Programming in Scala

DRAFT
September 23, 2004

Martin Odersky

Programming Methods Laboratory
EPFL
Switzerland
Contents

I Rationale

II Scala by Example

1 A First Example

2 Programming with Actors and Messages

3 Expressions and Simple Functions
 3.1 Expressions And Simple Functions
 3.2 Parameters
 3.3 Conditional Expressions
 3.4 Example: Square Roots by Newton's Method
 3.5 Nested Functions
 3.6 Tail Recursion

4 First-Class Functions
 4.1 Anonymous Functions
 4.2 Currying
 4.3 Example: Finding Fixed Points of Functions
 4.4 Summary
 4.5 Language Elements Seen So Far

5 Classes and Objects

6 Case Classes and Pattern Matching
 6.1 Case Classes and Case Objects
 6.2 Pattern Matching

7 Generic Types and Methods

7.1 Type Parameter Bounds 61
7.2 Variance Annotations 63
7.3 Lower Bounds .. 65
7.4 Least Types .. 65
7.5 Tuples ... 67
7.6 Functions .. 68

8 Lists

8.1 Using Lists ... 71
8.2 Definition of class List I: First Order Methods 73
8.3 Example: Merge sort .. 76
8.4 Definition of class List II: Higher-Order Methods 78
8.5 Summary ... 84

9 For-Comprehensions

9.1 The N-Queens Problem 88
9.2 Querying with For-Comprehensions 89
9.3 Translation of For-Comprehensions 90
9.4 For-Loops .. 92
9.5 Generalizing For .. 92

10 Mutable State

10.1 Stateful Objects .. 95
10.2 Imperative Control Structures 99
10.3 Extended Example: Discrete Event Simulation 100
10.4 Summary ... 105

11 Computing with Streams

12 Iterators

12.1 Iterator Methods .. 111
12.2 Constructing Iterators 114
12.3 Using Iterators ... 115
18.2.1 Singleton Types .. 160
18.2.2 Type Projection 160
18.2.3 Type Designators 161
18.2.4 Parameterized Types 161
18.2.5 Compound Types 162
18.2.6 Function Types .. 162
18.3 Non-Value Types ... 163
18.3.1 Method Types ... 163
18.3.2 Polymorphic Method Types 164
18.4 Base Classes and Member Definitions 164
18.5 Relations between types 166
18.5.1 Type Equivalence 166
18.5.2 Conformance .. 166
18.6 Type Erasure ... 168
18.7 Implicit Conversions 168

19 Basic Declarations and Definitions 171
19.1 Value Declarations and Definitions 172
19.2 Variable Declarations and Definitions 173
19.3 Type Declarations and Type Aliases 174
19.4 Type Parameters .. 176
19.5 Function Declarations and Definitions 178
19.6 Overloaded Definitions 180
19.7 Import Clauses ... 180

20 Classes and Objects .. 183
20.1 Templates .. 183
20.1.1 Constructor Invocations 184
20.1.2 Base Classes ... 184
20.1.3 Evaluation .. 185
20.1.4 Template Members 186
20.1.5 Overriding .. 186
20.1.6 Modifiers .. 187
20.1.7 Attributes .. 189
<table>
<thead>
<tr>
<th>CONTENTS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>23 Views</td>
<td>223</td>
</tr>
<tr>
<td>23.1 View Definition</td>
<td>223</td>
</tr>
<tr>
<td>23.2 View Application</td>
<td>223</td>
</tr>
<tr>
<td>23.3 Finding Views</td>
<td>224</td>
</tr>
<tr>
<td>23.4 View-Bounds</td>
<td>225</td>
</tr>
<tr>
<td>23.5 Conditional Views</td>
<td>228</td>
</tr>
<tr>
<td>24 Top-Level Definitions</td>
<td>229</td>
</tr>
<tr>
<td>24.1 Packagings</td>
<td>229</td>
</tr>
<tr>
<td>25 Local Type Inference</td>
<td>231</td>
</tr>
<tr>
<td>26 XML expressions and patterns</td>
<td>233</td>
</tr>
<tr>
<td>26.1 XML expressions</td>
<td>233</td>
</tr>
<tr>
<td>26.2 XML patterns</td>
<td>235</td>
</tr>
<tr>
<td>27 The Scala Standard Library</td>
<td>237</td>
</tr>
<tr>
<td>27.1 Root Classes</td>
<td>237</td>
</tr>
<tr>
<td>27.2 Value Classes</td>
<td>239</td>
</tr>
<tr>
<td>27.2.1 Class Double</td>
<td>239</td>
</tr>
<tr>
<td>27.2.2 Class Float</td>
<td>239</td>
</tr>
<tr>
<td>27.2.3 Class Long</td>
<td>240</td>
</tr>
<tr>
<td>27.2.4 Class Int</td>
<td>240</td>
</tr>
<tr>
<td>27.2.5 Class Short</td>
<td>241</td>
</tr>
<tr>
<td>27.2.6 Class Char</td>
<td>241</td>
</tr>
<tr>
<td>27.2.7 Class Short</td>
<td>241</td>
</tr>
<tr>
<td>27.2.8 Class Boolean</td>
<td>242</td>
</tr>
<tr>
<td>27.2.9 Class Unit</td>
<td>242</td>
</tr>
<tr>
<td>27.3 Standard Reference Classes</td>
<td>242</td>
</tr>
<tr>
<td>27.3.1 Class String</td>
<td>242</td>
</tr>
<tr>
<td>27.3.2 The Tuple classes</td>
<td>243</td>
</tr>
<tr>
<td>27.3.3 The Function Classes</td>
<td>243</td>
</tr>
<tr>
<td>27.3.4 Class Array</td>
<td>243</td>
</tr>
<tr>
<td>27.4 The Predef Object</td>
<td>244</td>
</tr>
<tr>
<td>27.5 Class Node</td>
<td>245</td>
</tr>
<tr>
<td>CONTENTS</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Scala Syntax Summary</td>
<td>249</td>
</tr>
<tr>
<td>B</td>
<td></td>
</tr>
<tr>
<td>Implementation Status</td>
<td>255</td>
</tr>
</tbody>
</table>
I RATIONALE
There are hundreds of programming languages in active use, and many more are being designed each year. It is therefore hard to justify the development of yet another language. Nevertheless, this is what we attempt to do here. Our argument is based on two claims:

Claim 1: The raise in importance of web services and other distributed software is a fundamental paradigm shift in programming. It is comparable in scale to the shift 20 years ago from character-oriented to graphical user interfaces.

Claim 2: That paradigm shift will provide demand for new programming languages, just as graphical user interfaces promoted the adoption of object-oriented languages.

For the last 20 years, the most common programming model was object-oriented: System components are objects, and computation is done by method calls. Methods themselves take object references as parameters. Remote method calls let one extend this programming model to distributed systems. The problem of this model is that it does not scale up very well to wide-scale networks where messages can be delayed and components may fail. Web services address the message delay problem by increasing granularity, using method calls with larger, structured arguments, such as XML trees. They address the failure problem by using transparent replication and avoiding server state. Conceptually, they are tree transformers that consume incoming message documents and produce outgoing ones.

Why should this have an effect on programming languages? There are at least two reasons: First, today’s object-oriented languages are not very good at analyzing and transforming XML trees. Because such trees usually contain data but no methods, they have to be decomposed and constructed from the "outside", that is from code which is external to the tree definition itself. In an object-oriented language, the ways of doing so are limited. The most common solution \cite{W3Ca} is to represent trees in a generic way, where all tree nodes are values of a common type. This makes it easy to write generic traversal functions, but forces applications to operate on a very low conceptual level, which often loses important semantic distinctions present in the XML data. More semantic precision is obtained if different internal types model different kinds of nodes. But then tree decompositions require the use of run-time type tests and type casts to adapt the treatment to the kind of node encountered. Such type tests and type casts are generally not considered good object-oriented style. They are rarely efficient, nor easy to use.

Conceivably, the glue problem could be addressed by a “multi-paradigm” language that would express object-oriented, concurrent, as well as functional aspects of an application. But one needs to be careful not to simply replace cross-language glue by awkward interfaces between different paradigms within the language itself. Ideally, one would hope for a fusion which unifies concepts found in different paradigms instead of an agglutination, which merely includes them side by side.
This fusion is what we try to achieve with Scala.

Scala is both an object-oriented and functional language. It is a pure object-oriented language in the sense that every value is an object. Types and behavior of objects are described by classes. Classes can be composed using mixin composition. Scala is designed to work seamlessly with mainstream object-oriented languages, in particular Java and C#.

Scala is also a functional language in the sense that every function is a value. Nesting of function definitions and higher-order functions are naturally supported. Scala also supports a general notion of pattern matching which can model the algebraic types used in many functional languages. Furthermore, this notion of pattern matching naturally extends to the processing of XML data.

The design of Scala is driven by the desire to unify object-oriented and functional elements. Here are three examples how this is achieved:

- Since every function is a value and every value is an object, it follows that every function in Scala is an object. Indeed, there is a root class for functions which is specialized in the Scala standard library to data structures such as arrays and hash tables.

- Data structures in many functional languages are defined using algebraic data types. They are decomposed using pattern matching. Object-oriented languages, on the other hand, describe data with class hierarchies. Algebraic data types are usually closed, in that the range of alternatives of a type is fixed when the type is defined. By contrast, class hierarchies can be extended by adding new leaf classes. Scala adopts the object-oriented class hierarchy scheme for data definitions, but allows pattern matching against values coming from a whole class hierarchy, not just values of a single type. This can express both closed and extensible data types, and also provides a convenient way to exploit run-time type information in cases where static typing is too restrictive.

- Module systems of functional languages such as SML or Caml excel in abstraction; they allow very precise control over visibility of names and types, including the ability to partially abstract over types. By contrast, object-oriented languages excel in composition; they offer several composition mechanisms lacking in module systems, including inheritance and unlimited recursion between objects and classes. Scala unifies the notions of object and module, of module signature and interface, as well as of functor and class. This combines the abstraction facilities of functional module systems with the composition constructs of object-oriented languages. The unification is made possible by means of a new type system based on path-dependent types [OCRZ03].

There are several other languages that try to bridge the gap between the functional and object-oriented paradigms. Smalltalk[GR83], Python[vRD03], or Ruby[Mat01]

1Scala stands for “Scalable Language”. The term means “Stairway” in Italian.
come to mind. Unlike these languages, Scala has an advanced static type system, which contains several innovative constructs. This aspect makes the Scala definition a bit more complicated than those of the languages above. On the other hand, Scala enjoys the robustness, safety and scalability benefits of strong static typing. Furthermore, Scala incorporates recent advances in type inference, so that excessive type annotations in user programs can usually be avoided.

Acknowledgments. Many people have contributed to the definition and implementation of the Scala language and to parts of this book. First of all, I would like to thank the Scala team at EPFL consisting of Philippe Altherr, Vincent Cremet, Burak Emir, Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias Zenger. They put a lot of effort in the Scala compiler, tools, and documentation and have contributed in an essential way to the specification of the Scala language through many observations, clever suggestions, and discussions. Members of the team have also contributed examples in this book, as well as parts of the specification. Phil Bagwell, Gilad Bracha, Erik Ernst, Erik Mejer, Benjamin Pierce, Enno Runne, and Phil Wadler have given very useful feedback on the Scala design.

The documentation owes a great debt to Abelson's and Sussman's wonderful book “Structure and Interpretation of Computer Programs”[ASS96]. I have adapted several of their examples and exercises in the “Scala By Example” part of this book. Of course, the working language has in each case been changed from Scheme to Scala. Furthermore, the examples make use of Scala's object-oriented constructs where appropriate.
II Scala by Example
Scala is a programming language that fuses elements from object-oriented and functional programming. This part introduces Scala in an informal way, through a sequence of examples.

