modifier case. For instance, the definitions

abstract class Expr
case class Number(n: int) extends Expr
case class Sum(el: Expr, e2: Expr) extends Expr

introduce Number and Sum as case classes. The case modifier in front of a class or
object definition has the following effects.

1. Case classes implicitly come with a constructor function, with the same name
as the class. In our example, the two functions

def Number(n: int) = new Number(n)
def Sum(el: Expr, e2: Expr) = new Sum(el, e2)

would be added. Hence, one can now construct expression trees a bit more
concisely, as in

Sum(Sum(Number (1), Number(2)), Number(3))

2. Case classes and case objects implicitly come with implementations of meth-
ods toString, equals and hashCode, which override the methods with the
same name in class AnyRef. The implementation of these methods takes
in each case the structure of a member of a case class into account. The
toString method represents an expression tree the way it was constructed.
So,

Sum(Sum(Number (1), Number(2)), Number(3))

would be converted to exactly that string, whereas the default implementa-
tion in class AnyRef would return a string consisting of the outermost con-
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structor name Sum and a number. The equals methods treats two case mem-
bers of a case class as equal if they have been constructed with the same con-
structor and with arguments which are themselves pairwise equal. This also
affects the implementation of == and !=, which are implemented in terms of
equals in Scala. So,

Sum(Number (1), Number(2)) == Sum(Number(1l), Number(2))

will yield true. If Sum or Number were not case classes, the same expression
would be false, since the standard implementation of equals in class AnyRef
always treats objects created by different constructor calls as being differ-
ent. The hashCode method follows the same principle as other two meth-
ods. It computes a hash code from the case class constructor name and the
hash codes of the constructor arguments, instead of from the object’s address,
which is what the as the default implementation of hashCode does.

3. Case classes implicitly come with nullary accessor methods which retrieve
the constructor arguments. In our example, Number would obtain an acces-
sor method

def n: int

which returns the constructor parameter n, whereas Sum would obtain two
accessor methods

def el: Expr, e2: Expr

Hence, if for a value s of type Sum, say, one can now write s.el, to access the
left operand. However, for a value e of type Expr, the term e.el would be
illegal since el is defined in Sum; it is not a member of the base class Expr. So,
how do we determine the constructor and access constructor arguments for
values whose static type is the base class Expr? This is solved by the fourth
and final particularity of case classes.

4. Case classes allow the constructions of patterns which refer to the case class
constructor.

7.2 Pattern Matching

Pattern matching is a generalization of C or Java’s switch statement to class hier-
archies. Instead of a switch statement, there is a standard method match, which is
defined in Scala’s root class Any, and therefore is available for all objects. The match
method takes as argument a number of cases. For instance, here is an implementa-
tion of eval using pattern matching.

def eval(e: Expr): int = e match {
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case Number(x) => x
case Sum(l, r) => eval(l) + eval(r)

}

In this example, there are two cases. Each case associates a pattern with an expres-
sion. Patterns are matched against the selector values e. The first pattern in our
example, Number (n), matches all values of the form Number (v), where v is an arbi-
trary value. In that case, the pattern variablen is bound to the value v. Similarly, the
pattern Sum(1l, r) matches all selector values of form Sum(v;, v2) and binds the
pattern variables 1 and r to v; and v», respectively.

In general, patterns are built from

Case class constructors, e.g. Number, Sum, whose arguments are again patterns,

* pattern variables, e.g. n, el, e2,

the “wildcard” pattern _,

literals, e.g. 1, true, "abc",

constant identifiers, e.g. MAXINT, EmptySet.

Pattern variables always start with a lower-case letter, so that they can be distin-
guished from constant identifiers, which start with an upper case letter. Each vari-
able name may occur only once in a pattern. For instance, Sum(x, x) would be
illegal as a pattern, since the pattern variable x occurs twice in it.

Meaning of Pattern Matching. A pattern matching expression

e match { case p; => e; ... case p; => e, }

matches the patterns py, ..., p, in the order they are written against the selector
value e.