Chapters 1 and 2 highlight some of the features that make Scala interesting. The following chapters introduce the language constructs of Scala in a more thorough way, starting with simple expressions and functions, and working up through objects and classes, lists and streams, mutable state, pattern matching to more complete examples that show interesting programming techniques. The present informal exposition is complemented by the Scala Language Reference Manual which specifies Scala in a more detailed and precise way.
As a first example, here is an implementation of Quicksort in Scala.

```scala
def sort(xs: Array[Int]): Unit = {
  def swap(i: Int, j: Int): Unit = {
    val t = xs(i); xs(i) = xs(j); xs(j) = t;
  }
  def sort1(l: Int, r: Int): Unit = {
    val pivot = xs((l + r) / 2);
    var i = l, j = r;
    while (i <= j) {
      while (xs(i) < pivot) { i = i + 1 }
      while (xs(j) > pivot) { j = j - 1 }
      if (i <= j) {
        swap(i, j);
        i = i + 1;
        j = j - 1;
      }
    }
    if (l < j) sort1(l, j);
    if (j < r) sort1(i, r);
  }
  sort1(0, xs.length - 1);
}
```

The implementation looks quite similar to what one would write in Java or C. We use the same operators and similar control structures. There are also some minor syntactical differences. In particular:

- Definitions start with a reserved word. Function definitions start with `def`, variable definitions start with `var` and definitions of values (i.e. read only variables) start with `val`.

• The declared type of a symbol is given after the symbol and a colon. The declared type can often be omitted, because the compiler can infer it from the context.
• We use unit instead of void to define the result type of a procedure.
• Array types are written Array[T] rather than T[], and array selections are written a(i) rather than a[i].
• Functions can be nested inside other functions. Nested functions can access parameters and local variables of enclosing functions. For instance, the name of the array a is visible in functions swap and sort1, and therefore need not be passed as a parameter to them.

So far, Scala looks like a fairly conventional language with some syntactic peculiarities. In fact it is possible to write programs in a conventional imperative or object-oriented style. This is important because it is one of the things that makes it easy to combine Scala components with components written in mainstream languages such as Java, C# or Visual Basic.

However, it is also possible to write programs in a style which looks completely different. Here is Quicksort again, this time written in functional style.

```scala
def sort(xs: List[int]): List[int] = 
  if (xs.length <= 1) xs
  else {
    val pivot = xs(xs.length / 2);
    sort(xs.filter(x => x < pivot)) ::: xs.filter(x => x == pivot) ::: sort(xs.filter(x => x > pivot))
  }
```

The functional program works with lists instead of arrays.\(^1\) It captures the essence of the quicksort algorithm in a concise way:

• If the list is empty or consists of a single element, it is already sorted, so return it immediately.
• If the list is not empty, pick an an element in the middle of it as a pivot.
• Partition the lists into two sub-lists containing elements that are less than, respectively greater than the pivot element, and a third list which contains elements equal to pivot.
• Sort the first two sub-lists by a recursive invocation of the sort function.\(^2\)

\(^1\)In a future complete implementation of Scala, we could also have used arrays instead of lists, but at the moment arrays do not yet support filter and ::::.

\(^2\)This is not quite what the imperative algorithm does; the latter partitions the array into two sub-arrays containing elements less than or greater or equal to pivot.
• The result is obtained by appending the three sub-lists together.

Both the imperative and the functional implementation have the same asymptotic complexity – $O(N \log(N))$ in the average case and $O(N^2)$ in the worst case. But where the imperative implementation operates in place by modifying the argument array, the functional implementation returns a new sorted list and leaves the argument list unchanged. The functional implementation thus requires more transient memory than the imperative one.

The functional implementation makes it look like Scala is a language that’s specialized for functional operations on lists. In fact, it is not; all of the operations used in the example are simple library methods of a class `List[t]` which is part of the standard Scala library, and which itself is implemented in Scala.

In particular, there is the method `filter` which takes as argument a `predicate function` that maps list elements to boolean values. The result of `filter` is a list consisting of all the elements of the original list for which the given predicate function is true. The `filter` method of an object of type `List[t]` thus has the signature

```scala
def filter(p: t => boolean): List[t]
```

Here, `t => boolean` is the type of functions that take an element of type `t` and return a boolean. Functions like `filter` that take another function as argument or return one as result are called `higher-order` functions.

In the quicksort program, `filter` is applied three times to an anonymous function argument. The first argument, `x => x <= pivot` represents the function that maps its parameter `x` to the boolean value `x <= pivot`. That is, it yields true if `x` is smaller or equal than `pivot`, false otherwise. The function is anonymous, i.e. it is not defined with a name. The type of the `x` parameter is omitted because a Scala compiler can infer it automatically from the context where the function is used. To summarize, `xs.filter(x => x <= pivot)` returns a list consisting of all elements of the list `xs` that are smaller than `pivot`.

An object of type `List[t]` also has a method “`:::`” which takes an another list and which returns the result of appending this list to itself. This method has the signature

```scala
def :::(that: List[t]): List[t]
```

Scala does not distinguish between identifiers and operator names. An identifier can be either a sequence of letters and digits which begins with a letter, or it can be a sequence of special characters, such as “+”, “*”, or “:”. The last definition thus introduced a new method identifier “`:::`”. This identifier is used in the Quicksort example as a binary infix operator that connects the two sub-lists resulting from the partition. In fact, any method can be used as an operator in Scala. The binary operation `E op E'` is always interpreted as the method call `E.op(E')`. This holds also for binary infix operators which start with a letter. The recursive call to `sort` in the
last quicksort example is thus equivalent to

\[
\text{sort(a.filter(x => x < pivot))} \\
\text{:::(sort(a.filter(x => x == pivot)))} \\
\text{:::(sort(a.filter(x => x > pivot)))}
\]

Looking again in detail at the first, imperative implementation of Quicksort, we find that many of the language constructs used in the second solution are also present, albeit in a disguised form.

For instance, “standard” binary operators such as +, −, or < are not treated in any special way. Like append, they are methods of their left operand. Consequently, the expression \(i + 1 \) is regarded as the invocation \(i.+(1) \) of the + method of the integer value \(x \). Of course, a compiler is free (if it is moderately smart, even expected) to recognize the special case of calling the + method over integer arguments and to generate efficient inline code for it.

For efficiency and better error diagnostics the \texttt{while} loop is a primitive construct in Scala. But in principle, it could have just as well been a predefined function. Here is a possible implementation of it:

\[
\text{def While (def p: boolean) (def s: unit): unit =} \\
\text{if (p) { s ; While(p)(s) }}
\]

The \texttt{While} function takes as first parameter a test function, which takes no parameters and yields a boolean value. As second parameter it takes a command function which also takes no parameters and yields a trivial result. \texttt{While} invokes the command function as long as the test function yields true.
Chapter 2

Programming with Actors and Messages

Here's an example that shows an application area for which Scala is particularly well suited. Consider the task of implementing an electronic auction service. We use an Erlang-style actor process model to implement the participants of the auction. Actors are objects to which messages are sent. Every process has a “mailbox” of its incoming messages which is represented as a queue. It can work sequentially through the messages in its mailbox, or search for messages matching some pattern.

For every traded item there is an auctioneer process that publishes information about the traded item, that accepts offers from clients and that communicates with the seller and winning bidder to close the transaction. We present an overview of a simple implementation here.

As a first step, we define the messages that are exchanged during an auction. There are two abstract base classes (called traits): AuctionMessage for messages from clients to the auction service, and AuctionReply for replies from the service to the clients. For both base classes there exists a number of cases, which are defined in Figure 2.1.

For each base class, there are a number of case classes which define the format of particular messages in the class. These messages might well be ultimately mapped to small XML documents. We expect automatic tools to exist that convert between XML documents and internal data structures like the ones defined above.

Figure 2.2 presents a Scala implementation of a class Auction for auction processes that coordinate the bidding on one item. Objects of this class are created by indicating

- a seller process which needs to be notified when the auction is over,
- a minimal bid,
- the date when the auction is to be closed.
trait AuctionMessage;
case class Offer(bid: int, client: Actor) extends AuctionMessage;
case class Inquire(client: Actor) extends AuctionMessage;

trait AuctionReply;
case class Status(asked: int, expire: Date) extends AuctionReply;
case object BestOffer extends AuctionReply;
case class BeatenOffer(maxBid: int) extends AuctionReply;
case class AuctionConcluded(seller: Actor, client: Actor) extends AuctionReply;
case object AuctionFailed extends AuctionReply;
case object AuctionOver extends AuctionReply;

Listing 2.1: Implementation of an Auction Service

The process behavior is defined by its run method. That method repeatedly selects (using receiveWithin) a message and reacts to it, until the auction is closed, which is signaled by a TIMEOUT message. Before finally stopping, it stays active for another period determined by the timeToShutdown constant and replies to further offers that the auction is closed.

Here are some further explanations of the constructs used in this program:

- The receiveWithin method of class Actor takes as parameters a time span given in milliseconds and a function that processes messages in the mailbox. The function is given by a sequence of cases that each specify a pattern and an action to perform for messages matching the pattern. The receiveWithin method selects the first message in the mailbox which matches one of these patterns and applies the corresponding action to it.

- The last case of receiveWithin is guarded by a TIMEOUT pattern. If no other messages are received in the meantime, this pattern is triggered after the time span which is passed as argument to the enclosing receiveWithin method. TIMEOUT is a particular instance of class Message, which is triggered by the Actor implementation itself.

- Reply messages are sent using syntax of the form destination send SomeMessage. send is used here as a binary operator with a process and a message as arguments. This is equivalent in Scala to the method call destination.send(SomeMessage), i.e. the invocation of the send of the destination process with the given message as parameter.

The preceding discussion gave a flavor of distributed programming in Scala. It might seem that Scala has a rich set of language constructs that support actor processes, message sending and receiving, programming with timeouts, etc. In fact, the
class Auction(seller: Actor, minBid: int, closing: Date) extends Actor {
 val timeToShutdown = 36000000; // msec
 val bidIncrement = 10;
 override def run() = {
 var maxBid = minBid - bidIncrement;
 var maxBidder: Actor = _;
 var running = true;
 while (running) {
 receiveWithin ((closing.getTime() - new Date().getTime())) {
 case Offer(bid, client) =>
 if (bid >= maxBid + bidIncrement) {
 if (maxBid >= minBid) maxBidder send BeatenOffer(bid);
 maxBid = bid; maxBidder = client; client send BestOffer;
 } else {
 client send BeatenOffer(maxBid);
 }

 case Inquire(client) =>
 client send Status(maxBid, closing);

 case TIMEOUT =>
 if (maxBid >= minBid) {
 val reply = AuctionConcluded(seller, maxBidder);
 maxBidder send reply; seller send reply;
 } else {
 seller send AuctionFailed;
 }
 }
 receiveWithin(timeToShutdown) {
 case Offer(_, client) => client send AuctionOver
 case TIMEOUT => running = false;
 }
 }
 }
}

Listing 2.2: Implementation of an Auction Service
opposite is true. All the constructs discussed above are offered as methods in the library class `Actor`. That class is itself implemented in Scala, based on the underlying thread model of the host language (e.g. Java, or .NET). The implementation of all features of class `Actor` used here is given in Section 15.11.

The advantages of the library-based approach are relative simplicity of the core language and flexibility for library designers. Because the core language need not specify details of high-level process communication, it can be kept simpler and more general. Because the particular model of messages in a mailbox is a library module, it can be freely modified if a different model is needed in some applications. The approach requires however that the core language is expressive enough to provide the necessary language abstractions in a convenient way. Scala has been designed with this in mind; one of its major design goals was that it should be flexible enough to act as a convenient host language for domain specific languages implemented by library modules. For instance, the actor communication constructs presented above can be regarded as one such domain specific language, which conceptually extends the Scala core.
Chapter 3
Expressions and Simple Functions

The previous examples gave an impression of what can be done with Scala. We now introduce its constructs one by one in a more systematic fashion. We start with the smallest level, expressions and functions.

3.1 Expressions And Simple Functions

A Scala system comes with an interpreter which can be seen as a fancy calculator. A user interacts with the calculator by typing in expressions. The calculator returns the evaluation results and their types. Example:

```
> 87 + 145
232: scala.Int

> 5 + 2 * 3
11: scala.Int

> "hello" + " world!"
hello world: scala.String
```

It is also possible to name a sub-expression and use the name instead of the expression afterwards:

```
> def scale = 5
def scale: int

> 7 * scale
35: scala.Int

> def pi = 3.141592653589793
def pi: scala.Double
```
Definitions start with the reserved word `def`; they introduce a name which stands for the expression following the `=` sign. The interpreter will answer with the introduced name and its type.

Executing a definition such as `def x = e` will not evaluate the expression `e`. Instead `e` is evaluated whenever `x` is used. Alternatively, Scala offers a value definition `val x = e`, which does evaluate the right-hand-side `e` as part of the evaluation of the definition. If `x` is then used subsequently, it is immediately replaced by the pre-computed value of `e`, so that the expression need not be evaluated again.

How are expressions evaluated? An expression consisting of operators and operands is evaluated by repeatedly applying the following simplification steps.

- pick the left-most operation
- evaluate its operands
- apply the operator to the operand values.

A name defined by `def` is evaluated by replacing the name by the (unevaluated) definition's right hand side. A name defined by `val` is evaluated by replacing the name by the value of the definition's right-hand side. The evaluation process stops once we have reached a value. A value is some data item such as a string, a number, an array, or a list.

Example 3.1.1 Here is an evaluation of an arithmetic expression.

\[
(2 \times \pi) \times \text{radius}
\]

\[
\rightarrow (2 \times 3.141592653589793) \times \text{radius}
\]

\[
\rightarrow 6.283185307179586 \times \text{radius}
\]

\[
\rightarrow 6.283185307179586 \times 10
\]

\[
\rightarrow 62.83185307179586
\]

The process of stepwise simplification of expressions to values is called *reduction*.

3.2 Parameters

Using `def`, one can also define functions with parameters. Example:
```scala
> def square(x: double) = x * x
> square(2)
4.0: scala.Double
> square(5 + 3)
64.0: scala.Double
> square(square(4))
256.0: scala.Double

> def sumOfSquares(x: double, y: double) = square(x) + square(y)
> sumOfSquares(3, 2 + 2)
25.0: scala.Double
```

Function parameters follow the function name and are always enclosed in parentheses. Every parameter comes with a type, which is indicated following the parameter name and a colon. At the present time, we only need basic numeric types such as the type `scala.Double` of double precision numbers. Scala defines type aliases for some standard types, so we can write numeric types as in Java. For instance `double` is a type alias of `scala.Double` and `int` is a type alias for `scala.Int`.

Functions with parameters are evaluated analogously to operators in expressions. First, the arguments of the function are evaluated (in left-to-right order). Then, the function application is replaced by the function’s right hand side, and at the same time all formal parameters of the function are replaced by their corresponding actual arguments.

Example 3.2.1

```
> sumOfSquares(3, 2+2)
→ sumOfSquares(3, 4)
→ square(3) + square(4)
→ 3 * 3 + square(4)
→ 9 + square(4)
→ 9 + 4 * 4
→ 9 + 16
→ 25
```

The example shows that the interpreter reduces function arguments to values before rewriting the function application. One could instead have chosen to apply the function to unreduced arguments. This would have yielded the following reduction sequence:
sumOfSquares(3, 2+2)
→ square(3) + square(2+2)
→ 3 * 3 + square(2+2)
→ 9 + square(2+2)
→ 9 + (2+2) * (2+2)
→ 9 + 4 * (2+2)
→ 9 + 16
→ 25

The second evaluation order is known as *call-by-name*, whereas the first one is known as *call-by-value*. For expressions that use only pure functions and that therefore can be reduced with the substitution model, both schemes yield the same final values.

Call-by-value has the advantage that it avoids repeated evaluation of arguments. Call-by-name has the advantage that it avoids evaluation of arguments when the parameter is not used at all by the function. Call-by-value is usually more efficient than call-by-name, but a call-by-value evaluation might loop where a call-by-name evaluation would terminate. Consider:

```scala
> def loop: int = loop
> loop: scala.Int

> def first(x: int, y: int) = x
```

Then `first(1, loop)` reduces with call-by-name to 1, whereas the same term reduces with call-by-value repeatedly to itself, hence evaluation does not terminate.

```
first(1, loop)
→ first(1, loop)
→ first(1, loop)
→ ...
```

Scala uses call-by-value by default, but it switches to call-by-name evaluation if the parameter is preceded by `def`.

Example 3.2.2

```scala
> def constOne(x: int, def y: int) = 1

> constOne(1, loop)
1: scala.Int

> constOne(loop, 2) // gives an infinite loop.
```
3.3 Conditional Expressions

Scala’s if-else lets one choose between two alternatives. Its syntax is like Java’s if-else. But where Java’s if-else can be used only as an alternative of statements, Scala allows the same syntax to choose between two expressions. That’s why Scala’s if-else serves also as a substitute for Java’s conditional expression ... ? ... :

Example 3.3.1

```scala
> def abs(x: double) = if (x >= 0) x else -x
abs(x: double): double
```

Scala’s boolean expressions are similar to Java’s; they are formed from the constants true and false, comparison operators, boolean negation ! and the boolean operators && and ||.

3.4 Example: Square Roots by Newton’s Method

We now illustrate the language elements introduced so far in the construction of a more interesting program. The task is to write a function

```scala
def sqrt(x: double): double = ...
```

which computes the square root of x.

A common way to compute square roots is by Newton’s method of successive approximations. One starts with an initial guess y (say: y = 1). One then repeatedly improves the current guess y by taking the average of y and x/y. As an example, the next three columns indicate the guess y, the quotient x/y, and their average for the first approximations of √2.

<table>
<thead>
<tr>
<th>y</th>
<th>x/y</th>
<th>(y + x/y)/2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2/1 = 2</td>
<td>1.5</td>
</tr>
<tr>
<td>1.5</td>
<td>2/1.5 = 1.3333</td>
<td>1.4167</td>
</tr>
<tr>
<td>1.4167</td>
<td>2/1.4167 = 1.4118</td>
<td>1.4142</td>
</tr>
<tr>
<td>1.4142</td>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

One can implement this algorithm in Scala by a set of small functions, which each represent one of the elements of the algorithm.

We first define a function for iterating from a guess to the result:
def sqrtIter(guess: double, x: double): double =
 if (isGoodEnough(guess, x)) guess
 else sqrtIter(improve(guess, x), x);

Note that \texttt{sqrtIter} calls itself recursively. Loops in imperative programs can always be modeled by recursion in functional programs.

Note also that the definition of \texttt{sqrtIter} contains a return type, which follows the parameter section. Such return types are mandatory for recursive functions. For a non-recursive function, the return type is optional; if it is missing the type checker will compute it from the type of the function's right-hand side. However, even for non-recursive functions it is often a good idea to include a return type for better documentation.

As a second step, we define the two functions called by \texttt{sqrtIter}: a function to improve the guess and a termination test \texttt{isGoodEnough}. Here is their definition.

\begin{verbatim}
 def improve(guess: double, x: double) =
 (guess + x / guess) / 2;

 def isGoodEnough(guess: double, x: double) =
 abs(square(guess) - x) < 0.001;
\end{verbatim}

Finally, the \texttt{sqrt} function itself is defined by an application of \texttt{sqrtIter}.

\begin{verbatim}
 def sqrt(x: double) = sqrtIter(1.0, x);
\end{verbatim}

\textbf{Exercise 3.4.1} The \texttt{isGoodEnough} test is not very precise for small numbers and might lead to non-termination for very large ones (why?). Design a different version of \texttt{isGoodEnough} which does not have these problems.

\textbf{Exercise 3.4.2} Trace the execution of the \texttt{sqrt(4)} expression.

\section{Nested Functions}

The functional programming style encourages the construction of many small helper functions. In the last example, the implementation of \texttt{sqrt} made use of the helper functions \texttt{sqrtIter}, \texttt{improve} and \texttt{isGoodEnough}. The names of these functions are relevant only for the implementation of \texttt{sqrt}. We normally do not want users of \texttt{sqrt} to access these functions directly.

We can enforce this (and avoid name-space pollution) by including the helper functions within the calling function itself:

\begin{verbatim}
 def sqrt(x: double) = {
 def sqrtIter(guess: double, x: double): double =
\end{verbatim}
if (isGoodEnough(guess, x)) guess
else sqrtIter(improve(guess, x), x);
def improve(guess: double, x: double) =
 (guess + x / guess) / 2;
def isGoodEnough(guess: double, x: double) =
 abs(square(guess) - x) < 0.001;
sqrtIter(1.0, x)
}

In this program, the braces { ... } enclose a block. Blocks in Scala are themselves expressions. Every block ends in a result expression which defines its value. The result expression may be preceded by auxiliary definitions, which are visible only in the block itself.

Every definition in a block must be followed by a semicolon, which separates this definition from subsequent definitions or the result expression. However, a semicolon is inserted implicitly if the definition ends in a right brace and is followed by a new line. Therefore, the following are all legal:

\[
\text{def } f(x) = x + 1; \quad /* ';' mandatory */ \text{ f(1) + f(2)}
\]

\[
\text{def } g(x) = \{x + 1\}
\text{ g(1) + g(2)}
\]

\[
\text{def } h(x) = \{x + 1\}; \quad /* ';' mandatory */ \text{ h(1) + h(2)}
\]

Scala uses the usual block-structured scoping rules. A name defined in some outer block is visible also in some inner block, provided it is not redefined there. This rule permits us to simplify our sqrt example. We need not pass x around as an additional parameter of the nested functions, since it is always visible in them as a parameter of the outer function sqrt. Here is the simplified code:

\[
\text{def } sqrt(x: double) = \\
 \text{def } sqrtIter(guess: double): double = \\
 \quad \text{if } (\text{isGoodEnough(guess)) guess} \\
 \quad \text{else } sqrtIter(\text{improve(guess))}; \\
 \text{def } improve(guess: double) = \\
 \quad (guess + x / guess) / 2; \\
 \text{def } isGoodEnough(guess: double) = \\
 \quad \text{abs(square(guess) - x) < 0.001; } \\
 \text{sqrtIter(1.0)}
\]
3.6 Tail Recursion

Consider the following function to compute the greatest common divisor of two given numbers.

```python
def gcd(a: int, b: int): int = 
    if (b == 0) a 
    else gcd(b, a % b)
```

Using our substitution model of function evaluation, \(\text{gcd}(14, 21) \) evaluates as follows:

\[
\begin{align*}
gcd(14, 21) & \rightarrow \text{if } (21 == 0) \text{ else } \text{gcd}(21, 14 \mod 21) \\
& \rightarrow \text{if } \text{false} \text{ else } \text{gcd}(21, 14 \mod 21) \\
& \rightarrow \text{gcd}(21, 14 \mod 21) \\
& \rightarrow \text{gcd}(21, 14) \\
& \rightarrow \text{if } (14 == 0) \text{ else } \text{gcd}(14, 21 \mod 14) \\
& \rightarrow \text{gcd}(14, 21 \mod 14) \\
& \rightarrow \text{gcd}(14, 7) \\
& \rightarrow \text{if } (7 == 0) \text{ else } \text{gcd}(7, 14 \mod 7) \\
& \rightarrow \text{gcd}(7, 14 \mod 7) \\
& \rightarrow \text{gcd}(7, 0) \\
& \rightarrow \text{if } (0 == 0) \text{ else } \text{gcd}(0, 7 \mod 0) \\
& \rightarrow 7
\end{align*}
\]