* A constructor pattern C(p, ..., pn) matches all values that are of type C (or a
subtype thereof) and that have been constructed with C-arguments matching
patterns py, ..., pn.

* A variable pattern x matches any value and binds the variable name to that
value.

* The wildcard pattern ‘_’ matches any value but does not bind a name to that
value.

* A constant pattern C matches a value which is equal (in terms of ==) to C.

The pattern matching expression rewrites to the right-hand-side of the first case
whose pattern matches the selector value. References to pattern variables are re-
placed by corresponding constructor arguments. If none of the patterns matches,
the pattern matching expression is aborted with a MatchError exception.
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Example 7.2.1 Our substitution model of program evaluation extends quite natu-
rally to pattern matching, For instance, here is how eval applied to a simple expres-
sion is re-written:

eval (Sum(Number(1), Number(2)))
-> (by rewriting the application)

Sum(Number (1), Number(2)) match {
case Number(n) => n
case Sum(el, e2) => eval(el) + eval(e2)

-> (by rewriting the pattern match)
eval (Number(1)) + eval(Number(2))
-> (by rewriting the first application)

Number (1) match {

case Number(n) => n

case Sum(el, e2) => eval(el) + eval(e2)
} + eval(Number(2))

-> (by rewriting the pattern match)
1 + eval(Number(2))

>*1+2 >3

Pattern Matching and Methods. In the previous example, we have used pattern
matching in a function which was defined outside the class hierarchy over which it
matches. Of course, it is also possible to define a pattern matching function in that
class hierarchy itself. For instance, we could have defined eval is a method of the
base class Expr, and still have used pattern matching in its implementation:

abstract class Expr {
def eval: int = this match {
case Number(n) => n
case Sum(el, e2) => el.eval + e2.eval
}
}

Exercise 7.2.2 Consider the following definitions representing trees of integers.
These definitions can be seen as an alternative representation of IntSet:
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abstract class IntTree
case object EmptyTree extends IntTree
case class Node(elem: int, left: IntTree, right: IntTree) extends IntTree

Complete the following implementations of function contains and insert for
IntTree’s.

def contains(t: IntTree, v: int): boolean = t match { ...

}
def insert(t: IntTree, v: int): IntTree = t match { ...

Pattern Matching Anonymous Functions. So far, case-expressions always ap-
peared in conjunction with a match operation. But it is also possible to use case-
expressions by themselves. A block of case-expressions such as

{ case Py = E; ... case P, => E, }

is seen by itself as a function which matches its arguments against the patterns
Py, ..., Py, and produces the result of one of Ej, ..., E,. (If no pattern matches, the
function would throw a MatchError exception instead). In other words, the expres-
sion above is seen as a shorthand for the anonymous function

(x = x match { case P => E; ... case P,, => E, })

where x is a fresh variable which is not used otherwise in the expression.
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Generic Types and Methods

Classes in Scala can have type parameters. We demonstrate the use of type parame-
ters with functional stacks as an example. Say, we want to write a data type of stacks
of integers, with methods push, top, pop, and isEmpty. This is achieved by the fol-
lowing class hierarchy:

abstract class IntStack {
def push(x: int): IntStack = new IntNonEmptyStack(x, this)
def isEmpty: boolean
def top: int
def pop: IntStack
}
class IntEmptyStack extends IntStack {
def isEmpty = true
def top = throw new Error("EmptyStack.top")
def pop = throw new Error("EmptyStack.pop")

3
class IntNonEmptyStack(elem: int, rest: IntStack) {

def isEmpty = false
def top = elem
def pop = rest

Of course, it would also make sense to define an abstraction for a stack of Strings.
To do that, one could take the existing abstraction for IntStack, rename it to
StringStack and at the same time rename all occurrences of type int to String.