Contrast this with the evaluation of another recursive function, \(\text{factorial} \):

```python
def factorial(n: int): int = 
    if (n == 0) 1 
    else n * factorial(n - 1)
```

The application \(\text{factorial}(5) \) rewrites as follows:

\[
\begin{align*}
\text{factorial}(5) & \rightarrow \text{if } (5 == 0) \text{ else } 5 \times \text{factorial}(5 - 1) \\
& \rightarrow 5 \times \text{factorial}(5 - 1) \\
& \rightarrow 5 \times \text{factorial}(4) \\
& \rightarrow 5 \times (4 \times \text{factorial}(3)) \\
& \rightarrow 5 \times (4 \times (3 \times \text{factorial}(2))) \\
& \rightarrow 5 \times (4 \times (3 \times (2 \times \text{factorial}(1)))) \\
& \rightarrow 5 \times (4 \times (3 \times (2 \times (1 \times \text{factorial}(0))))) \\
& \rightarrow 5 \times (4 \times (3 \times (2 \times (1 \times 1)))) \\
& \rightarrow 120
\end{align*}
\]

There is an important difference between the two rewrite sequences: The terms in the rewrite sequence of \(\text{gcd} \) have again and again the same form. As evaluation proceeds, their size is bounded by a constant. By contrast, in the evaluation of \(\text{factorial} \) we get longer and longer chains of operands which are then multiplied in the last part of the evaluation sequence.
Even though actual implementations of Scala do not work by rewriting terms, they nevertheless should have the same space behavior as in the rewrite sequences. In the implementation of gcd, one notes that the recursive call to gcd is the last action performed in the evaluation of its body. One also says that gcd is “tail-recursive”. The final call in a tail-recursive function can be implemented by a jump back to the beginning of that function. The arguments of that call can overwrite the parameters of the current instantiation of gcd, so that no new stack space is needed. Hence, tail recursive functions are iterative processes, which can be executed in constant space.

By contrast, the recursive call in factorial is followed by a multiplication. Hence, a new stack frame is allocated for the recursive instance of factorial, and is deallocated after that instance has finished. The given formulation of the factorial function is not tail-recursive; it needs space proportional to its input parameter for its execution.

More generally, if the last action of a function is a call to another (possibly the same) function, only a single stack frame is needed for both functions. Such calls are called “tail calls”. In principle, tail calls can always re-use the stack frame of the calling function. However, some run-time environments (such as the Java VM) lack the primitives to make stack frame re-use for tail calls efficient. A production quality Scala implementation is therefore only required to re-use the stack frame of a directly tail-recursive function whose last action is a call to itself. Other tail calls might be optimized also, but one should not rely on this across implementations.

Exercise 3.6.1 Design a tail-recursive version of factorial.
Chapter 4
First-Class Functions

A function in Scala is a “first-class value”. Like any other value, it may be passed as a parameter or returned as a result. Functions which take other functions as parameters or return them as results are called higher-order functions. This chapter introduces higher-order functions and shows how they provide a flexible mechanism for program composition.

As a motivating example, consider the following three related tasks:

1. Write a function to sum all integers between two given numbers a and b:

   ```scala
   def sumInts(a: int, b: int): int = 
   if (a > b) 0 else a + sumInts(a + 1, b)
   ```

2. Write a function to sum the squares of all integers between two given numbers a and b:

   ```scala
   def square(x: int): int = x * x;
   def sumSquares(a: int, b: int): int = 
   if (a > b) 0 else square(a) + sumSquares(a + 1, b)
   ```

3. Write a function to sum the powers 2^n of all integers n between two given numbers a and b:

   ```scala
   def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x - 1);
   def sumPowersOfTwo(a: int, b: int): int = 
   if (a > b) 0 else powerOfTwo(a) + sumPowersOfTwo(a + 1, b)
   ```

These functions are all instances of $\sum_{n}^{b} f(n)$ for different values of f. We can factor out the common pattern by defining a function `sum`:

```scala
def sum(f: int => int, a: int, b: int): double = 
if (a > b) 0 else f(a) + sum(f, a + 1, b)
```
The type \(\text{int} \Rightarrow \text{int} \) is the type of functions that take arguments of type int and return results of type int. So \text{sum} is a function which takes another function as a parameter. In other words, \text{sum} is a higher-order function.

Using \text{sum}, we can formulate the three summing functions as follows.

\begin{verbatim}
def sumInts(a: int, b: int): int = sum(id, a, b);
def sumSquares(a: int, b: int): int = sum(square, a, b);
def sumPowersOfTwo(a: int, b: int): int = sum(powerOfTwo, a, b);
\end{verbatim}

where

\begin{verbatim}
def id(x: int): int = x;
def square(x: int): int = x * x;
def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x - 1);
\end{verbatim}

4.1 Anonymous Functions

Parameterization by functions tends to create many small functions. In the previous example, we defined \text{id}, \text{square} and \text{power} as separate functions, so that they could be passed as arguments to \text{sum}.

Instead of using named function definitions for these small argument functions, we can formulate them in a shorter way as anonymous functions. An anonymous function is an expression that evaluates to a function; the function is defined without giving it a name. As an example consider the anonymous square function:

\[x: \text{int} \Rightarrow x \times x \]

The part before the arrow ‘\Rightarrow’ is the parameter of the function, whereas the part following the ‘\Rightarrow’ is its body. If there are several parameters, we need to enclose them in parentheses. For instance, here is an anonymous function which multiples its two arguments.

\[(x: \text{int}, y: \text{int}) \Rightarrow x \times y \]

Using anonymous functions, we can reformulate the first two summation functions without named auxiliary functions:

\begin{verbatim}
def sumInts(a: int, b: int): int = sum(x: int => x, a, b);
def sumSquares(a: int, b: int): int = sum(x: int => x * x, a, b);
\end{verbatim}

Often, the Scala compiler can deduce the parameter type(s) from the context of the anonymous function in which case they can be omitted. For instance, in the case of \text{sumInts} or \text{sumSquares}, one knows from the type of \text{sum} that the first parameter must be a function of type \text{int} \Rightarrow \text{int}. Hence, the parameter type \text{int} is redundant.
4.2 Currying

The latest formulation of the summing functions is already quite compact. But we can do even better. Note that a and b appear as parameters and arguments of every function but they do not seem to take part in interesting combinations. Is there a way to get rid of them?

Let's try to rewrite sum so that it does not take the bounds a and b as parameters:

```scala
def sum(f: int => int) = {
  def sumF(a: int, b: int): int =
    if (a > b) 0 else f(a) + sumF(a + 1, b);
  sumF
}
```

In this formulation, sum is a function which returns another function, namely the specialized summing function sumF. This latter function does all the work; it takes the bounds a and b as parameters, applies sum's function parameter f to all integers between them, and sums up the results.

Using this new formulation of sum, we can now define:

```scala
def sumInts = sum(x => x);
def sumSquares = sum(x => x * x);
def sumPowersOfTwo = sum(powerOfTwo);
```

Or, equivalently, with value definitions:
val sumInts = sum(x => x);
val sumSquares = sum(x => x * x);
val sumPowersOfTwo = sum(powerOfTwo);

These functions can be applied like other functions. For instance,

```scala
> sumSquares(1, 10) + sumPowersOfTwo(10, 20)
267632001: scala.Int
```

How are function-returning functions applied? As an example, in the expression

```scala
sum(x => x * x)(1, 10),
```

the function `sum` is applied to the squaring function `(x => x * x)`. The resulting function is then applied to the second argument list, `(1, 10)`.

This notation is possible because function application associates to the left. That is, if `args1` and `args2` are argument lists, then

```
f(args1)(args2) is equivalent to (f(args1))(args2)
```

In our example, `sum(x => x * x)(1, 10)` is equivalent to the following expression:

```
(sum(x => x * x))(1, 10).
```

The style of function-returning functions is so useful that Scala has special syntax for it. For instance, the next definition of `sum` is equivalent to the previous one, but is shorter:

```scala
def sum(f: int => int)(a: int, b: int): int =
  if (a > b) 0 else f(a) + sum(f)(a + 1, b)
```

Generally, a curried function definition

```scala
def f (args1) ... (argsn) = E
```

where `n > 1` expands to

```scala
def f (args1) ... (argsn) = { def g (argsn) = E ; g }
```

where `g` is a fresh identifier. Or, shorter, using an anonymous function:

```scala
def f (args1) ... (argsn) = ( argsn ) => E .
```

Performing this step `n` times yields that

```scala
def f (args1) ... (argsn) = E
```

is equivalent to

```scala
def f = (args1) => ... => (argsn) => E .
```
Or, equivalently, using a value definition:

```
val f = (args_1) => ... => (args_n) => E .
```

This style of function definition and application is called *currying* after its promoter, Haskell B. Curry, a logician of the 20th century, even though the idea goes back further to Moses Schönfinkel and Gottlob Frege.

The type of a function-returning function is expressed analogously to its parameter list. Taking the last formulation of `sum` as an example, the type of `sum` is `(int => int) => (int, int) => int`. This is possible because function types associate to the right. I.e.

\[T_1 \Rightarrow T_2 \Rightarrow T_3 \quad \text{is equivalent to} \quad T_1 \Rightarrow (T_2 \Rightarrow T_3) \]

Exercise 4.2.1 1. The `sum` function uses a linear recursion. Can you write a tail-recursive one by filling in the ??’s?

```scala
def sum(f: int => double)(a: int, b: int): double = {
def iter(a, result) = {
    if (??) ??
    else iter(??, ??)
}
    iter(??, ??)
}
```

Exercise 4.2.2 Write a function `product` that computes the product of the values of functions at points over a given range.

Exercise 4.2.3 Write `factorial` in terms of `product`.

Exercise 4.2.4 Can you write an even more general function which generalizes both `sum` and `product`?

4.3 Example: Finding Fixed Points of Functions

A number \(x \) is called a *fixed point* of a function \(f \) if

\[f(x) = x . \]

For some functions \(f \) we can locate the fixed point by beginning with an initial guess and then applying \(f \) repeatedly, until the value does not change anymore (or the change is within a small tolerance). This is possible if the sequence

\[x, f(x), f(f(x)), f(f(f(x))), \ldots \]
converges to fixed point of f. This idea is captured in the following “fixed-point finding function”:

```scala
val tolerance = 0.0001;
def isCloseEnough(x: double, y: double) = abs((x - y) / x) < tolerance;
def fixedPoint(f: double => double)(firstGuess: double) = {
    def iterate(guess: double): double = {
        val next = f(guess);
        if (isCloseEnough(guess, next)) next
        else iterate(next)
    }
    iterate(firstGuess)
}
```

We now apply this idea in a reformulation of the square root function. Let’s start with a specification of \sqrt{x}:

\[
\sqrt{x} = \text{the } y \text{ such that } y \cdot y = x \\
= \text{the } y \text{ such that } y = x / y
\]

Hence, \sqrt{x} is a fixed point of the function $y \mapsto x / y$. This suggests that \sqrt{x} can be computed by fixed point iteration:

```scala
def sqrt(x: double) = fixedPoint(y => x / y)(1.0)
```

But if we try this, we find that the computation does not converge. Let’s instrument the fixed point function with a print statement which keeps track of the current guess value:

```scala
def fixedPoint(f: double => double)(firstGuess: double) = {
    def iterate(guess: double): double = {
        val next = f(guess);
        System.out.println(next);
        if (isCloseEnough(guess, next)) next
        else iterate(next)
    }
    iterate(firstGuess)
}
```

Then, $\sqrt{2}$ yields:

```
2.0
1.0
2.0
1.0
2.0
...```
One way to control such oscillations is to prevent the guess from changing too much. This can be achieved by averaging successive values of the original sequence:

```scala
> def sqrt(x: double) = fixedPoint(y => (y + x/y) / 2)(1.0)
def sqrt(x: scala.Double): scala.Double
> sqrt(2.0)
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899
```

In fact, expanding the `fixedPoint` function yields exactly our previous definition of fixed point from Section 3.4.

The previous examples showed that the expressive power of a language is considerably enhanced if functions can be passed as arguments. The next example shows that functions which return functions can also be very useful.

Consider again fixed point iterations. We started with the observation that \( \sqrt{x} \) is a fixed point of the function \( y \mapsto x / y \). Then we made the iteration converge by averaging successive values. This technique of *average damping* is so general that it can be wrapped in another function.

```scala
def averageDamp(f: double => double)(x: double) = (x + f(x)) / 2
```

Using `averageDamp`, we can reformulate the square root function as follows.

```scala
def sqrt(x: double) = fixedPoint(averageDamp(y => x/y))(1.0)
```

This expresses the elements of the algorithm as clearly as possible.

**Exercise 4.3.1** Write a function for cube roots using `fixedPoint` and `averageDamp`.

### 4.4 Summary

We have seen in the previous chapter that functions are essential abstractions, because they permit us to introduce general methods of computing as explicit, named elements in our programming language. The present chapter has shown that these abstractions can be combined by higher-order functions to create further abstractions. As programmers, we should look out for opportunities to abstract and to reuse. The highest possible level of abstraction is not always the best, but it is important to know abstraction techniques, so that one can use abstractions where appropriate.
4.5 Language Elements Seen So Far

Chapters 3 and 4 have covered Scala’s language elements to express expressions and types comprising of primitive data and functions. The context-free syntax of these language elements is given below in extended Backus-Naur form, where ‘|’ denotes alternatives, [ ... ] denotes option (0 or 1 occurrence), and { ... } denotes repetition (0 or more occurrences).

Characters

Scala programs are sequences of (Unicode) characters. We distinguish the following character sets:

- whitespace, such as ‘ ’, tabulator, or newline characters,
- letters ‘a’ to ‘z’, ‘A’ to ‘Z’,
- digits ‘0’ to ‘9’,
- the delimiter characters . , ; ( ) { } [ ] \ " ’
- operator characters, such as ‘#’ ‘+’, ‘:’. Essentially, these are printable characters which are in none of the character sets above.

Lexemes:

ident   = letter {letter	digit}
	operator { operator }
	ident '_' ident
literal = “as in Java”	

Literals are as in Java. They define numbers, characters, strings, or boolean values. Examples of literals as 0, 1.0d10, ’x’, ”he said “hi!””, or true.

Identifiers can be of two forms. They either start with a letter, which is followed by a (possibly empty) sequence of letters or symbols, or they start with an operator character, which is followed by a (possibly empty) sequence of operator characters. Both forms of identifiers may contain underscore characters ‘_’. Furthermore, an underscore character may be followed by either sort of identifier. Hence, the following are all legal identifiers:

| x          | Room10a | + | -- | foldl_: | +_vector |

It follows from this rule that subsequent operator-identifiers need to be separated by whitespace. For instance, the input x+-y is parsed as the three token sequence x,
+-, y. If we want to express the sum of x with the negated value of y, we need to add at least one space, e.g. x+ -y.

The $ character is reserved for compiler-generated identifiers; it should not be used in source programs.

The following are reserved words, they may not be used as identifiers:

```
abstract case catch class def
do else extends false final
finally for if import new
null object override package private
protected return sealed super this
trait try true type val
var while with yield
_ : = => <- <: >: # @
```

**Types:**

```
Type = SimpleType | FunctionType
FunctionType = SimpleType '=>' Type | '(' [Types] ')' '=>' Type
SimpleType = byte | short | char | int | long | double | float |
 boolean | unit | String
Types = Type {',' Type}
```

Types can be:

- number types byte, short, char, int, long, float and double (these are as in Java),
- the type boolean with values **true** and **false**, 
- the type unit with the only value (),
- the type String,
- function types such as (int, int) => int or String => Int => String.

**Expressions:**

```
Expr = InfixExpr | FunctionExpr | if ' (' Expr ')' Expr else Expr
InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr
Operator = ident
PrefixExpr = ['+' | '-' | '!' | '~'] SimpleExpr
SimpleExpr = ident | literal | SimpleExpr '.' ident | Block
FunctionExpr = Bindings '=>' Expr
Bindings = ident [':' SimpleType] | '(' [Binding {',' Binding}] ')'
Binding = ident [':' Type]
Block = '{' {Def ';'} Expr '}'
```
Expressions can be:

- identifiers such as x, isGoodEnough, *, or +/-,
- literals, such as 0, 1.0, or "abc",
- field and method selections, such as System.out.println,
- function applications, such as sqrt(x),
- operator applications, such as -x or y + x,
- conditionals, such as if (x < 0) -x else x,
- blocks, such as { val x = abs(y) ; x * 2 },
- anonymous functions, such as x => x + 1 or (x: int, y: int) => x + y.

Definitions:

\[
\begin{align*}
\text{Def} & \quad = \quad \text{FunDef} \mid \text{ValDef} \\
\text{FunDef} & \quad = \quad \text{'}def\text{'} \ \text{ident} \ {} (\ {[]} [\text{Parameters}] {'})) \ {} [{'}: \ \text{Type}] \ {} '=' \ \text{Expr} \\
\text{ValDef} & \quad = \quad \text{'}val\text{' } \ \text{ident} \ {} [{'}: \ \text{Type}] \ {} '=' \ \text{Expr} \\
\text{Parameters} & \quad = \quad \text{Parameter} \ {} [','] \ \text{Parameter} \\
\text{Parameter} & \quad = \quad [\text{'}def\text{' } \ \text{ident} \ {} '{'}: \ \text{Type} \\
\end{align*}
\]

Definitions can be:

- function definitions such as def square(x: int): int = x * x,
- value definitions such as val y = square(2).
Chapter 5

Classes and Objects

Scala does not have a built-in type of rational numbers, but it is easy to define one, using a class. Here’s a possible implementation.

```scala
class Rational(n: int, d: int) {
 private def gcd(x: int, y: int): int = {
 if (x == 0) y
 else if (x < 0) gcd(-x, y)
 else if (y < 0) -gcd(x, -y)
 else gcd(y % x, x);
 }
 private val g = gcd(n, d);

 val numer: int = n/g;
 val denom: int = d/g;
 def +(that: Rational) =
 new Rational(numer * that.denom + that.numer * denom,
 denom * that.denom);
 def -(that: Rational) =
 new Rational(numer * that.denom - that.numer * denom,
 denom * that.denom);
 def *(that: Rational) =
 new Rational(numer * that.numer, denom * that.denom);
 def /(that: Rational) =
 new Rational(numer * that.denom, denom * that.numer);
}
```

This defines `Rational` as a class which takes two constructor arguments `n` and `d`, containing the number’s numerator and denominator parts. The class provides fields which return these parts as well as methods for arithmetic over rational numbers. Each arithmetic method takes as parameter the right operand of the operation. The left operand of the operation is always the rational number of which the
method is a member.

**Private members.** The implementation of rational numbers defines a private method gcd which computes the greatest common denominator of two integers, as well as a private field g which contains the gcd of the constructor arguments. These members are inaccessible outside class Rational. They are used in the implementation of the class to eliminate common factors in the constructor arguments in order to ensure that numerator and denominator are always in normalized form.

**Creating and Accessing Objects.** As an example of how rational numbers can be used, here’s a program that prints the sum of all numbers $1/i$ where $i$ ranges from 1 to 10.

```scala
var i = 1;
var x = new Rational(0, 1);
while (i <= 10) {
 x = x + new Rational(1, i);
 i = i + 1;
}
System.out.println("" + x.numer + "/" + x.denom);
```

The + takes as left operand a string and as right operand a value of arbitrary type. It returns the result of converting its right operand to a string and appending it to its left operand.

**Inheritance and Overriding.** Every class in Scala has a superclass which it extends. If a class does not mention a superclass in its definition, the root type scala.AnyRef is implicitly assumed (for Java implementations, this type is an alias for java.lang.Object). For instance, class Rational could equivalently be defined as

```scala
class Rational(n: int, d: int) extends AnyRef {
 ...
}
```

A class inherits all members from its superclass. It may also redefine (or: override) some inherited members. For instance, class java.lang.Object defines a method toString which returns a representation of the object as a string:

```scala
class Object {
 ...
 def toString(): String = ...
}
```
The implementation of `toString` in `Object` forms a string consisting of the object's class name and a number. It makes sense to redefine this method for objects that are rational numbers:

```scala
class Rational(n: int, d: int) extends AnyRef {
 ... // as before
 override def toString() = "" + numer + "/" + denom;
}
```

Note that, unlike in Java, redefining definitions need to be preceded by an `override` modifier.

If class `A` extends class `B`, then objects of type `A` may be used wherever objects of type `B` are expected. We say in this case that type `A` conforms to type `B`. For instance, `Rational` conforms to `AnyRef`, so it is legal to assign a `Rational` value to a variable of type `AnyRef`:

```scala
var x: AnyRef = new Rational(1,2);
```

**Parameterless Methods.** Unlike in Java, methods in Scala do not necessarily take a parameter list. An example is the `square` method below. This method is invoked by simply mentioning its name.

```scala
class Rational(n: int, d: int) extends AnyRef {
 ... // as before
 def square = new Rational(numer*numer, denom*denom);
}
val r = new Rational(3,4);
System.out.println(r.square); // prints '9/16'
```

That is, parameterless methods are accessed just as value fields such as `numer` are. The difference between values and parameterless methods lies in their definition. The right-hand side of a value is evaluated when the object is created, and the value does not change afterwards. A right-hand side of a parameterless method, on the other hand, is evaluated each time the method is called. The uniform access of fields and parameterless methods gives increased flexibility for the implementer of a class. Often, a field in one version of a class becomes a computed value in the next version. Uniform access ensures that clients do not have to be rewritten because of that change.

**Abstract Classes.** Consider the task of writing a class for sets of integer numbers with two operations, `incl` and `contains`. `(s incl x)` should return a new set which contains the element `x` together with all the elements of set `s`. `(s contains x)` should return `true` if the set `s` contains the element `x`, and should return `false` otherwise. The interface of such sets is given by:
abstract class IntSet {
    def incl(x: int): IntSet;
    def contains(x: int): boolean;
}

IntSet is labeled as an abstract class. This has two consequences. First, abstract classes may have deferred members which are declared but which do not have an implementation. In our case, both incl and contains are such members. Second, because an abstract class might have unimplemented members, no objects of that class may be created using new. By contrast, an abstract class may be used as a base class of some other class, which implements the deferred members.

Traits. Instead of abstract class one also often uses the keyword trait in Scala. A trait is an abstract class with no state, no constructor arguments, and no side effects during object initialization. Since IntSet’s fall in this category, one can alternatively define them as traits:

trait IntSet {
    def incl(x: int): IntSet;
    def contains(x: int): boolean;
}

A trait corresponds to an interface in Java, except that a trait can also define implemented methods.

Implementing Abstract Classes. Let’s say, we plan to implement sets as binary trees. There are two possible forms of trees. A tree for the empty set, and a tree consisting of an integer and two subtrees. Here are their implementations.

class EmptySet extends IntSet {
    def contains(x: int): boolean = false;
    def incl(x: int): IntSet = new NonEmptySet(x, new EmptySet, new EmptySet);
}

class NonEmptySet(elem:int, left:IntSet, right:IntSet) extends IntSet {
    def contains(x: int): boolean =
        if (x < elem) left contains x
        else if (x > elem) right contains x
        else true;
    def incl(x: int): IntSet =
        if (x < elem) new NonEmptySet(elem, left incl x, right)
        else if (x > elem) new NonEmptySet(elem, left, right incl x)
        else this;
}
Both EmptySet and NonEmptySet extend class IntSet. This implies that types EmptySet and NonEmptySet conform to type IntSet – a value of type EmptySet or NonEmptySet may be used wherever a value of type IntSet is required.

**Exercise 5.0.1** Write methods union and intersection to form the union and intersection between two sets.

**Exercise 5.0.2** Add a method