A better way, which does not entail code duplication, is to parameterize the stack
definitions with the element type. Parameterization lets us generalize from a spe-
cific instance of a problem to a more general one. So far, we have used parameteri-
zation only for values, but it is available also for types. To arrive at a generic version
of Stack, we equip it with a type parameter.
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abstract class Stack[a] {
def push(x: a): Stack[a] = new NonEmptyStack[a](x, this)
def isEmpty: boolean
def top: a
def pop: Stack[al]
}
class EmptyStack[a] extends Stack[a] {
def isEmpty = true
def top = throw new Error("EmptyStack.top")
def pop = throw new Error("EmptyStack.pop™)
}
class NonEmptyStack[a](elem: a, rest: Stack[a]) extends Stack[a] {
def isEmpty = false
def top = elem
def pop = rest
}

In the definitions above, ‘a’ is a type parameter of class Stack and its subclasses.
Type parameters are arbitrary names; they are enclosed in brackets instead of
parentheses, so that they can be easily distinguished from value parameters. Here
is an example how the generic classes are used:

val x = new EmptyStack[int]
val v = x.push(1).push(2)
System.out.println(y.pop.top)

The first line creates a new empty stack of int’s. Note the actual type argument
[int] which replaces the formal type parameter a.

It is also possible to parameterize methods with types. As an example, here is a
generic method which determines whether one stack is a prefix of another.

def isPrefix[a](p: Stack[a], s: Stack[a]): boolean = {
p.isEmpty ||
p.top == s.top && isPrefix[a](p.pop, s.pop)

3

parameters are called polymorphic. Generic methods are also called polymorphic.
The term comes from the Greek, where it means “having many forms”. To apply a
polymorphic method such as isPrefix, we pass type parameters as well as value
parameters to it. For instance,

val sl = new EmptyStack[String].push("abc")
val s2 = new EmptyStack[String].push("abx").push(s.pop)
System.out.println(isPrefix[String](sl, s2))
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Local Type Inference. Passing type parameters such as [int] or [String] all the
time can become tedious in applications where generic functions are used a lot.
Quite often, the information in a type parameter is redundant, because the correct
parameter type can also be determined by inspecting the function’s value parame-
ters or expected result type. Taking the expression isPrefix[String](sl, s2)asan
example, we know that its value parameters are both of type Stack[String], so we
can deduce that the type parameter must be String. Scala has a fairly powerful type
inferencer which allows one to omit type parameters to polymorphic functions and
constructors in situations like these. In the example above, one could have writ-
ten isPrefix(sl, s2) and the missing type argument [String] would have been
inserted by the type inferencer.

8.1 Type Parameter Bounds

Now that we know how to make classes generic it is natural to generalize some of
the earlier classes we have written. For instance class IntSet could be generalized
to sets with arbitrary element types. Let’s try. The abstract class for generic sets is
easily written.

abstract class Set[a] {
def incl(x: a): Set[a];
def contains(x: a): boolean;

}

However, if we still want to implement sets as binary search trees, we encounter a
problem. The contains and incl methods both compare elements using methods
< and >. For IntSet this was OK, since type int has these two methods. But for
an arbitrary type parameter a, we cannot guarantee this. Therefore, the previous
implementation of, say, contains would generate a compiler error.

def contains(x: int): boolean =
if (x < elem) left contains x
A < not a member of type a.

One way to solve the problem is to restrict the legal types that can be substituted for
type a to only those types that contain methods < and > of the correct types. There is
a trait Ordered[a] in the standard class library Scala which represents values which
are comparable (via < and >) to values of type a. We can enforce the comparability
of a type by demanding that the type is a subtype of Ordered. This is done by giving
an upper bound to the type parameter of Set:

trait Set[a <: Ordered[a]l] {
def incl(x: a): Set[a];
def contains(x: a): boolean;

}



54 Generic Types and Methods

The parameter declaration a <: Ordered[a] introduces a as a type parameter
which must be a subtype of Ordered[a], i.e. its values must be comparable to values
of the same type.