```scala
def excl(x: int)
```

to return the given set without the element x. To accomplish this, it is useful to also implement a test method

```scala
def isEmpty: boolean
```

for sets.

**Dynamic Binding.** Object-oriented languages (Scala included) use *dynamic dispatch* for method invocations. That is, the code invoked for a method call depends on the run-time type of the object which contains the method. For example, consider the expression `s contains 7` where `s` is a value of declared type `s: IntSet`. Which code for contains is executed depends on the type of value of `s` at run-time. If it is an EmptySet value, it is the implementation of contains in class EmptySet that is executed, and analogously for NonEmptySet values. This behavior is a direct consequence of our substitution model of evaluation. For instance,

```scala
(new EmptySet).contains(7)
```

=> (by replacing contains by its body in class EmptySet)

```scala
false
```

Or,

```scala
new NonEmptySet(7, new EmptySet, new EmptySet).contains(1)
```

=> (by replacing contains by its body in class NonEmptySet)

```scala
if (1 < 7) new EmptySet contains 1
else if (1 > 7) new EmptySet contains 1
else true
```

=> (by rewriting the conditional)

```scala
new EmptySet contains 1
```
Dynamic method dispatch is analogous to higher-order function calls. In both cases, the identity of code to be executed is known only at run-time. This similarity is not just superficial. Indeed, Scala represents every function value as an object (see Section 7.6).

Objects. In the previous implementation of integer sets, empty sets were expressed with `new EmptySet`; so a new object was created every time an empty set value was required. We could have avoided unnecessary object creations by defining a value `empty` once and then using this value instead of every occurrence of `new EmptySet`. E.g.,

```scala
val EmptySetVal = new EmptySet;
```

One problem with this approach is that a value definition such as the one above is not a legal top-level definition in Scala; it has to be part of another class or object. Also, the definition of class `EmptySet` now seems a bit of an overkill – why define a class of objects, if we are only interested in a single object of this class? A more direct approach is to use an object definition. Here is a more streamlined alternative definition of the empty set:

```scala
object EmptySet extends IntSet {
 def contains(x: int): boolean = false;
 def incl(x: int): IntSet = new NonEmptySet(x, EmptySet, EmptySet);
}
```

The syntax of an object definition follows the syntax of a class definition; it has an optional extends clause as well as an optional body. As is the case for classes, the extends clause defines inherited members of the object whereas the body defines overriding or new members. However, an object definition defines a single object only; it is not possible to create other objects with the same structure using `new`. Therefore, object definitions also lack constructor parameters, which might be present in class definitions.

Object definitions can appear anywhere in a Scala program; including at top-level. Since there is no fixed execution order of top-level entities in Scala, one might ask exactly when the object defined by an object definition is created and initialized. The answer is that the object is created the first time one of its members is accessed. This strategy is called lazy evaluation.
Standard Classes. Scala is a pure object-oriented language. This means that every value in Scala can be regarded as an object. In fact, even primitive types such as int or boolean are not treated specially. They are defined as type aliases of Scala classes in module Predef:

```scala
type boolean = scala.Boolean;
type int = scala.Int;
type long = scala.Long;
...
```

For efficiency, the compiler usually represents values of type scala.Int by 32 bit integers, values of type scala.Boolean by Java's booleans, etc. But it converts these specialized representations to objects when required, for instance when a primitive int value is passed to a function with a parameter of type AnyRef. Hence, the special representation of primitive values is just an optimization, it does not change the meaning of a program.

Here is a specification of class Boolean.

```scala
package scala;
trait Boolean {
 def && (def x: Boolean): Boolean;
 def || (def x: Boolean): Boolean;
 def ! : Boolean;
 def == (x: Boolean) : Boolean
 def != (x: Boolean) : Boolean
 def < (x: Boolean) : Boolean
 def > (x: Boolean) : Boolean
 def <= (x: Boolean) : Boolean
 def >= (x: Boolean) : Boolean
}
```

Booleans can be defined using only classes and objects, without reference to a built-in type of booleans or numbers. A possible implementation of class Boolean is given below. This is not the actual implementation in the standard Scala library. For efficiency reasons the standard implementation uses built-in booleans.

```scala
package scala;
trait Boolean {
 def ifThenElse(def thenpart: Boolean, def elsepart: Boolean)

 def && (def x: Boolean): Boolean = ifThenElse(x, false);
 def || (def x: Boolean): Boolean = ifThenElse(true, x);
 def ! : Boolean = ifThenElse(false, true);
 def == (x: Boolean) : Boolean = ifThenElse(x, x.);
```
46 Classes and Objects

```scala
def != (x: Boolean) : Boolean = ifThenElse(x.!, x);
def < (x: Boolean) : Boolean = ifThenElse(false, x);
def > (x: Boolean) : Boolean = ifThenElse(x.!, false);
def <= (x: Boolean) : Boolean = ifThenElse(x, true);
def >= (x: Boolean) : Boolean = ifThenElse(true, x.!!);
}
case object True extends Boolean {
def ifThenElse(def t: Boolean, def e: Boolean) = t
}
case object False extends Boolean {
def ifThenElse(def t: Boolean, def e: Boolean) = e
}
```

Here is a partial specification of class Int.

```scala
package scala;
trait Int extends AnyVal {
def coerce: Long;
def coerce: Float;
def coerce: Double;

def + (that: Double): Double;
def + (that: Float): Float;
def + (that: Long): Long;
def + (that: Int): Int; // analogous for -, *, /, %
def << (cnt: Int): Int; // analogous for >>, >>>

def & (that: Long): Long;
def & (that: Int): Int; // analogous for |, ^

def == (that: Double): Boolean;
def == (that: Float): Boolean;
def == (that: Long): Boolean; // analogous for !=, <, >, <=, >=
}
```

Class Int can in principle also be implemented using just objects and classes, without reference to a built-in type of integers. To see how, we consider a slightly simpler problem, namely how to implement a type Nat of natural (i.e. non-negative) numbers. Here is the definition of a trait Nat:

```scala
trait Nat {
def isZero: Boolean;
def predecessor: Nat;
def successor: Nat;
def + (that: Nat): Nat;
def - (that: Nat): Nat;
```
To implement the operations of class Nat, we define a sub-object Zero and a sub-class Succ (for successor). Each number \( N \) is represented as \( N \) applications of the Succ constructor to Zero:

\[
\text{new Succ(... new Succ(Zero) ...)} \quad \underbrace{N \text{ times}}
\]

The implementation of the Zero object is straightforward:

```scala
object Zero extends Nat {
 def isZero: Boolean = true;
 def predecessor: Nat = throw new Error("negative number");
 def successor: Nat = new Succ(Zero);
 def + (that: Nat): Nat = that;
 def - (that: Nat): Nat = if (that.isZero) Zero
 else throw new Error("negative number")
}
```

The implementation of the predecessor and subtraction functions on Zero throws an Error exception, which aborts the program with the given error message.

Here is the implementation of the successor class:

```scala
class Succ(x: Nat) extends Nat {
 def isZero: Boolean = false;
 def predecessor: Nat = x;
 def successor: Nat = new Succ(this);
 def + (that: Nat): Nat = x + that.successor;
 def - (that: Nat): Nat = x - that.predecessor;
}
```

Note the implementation of method successor. To create the successor of a number, we need to pass the object itself as an argument to the Succ constructor. The object itself is referenced by the reserved name `this`.

The implementations of `+` and `-` each contain a recursive call with the constructor argument as receiver. The recursion will terminate once the receiver is the Zero object (which is guaranteed to happen eventually because of the way numbers are formed).

**Exercise 5.0.3** Write an implementation Integer of integer numbers. The implementation should support all operations of class Nat while adding two methods

```scala
def isPositive: Boolean
def negate: Integer
```
The first method should return `true` if the number is positive. The second method should negate the number. Do not use any of Scala's standard numeric classes in your implementation. (Hint: There are two possible ways to implement `Integer`. One can either make use the existing implementation of `Nat`, representing an integer as a natural number and a sign. Or one can generalize the given implementation of `Nat` to `Integer`, using the three subclasses `Zero` for 0, `Succ` for positive numbers and `Pred` for negative numbers.)

**Language Elements Introduced In This Chapter**

**Types:**

```
Type = ... | ident
```

Types can now be arbitrary identifiers which represent classes.

**Expressions:**

```
Expr = ... | Expr '.' ident | 'new' Expr | 'this'
```

An expression can now be an object creation, or a selection `E.m` of a member `m` from an object-valued expression `E`, or it can be the reserved name `this`.

**Definitions and Declarations:**

```
Def = FunDef | ValDef | ClassDef | TraitDef | ObjectDef
ClassDef = ['abstract'] 'class' ident [('(' [Parameters] ')')]
 ['extends' Expr] ['{' {TemplateDef} '}']
TraitDef = 'trait' ident ['extends' Expr] ['{' {TemplateDef} '}']
ObjectDef = 'object' ident ['extends' Expr] ['{' {ObjectDef} '}']
TemplateDef = [Modifier] (Def | Dcl)
ObjectDef = [Modifier] Def
Modifier = 'private' | 'override'
Dcl = FunDcl | ValDcl
FunDcl = 'def' ident {'(' [Parameters] ')'} ':=' Type
ValDcl = 'val' ident ':=' Type
```

A definition can now be a class, trait or object definition such as

```
class C(params) extends B { defs }
trait T extends B { defs }
object O extends B { defs }
```

The definitions `defs` in a class, trait or object may be preceded by modifiers `private` or `override`.

Abstract classes and traits may also contain declarations. These introduce `deferred` functions or values with their types, but do not give an implementation. Deferred members have to be implemented in subclasses before objects of an abstract class.
or trait can be created.
Say, we want to write an interpreter for arithmetic expressions. To keep things simple initially, we restrict ourselves to just numbers and + operations. Such expressions can be represented as a class hierarchy, with an abstract base class Expr as the root, and two subclasses Number and Sum. Then, an expression $1 + (3 + 7)$ would be represented as

```java
new Sum(new Number(1), new Sum(new Number(3), new Number(7)))
```

Now, an evaluator of an expression like this needs to know of what form it is (either Sum or Number) and also needs to access the components of the expression. The following implementation provides all necessary methods.

```java
trait Expr {
 def isNumber: boolean;
 def isSum: boolean;
 def numValue: int;
 def leftOp: Expr;
 def rightOp: Expr;
}

class Number(n: int) extends Expr {
 def isNumber: boolean = true;
 def isSum: boolean = false;
 def numValue: int = n;
 def leftOp: Expr = throw new Error("Number.leftOp");
 def rightOp: Expr = throw new Error("Number.rightOp");
}

class Sum(e1: Expr, e2: Expr) extends Expr {
 def isNumber: boolean = false;
 def isSum: boolean = true;
}
def numValue: int = throw new Error("Sum.numValue");
def leftOp: Expr = e1;
def rightOp: Expr = e2;
}

With these classification and access methods, writing an evaluator function is simple:

def eval(e: Expr): int = {
 if (e.isNumber) e.numValue
 else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
 else throw new Error("unrecognized expression kind")
}

However, defining all these methods in classes Sum and Number is rather tedious. Furthermore, the problem becomes worse when we want to add new forms of expressions. For instance, consider adding a new expression form Prod for products. Not only do we have to implement a new class Prod, with all previous classification and access methods; we also have to introduce a new abstract method isProduct in class Expr and implement that method in subclasses Number, Sum, and Prod. Having to modify existing code when a system grows is always problematic, since it introduces versioning and maintenance problems.

The promise of object-oriented programming is that such modifications should be unnecessary, because they can be avoided by re-using existing, unmodified code through inheritance. Indeed, a more object-oriented decomposition of our problem solves the problem. The idea is to make the “high-level” operation eval a method of each expression class, instead of implementing it as a function outside the expression class hierarchy, as we have done before. Because eval is now a member of all expression nodes, all classification and access methods become superfluous, and the implementation is simplified considerably:

trait Expr {
 def eval: int;
}

class Number(n: int) extends Expr {
 def eval: int = n;
}

class Sum(e1: Expr, e2: Expr) extends Expr {
 def eval: int = e1.eval + e2.eval;
}

Furthermore, adding a new Prod class does not entail any changes to existing code:

class Prod(e1: Expr, e2: Expr) extends Expr {
 def eval: int = e1.eval * e2.eval;
}
The conclusion we can draw from this example is that object-oriented decomposition is the technique of choice for constructing systems that should be extensible with new types of data. But there is also another possible way we might want to extend the expression example. We might want to add new operations on expressions. For instance, we might want to add an operation that pretty-prints an expression tree to standard output.

If we have defined all classification and access methods, such an operation can easily be written as an external function. Here is an implementation:

```scala
def print(e: Expr): unit =
  if (e.isNumber) System.out.print(e.numValue)
  else if (e.isSum) {
    System.out.print("(");
    print(e.leftOp);
    System.out.print("+");
    print(e.rightOp);
    System.out.print(")");
  } else throw new Error("unrecognized expression kind");
```

However, if we had opted for an object-oriented decomposition of expressions, we would need to add a new print method to each class:

```scala
trait Expr {
  def eval: int;
  def print: unit;
}

class Number(n: int) extends Expr {
  def eval: int = n;
  def print: unit = System.out.print(n);
}

class Sum(e1: Expr, e2: Expr) extends Expr {
  def eval: int = e1.eval + e2.eval;
  def print: unit = {
    System.out.print("(");
    print(e1);
    System.out.print("+");
    print(e2);
    System.out.print(")");
  }
}
```

Hence, classical object-oriented decomposition requires modification of all existing classes when a system is extended with new operations.

As yet another way we might want to extend the interpreter, consider expression simplification. For instance, we might want to write a function which rewrites expressions of the form \(a \times b + a \times c \) to \(a \times (b + c) \). This operation requires in-
54 Case Classes and Pattern Matching

inspection of more than a single node of the expression tree at the same time. Hence, it cannot be implemented by a method in each expression kind, unless that method can also inspect other nodes. So we are forced to have classification and access methods in this case. This seems to bring us back to square one, with all the problems of verbosity and extensibility.

Taking a closer look, one observes that the only purpose of the classification and access functions is to reverse the data construction process. They let us determine, first, which sub-class of an abstract base class was used and, second, what were the constructor arguments. Since this situation is quite common, Scala has a way to automate it with case classes.

6.1 Case Classes and Case Objects

Case classes and *case objects* are defined like a normal classes or objects, except that the definition is prefixed with the modifier *case*. For instance, the definitions

```scala
trait Expr;
case class Number(n: int) extends Expr;
case class Sum(e1: Expr, e2: Expr) extends Expr;
```

introduce `Number` and `Sum` as case classes. The *case* modifier in front of a class or object definition has the following effects.

1. Case classes implicitly come with a constructor function, with the same name as the class. In our example, the two functions

   ```scala
def Number(n: int) = new Number(n);
def Sum(e1: Expr, e2: Expr) = new Sum(e1, e2);
```

 would be added. Hence, one can now construct expression trees a bit more concisely, as in

   ```scala
   Sum(Sum(Number(1), Number(2)), Number(3))
   ```

2. Case classes and case objects implicitly come with implementations of methods `toString`, `equals` and `hashCode`, which override the methods with the same name in class `AnyRef`. The implementation of these methods takes in each case the structure of a member of a case class into account. The `toString` method represents an expression tree the way it was constructed. So,

   ```scala
   Sum(Sum(Number(1), Number(2)), Number(3))
   ```

 would be converted to exactly that string, whereas the default implementation in class `AnyRef` would return a string consisting of the outermost con-
structor name Sum and a number. The equals methods treats two case members of a case class as equal if they have been constructed with the same constructor and with arguments which are themselves pairwise equal. This also affects the implementation of == and !=, which are implemented in terms of equals in Scala. So,

\[
\text{Sum(Number(1), Number(2)) == Sum(Number(1), Number(2))}
\]

will yield true. If Sum or Number were not case classes, the same expression would be false, since the standard implementation of equals in class AnyRef always treats objects created by different constructor calls as being different. The hashCode method follows the same principle as other two methods. It computes a hash code from the case class constructor name and the hash codes of the constructor arguments, instead of from the object’s address, which is what the as the default implementation of hashCode does.

3. Case classes implicitly come with nullary accessor methods which retrieve the constructor arguments. In our example, Number would obtain an accessor method

\[
def n: int
\]

which returns the constructor parameter n, whereas Sum would obtain two accessor methods

\[
def e1: Expr, e2: Expr;
\]

Hence, if for a value s of type Sum, say, one can now write s.e1, to access the left operand. However, for a value e of type Expr, the term e.e1 would be illegal since e1 is defined in Sum; it is not a member of the base class Expr. So, how do we determine the constructor and access constructor arguments for values whose static type is the base class Expr? This is solved by the fourth and final particularity of case classes.

4. Case classes allow the constructions of patterns which refer to the case class constructor.

6.2 Pattern Matching

Pattern matching is a generalization of C or Java’s switch statement to class hierarchies. Instead of a switch statement, there is a standard method match, which is defined in Scala’s root class Any, and therefore is available for all objects. The match method takes as argument a number of cases. For instance, here is an implementation of eval using pattern matching.

\[
def eval(e: Expr): int = e match {
\]
In this example, there are two cases. Each case associates a pattern with an expression. Patterns are matched against the selector values e. The first pattern in our example, `Number(n)`, matches all values of the form `Number(v)`, where v is an arbitrary value. In that case, the pattern variable `n` is bound to the value v. Similarly, the pattern `Sum(l, r)` matches all selector values of form `Sum(v_1, v_2)` and binds the pattern variables `l` and `r` to v_1 and v_2, respectively.

In general, patterns are built from

- Case class constructors, e.g. `Number`, `Sum`, whose arguments are again patterns,
- pattern variables, e.g. `n, e_1, e_2`,
- the “wildcard” pattern `_`,
- literals, e.g. `1, true, "abc"`,
- constant identifiers, e.g. `MAXINT, EmptySet`.

Pattern variables always always start with a lower-case letter, so that they can be distinguished from constant identifiers, which start with an upper case letter. Each variable name may occur only once in a pattern. For instance, `Sum(x, x)` would be illegal as a pattern, since the pattern variable `x` occurs twice in it.

Meaning of Pattern Matching. A pattern matching expression

```haskell
  e.match { case p_1 => e_1 ... case p_n => e_n }
```

matches the patterns p_1, \ldots, p_n in the order they are written against the selector value e.

- A constructor pattern $C(p_1, \ldots, p_n)$ matches all values that are of type C (or a subtype thereof) and that have been constructed with C-arguments matching patterns p_1, \ldots, p_n.
- A variable pattern x matches any value and binds the variable name to that value.
- The wildcard pattern `_' matches any value but does not bind a name to that value.
- A constant pattern C matches a value which is equal (in terms of `==`) to C.

The pattern matching expression rewrites to the right-hand-side of the first case whose pattern matches the selector value. References to pattern variables are replaced by corresponding constructor arguments. If none of the patterns matches, the pattern matching expression is aborted with a `MatchError` exception.
Example 6.2.1 Our substitution model of program evaluation extends quite naturally to pattern matching. For instance, here is how eval applied to a simple expression is re-written:

\[
\text{eval}(\text{Sum}(<1>, <2>))
\]

\[
\rightarrow \quad (\text{by rewriting the application})
\]

\[
\text{Sum}(<1>, <2>) \text{ match } \{ \\
\text{case } \text{Number}(n) \Rightarrow n \\
\text{case } \text{Sum}(e_1, e_2) \Rightarrow \text{eval}(e_1) + \text{eval}(e_2) \\
\}
\]

\[
\rightarrow \quad (\text{by rewriting the pattern match})
\]

\[
\text{eval}(\text{Number}(1)) + \text{eval}(\text{Number}(2))
\]

\[
\rightarrow \quad (\text{by rewriting the first application})
\]

\[
\text{Number}(1) \text{ match } \{ \\
\text{case } \text{Number}(n) \Rightarrow n \\
\text{case } \text{Sum}(e_1, e_2) \Rightarrow \text{eval}(e_1) + \text{eval}(e_2) \\
\} + \text{eval}(\text{Number}(2))
\]

\[
\rightarrow \quad (\text{by rewriting the pattern match})
\]

\[
1 + \text{eval}(\text{Number}(2))
\]

\[
\rightarrow^* 1 + 2 \rightarrow 3
\]

Pattern Matching and Methods. In the previous example, we have used pattern matching in a function which was defined outside the class hierarchy over which it matches. Of course, it is also possible to define a pattern matching function in that class hierarchy itself. For instance, we could have defined eval is a method of the base class Expr, and still have used pattern matching in its implementation:

\[
\text{trait Expr} \{ \\
\text{def eval: int = this match } \{ \\
\text{case } \text{Number}(n) \Rightarrow n \\
\text{case } \text{Sum}(e_1, e_2) \Rightarrow e_1.\text{eval} + e_2.\text{eval} \\
\} \\
\}
\]

Exercise 6.2.2 Consider the following definitions representing trees of integers. These definitions can be seen as an alternative representation of IntSet:
trait IntTree;
case object EmptyTree extends IntTree;
case class Node(elem: int, left: IntTree, right: IntTree) extends IntTree;

Complete the following implementations of function contains and insert for IntTree's.

```scala
def contains(t: IntTree, v: int): boolean = t match { ...
  ...
}
def insert(t: IntTree, v: int): IntTree = t match { ...
  ...
}
```

Pattern Matching Anonymous Functions. So far, case-expressions always appeared in conjunction with a match operation. But it is also possible to use case-expressions by themselves. A block of case-expressions such as

```scala
{ case P₁ => E₁ ... case Pₙ => Eₙ }
```

is seen by itself as a function which matches its arguments against the patterns $P₁, \ldots, Pₙ$, and produces the result of one of $E₁, \ldots, Eₙ$. (If no pattern matches, the function would throw a `MatchError` exception instead). In other words, the expression above is seen as a shorthand for the anonymous function

```scala
(x => x match { case P₁ => E₁ ... case Pₙ => Eₙ })
```

where x is a fresh variable which is not used otherwise in the expression.
Chapter 7

Generic Types and Methods

Classes in Scala can have type parameters. We demonstrate the use of type parameters with functional stacks as an example. Say, we want to write a data type of stacks of integers, with methods push, top, pop, and isEmpty. This is achieved by the following class hierarchy:

```scala
trait IntStack {
  def push(x: int): IntStack = new IntNonEmptyStack(x, this);
  def isEmpty: boolean
  def top: int;
  def pop: IntStack;
}

class IntEmptyStack extends IntStack {
  def isEmpty = true;
  def top = throw new Error("EmptyStack.top");
  def pop = throw new Error("EmptyStack.pop");
}

class IntNonEmptyStack(elem: int, rest: IntStack) {
  def isEmpty = false;
  def top = elem;
  def pop = rest;
}
```

Of course, it would also make sense to define an abstraction for a stack of Strings. To do that, one could take the existing abstraction for IntStack, rename it to StringStack and at the same time rename all occurrences of type int to String.