With this restriction, we can now implement the rest of the generic set abstraction
as we did in the case of IntSets before.

class EmptySet[a <: Ordered[a]] extends Set[a] {

def contains(x: a): boolean = false

def incl(x: a): Set[a] = new NonEmptySet(x, new EmptySet[a], new EmptySet[a])
}

class NonEmptySet[a <: Ordered[a]]
(elem:a, left: Set[a], right: Set[a]) extends Set[a] {
def contains(x: a): boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true
def incl(x: a): Set[a] =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this

Note that we have left out the type argument in the object creations
new NonEmptySet(...). In the same way as for polymorphic methods, missing type
arguments in constructor calls are inferred from value arguments and/or the ex-
pected result type.

Here is an example that uses the generic set abstraction.
val s = new EmptySet[double].incl(1.0).incl(2.0)
s.contains(1.5)
This is OK, as type double implements the trait Ordered[double]. However, the fol-

lowing example is in error.

val s = new EmptySet[java.io.File]
A java.io.File does not conform to type
parameter bound Ordered[java.io.File].

To conclude the discussion of type parameter bounds, here is the definition of trait
Ordered in scala.

/*+ A class for totally ordered data. */
trait Ordered[a] {

/#*# Result of comparing ‘this’ with operand ‘that’.
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returns ‘x’ where
x <0 iff this < that
x =0 iff this == that
* x>0 iff this > that
%/
def compare(that: a): Int;
def < (that: a): Boolean = (this compare that) < 0
def > (that: a): Boolean = (this compare that) > 0
def <= (that: a): Boolean = (this compare that) <= 0
def >= (that: a): Boolean = (this compare that) >= 0
def compareTo(that: a): Int = compare(that)

8.2 Variance Annotations

The combination of type parameters and subtyping poses some interesting ques-
tions. For instance, should Stack[String] be a subtype of Stack[AnyRef]? Intu-
itively, this seems OK, since a stack of Strings is a special case of a stack of AnyRefs.
More generally, if T is a subtype of type S then Stack[T] should be a subtype of
Stack[S]. This property is called co-variant subtyping.

In Scala, generic types have by default non-variant subtyping. That is, with Stack
defined as above, stacks with different element types would never be in a subtype
relation. However, we can enforce co-variant subtyping of stacks by changing the
first line of the definition of class Stack as follows.

class Stack[+a] {

Prefixing a formal type parameter with a + indicates that subtyping is covariant in
that parameter. Besides +, there is also a prefix - which indicates contra-variant
subtyping. If Stack was defined class Stack[-a] ..., then T a subtype of type S
would imply that Stack[S] is a subtype of Stack[T] (which in the case of stacks
would be rather surprising!).

In a purely functional world, all types could be co-variant. However, the situation
changes once we introduce mutable data. Consider the case of arrays in Java or
.NET. Such arrays are represented in Scala by a generic class Array. Here is a partial
definition of this class.

class Array[a] {
def apply(index: int): a
def update(index: int, elem: a): unit

}
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The class above defines the way Scala arrays are seen from Scala user programs. The
Scala compiler will map this abstraction to the underlying arrays of the host system
in most cases where this possible.

In Java, arrays are indeed covariant; that is, for reference types T and S, if T is a sub-
type of S, then also Array[T] is a subtype of Array[S]. This might seem natural but
leads to safety problems that require special runtime checks. Here is an example:

val x = new Array[String](1)
val y: Array[Any] = x
y(0) = new Rational(l, 2); // this is syntactic sugar for
// v.update(0, new Rational(1, 2))

In the first line, a new array of strings is created. In the second line, this array is
bound to a variable y, of type Array[Any]. Assuming arrays are covariant, this is OK,
since Array[String] is a subtype of Array[Any]. Finally, in the last line a rational
number is stored in the array. This is also OK, since type Rational is a subtype of
the element type Any of the array y. We thus end up storing a rational number in an
array of strings, which clearly violates type soundness.

Java solves this problem by introducing a run-time check in the third line which
tests whether the stored element is compatible with the element type with which
the array was created. We have seen in the example that this element type is not
necessarily the static element type of the array being updated. If t