A better way, which does not entail code duplication, is to parameterize the stack definitions with the element type. Parameterization lets us generalize from a specific instance of a problem to a more general one. So far, we have used parameterization only for values, but it is available also for types. To arrive at a generic version of Stack, we equip it with a type parameter.

```scala
abstract class Stack[Elem] {
  def push(x: Elem): Stack[Elem] = new NonEmptyStack(x, this);
  def isEmpty: boolean
  def top: Elem;
  def pop: Stack[Elem];
}

class EmptyStack extends Stack[Elem] {
  def isEmpty = true;
  def top = throw new Error("EmptyStack.top");
  def pop = throw new Error("EmptyStack.pop");
}

class NonEmptyStack(elem: Elem, rest: Stack[Elem]) {
  def isEmpty = false;
  def top = elem;
  def pop = rest;
}
```
trait Stack[a] {
 def push(x: a): Stack[a] = new NonEmptyStack[a](x, this);
 def isEmpty: boolean
 def top: a;
 def pop: Stack[a];
}

class EmptyStack[a] extends Stack[a] {
 def isEmpty = true;
 def top = throw new Error("EmptyStack.top");
 def pop = throw new Error("EmptyStack.pop");
}

class NonEmptyStack[a](elem: a, rest: Stack[a]) extends Stack[a] {
 def isEmpty = false;
 def top = elem;
 def pop = rest;
}

In the definitions above, 'a' is a type parameter of class Stack and its subclasses. Type parameters are arbitrary names; they are enclosed in brackets instead of parentheses, so that they can be easily distinguished from value parameters. Here is an example how the generic classes are used:

```
val x = new EmptyStack[int];
val y = x.push(1).push(2);
System.out.println(y.pop.top);
```

The first line creates a new empty stack of int's. Note the actual type argument [int] which replaces the formal type parameter a.

It is also possible to parameterize methods with types. As an example, here is a generic method which determines whether one stack is a prefix of another.

```
def isPrefix[a](p: Stack[a], s: Stack[a]): boolean = {
    p.isEmpty ||
    p.top == s.top && isPrefix[a](p.pop, s.pop);
}
```

parameters are called polymorphic. Generic methods are also called polymorphic. The term comes from the Greek, where it means "having many forms". To apply a polymorphic method such as isPrefix, we pass type parameters as well as value parameters to it. For instance,

```
val s1 = new EmptyStack[String].push("abc");
val s2 = new EmptyStack[String].push("abx").push(s.pop)
System.out.println(isPrefix[String](s1, s2));
```
Local Type Inference. Passing type parameters such as [int] or [String] all the time can become tedious in applications where generic functions are used a lot. Quite often, the information in a type parameter is redundant, because the correct parameter type can also be determined by inspecting the function’s value parameters or expected result type. Taking the expression isPrefix[String](s1, s2) as an example, we know that its value parameters are both of type Stack[String], so we can deduce that the type parameter must be String. Scala has a fairly powerful type inferencer which allows one to omit type parameters to polymorphic functions and constructors in situations like these. In the example above, one could have written isPrefix(s1, s2) and the missing type argument [String] would have been inserted by the type inferencer.

7.1 Type Parameter Bounds

Now that we know how to make classes generic it is natural to generalize some of the earlier classes we have written. For instance class IntSet could be generalized to sets with arbitrary element types. Let’s try. The trait for generic sets is easily written.

```scala
trait Set[a] {
  def incl(x: a): Set[a];
  def contains(x: a): boolean;
}
```

However, if we still want to implement sets as binary search trees, we encounter a problem. The contains and incl methods both compare elements using methods < and >. For IntSet this was OK, since type int has these two methods. But for an arbitrary type parameter a, we cannot guarantee this. Therefore, the previous implementation of, say, contains would generate a compiler error.

```scala
def contains(x: int): boolean =
  if (x < elem) left contains x
  ^ < not a member of type a.
```

One way to solve the problem is to restrict the legal types that can be substituted for type a to only those types that contain methods < and > of the correct types. There is a trait Ord[a] in the standard class library Scala which represents values which are comparable (via < and >) to values of type a. We can enforce the comparability of a type by demanding that the type is a subtype of Ord. This is done by giving an upper bound to the type parameter of Set:

```scala
trait Set[a <: Ord[a]] {
  def incl(x: a): Set[a];
  def contains(x: a): boolean;
}
```
The parameter declaration `a <: Ord[a]` introduces `a` as a type parameter which must be a subtype of `Ord[a]`, i.e. its values must be comparable to values of the same type.

With this restriction, we can now implement the rest of the generic set abstraction as we did in the case of `IntSets` before.

```scala
class EmptySet[a <: Ord[a]] extends Set[a] {
  def contains(x: a): boolean = false;
  def incl(x: a): Set[a] = new NonEmptySet(x, new EmptySet[a], new EmptySet[a]);
}

class NonEmptySet[a <: Ord[a]]
  (elem:a, left: Set[a], right: Set[a]) extends Set[a] {
  def contains(x: a): boolean =
    if (x < elem) left contains x
    else if (x > elem) right contains x
    else true;
  def incl(x: a): Set[a] =
    if (x < elem) new NonEmptySet(elem, left incl x, right)
    else if (x > elem) new NonEmptySet(elem, left, right incl x)
    else this;
}
```

Note that we have left out the type argument in the object creations `new NonEmptySet(...)`. In the same way as for polymorphic methods, missing type arguments in constructor calls are inferred from value arguments and/or the expected result type.

Here is an example that uses the generic set abstraction.

```scala
val s = new EmptySet[double].incl(1.0).incl(2.0);
s.contains(1.5)
```

This is OK, as type `double` implements trait `Ord[double]`. However, the following example is in error.

```scala
val s = new EmptySet[java.io.File]
^ java.io.File does not conform to type parameter bound Ord[java.io.File].
```

To conclude the discussion of type parameter bounds, here is the definition of trait `Ord` in scala.

```scala
package scala;
trait Ord[t <: Ord[t]]: t {
  def < (that: t): Boolean;
  def <=(that: t): Boolean = this < that || this == that;
```
\begin{verbatim}
def > (that: t): Boolean = that < this;
def >=(that: t): Boolean = that <= this;
\end{verbatim}

7.2 Variance Annotations

The combination of type parameters and subtyping poses some interesting questions. For instance, should \texttt{Stack[String]} be a subtype of \texttt{Stack[AnyRef]}? Intuitively, this seems OK, since a stack of Strings is a special case of a stack of AnyRefs. More generally, if \(T \) is a subtype of type \(S \) then \texttt{Stack[T]} should be a subtype of \texttt{Stack[S]}. This property is called \textit{co-variant} subtyping.

In Scala, generic types have by default non-variant subtyping. That is, with \texttt{Stack} defined as above, stacks with different element types would never be in a subtype relation. However, we can enforce co-variant subtyping of stacks by changing the first line of the definition of class \texttt{Stack} as follows.

\begin{verbatim}
class Stack[a] {
Prefixing a formal type parameter with a + indicates that subtyping is covariant in that parameter. Besides +, there is also a prefix - which indicates contra-variant subtyping. If \texttt{Stack} was defined \texttt{class Stack[-a] \ldots}, then \(T \) a subtype of type \(S \) would imply that \texttt{Stack[S]} is a subtype of \texttt{Stack[T]} (which in the case of stacks would be rather surprising!).

In a purely functional world, all types could be co-variant. However, the situation changes once we introduce mutable data. Consider the case of arrays in Java or .NET. Such arrays are represented in Scala by a generic class \texttt{Array}. Here is a partial definition of this class.

\begin{verbatim}
class Array[a] {
 def apply(index: int): a
 def update(index: int, elem: a): unit;
}
\end{verbatim}

The class above defines the way Scala arrays are seen from Scala user programs. The Scala compiler will map this abstraction to the underlying arrays of the host system in most cases where this possible.

In Java, arrays are indeed covariant; that is, for reference types \(T \) and \(S \), if \(T \) is a subtype of \(S \), then also \texttt{Array[T]} is a subtype of \texttt{Array[S]}. This might seem natural but leads to safety problems that require special runtime checks. Here is an example:

\begin{verbatim}
val x = new Array[String](1);
val y: Array[Any] = x;
y(0) = new Rational(1, 2); // this is syntactic sugar for
\end{verbatim}
In the first line, a new array of strings is created. In the second line, this array is bound to a variable \(y \), of type \(\text{Array}[\text{Any}] \). Assuming arrays are covariant, this is OK, since \(\text{Array}[\text{String}] \) is a subtype of \(\text{Array}[\text{Any}] \). Finally, in the last line a rational number is stored in the array. This is also OK, since type \(\text{Rational} \) is a subtype of the element type \(\text{Any} \) of the array \(y \). We thus end up storing a rational number in an array of strings, which clearly violates type soundness.

Java solves this problem by introducing a run-time check in the third line which tests whether the stored element is compatible with the element type with which the array was created. We have seen in the example that this element type is not necessarily the static element type of the array being updated. If the test fails, an \text{ArrayStoreException} \) is raised.

Scala solves this problem instead statically, by disallowing the second line at compile-time, because arrays in Scala have non-variant subtyping. This raises the question how a Scala compiler verifies that variance annotations are correct. If we had simply declared arrays co-variant, how would the potential problem have been detected?

Scala uses a conservative approximation to verify soundness of variance annotations. A covariant type parameter of a class may only appear in co-variant positions inside the class. Among the co-variant positions are the types of values in the class, the result types of methods in the class, and type arguments to other covariant types. Not co-variant are types of formal method parameters. Hence, the following class definition would have been rejected:

\[
\text{class Array[+a] \{ }
 \text{def apply(index: int): a;}
 \text{def update(index: int, elem: a): unit;}
^ \text{covariant type parameter \(a \)}
^ \text{appears in contravariant position.}
\} \]

So far, so good. Intuitively, the compiler was correct in rejecting the \text{update} method in a co-variant class because \text{update} potentially changes state, and therefore undermines the soundness of co-variant subtyping.

However, there are also methods which do not mutate state, but where a type parameter still appears contra-variantly. An example is \text{push} in type \text{Stack}. Again the Scala compiler will reject the definition of this method for co-variant stacks.

\[
\text{class Stack[+a] \{ }
 \text{def push(x: a): Stack[a] =}
^ \text{covariant type parameter \(a \)}
^ \text{appears in contravariant position.}
\} \]
This is a pity, because, unlike arrays, stacks are purely functional data structures and therefore should enable co-variant subtyping. However, there is a way to solve the problem by using a polymorphic method with a lower type parameter bound.

7.3 Lower Bounds

We have seen upper bounds for type parameters. In a type parameter declaration such as \(t <: U \), the type parameter \(t \) is restricted to range only over subtypes of type \(U \). Symmetrical to this are lower bounds in Scala. In a type parameter declaration \(t >: L \), the type parameter \(t \) is restricted to range only over supertypes of type \(L \). (One can also combine lower and upper bounds, as in \(t >: L <: U \).)

Using lower bounds, we can generalize the `push` method in `Stack` as follows.

```scala
class Stack[+a] {
    def push[b >: a](x: b): Stack[b] = new NonEmptyStack(x, this);
}
```

Technically, this solves our variance problem since now the type parameter \(a \) appears no longer as a parameter type of method `push`. Instead, it appears as lower bound for another type parameter of a method, which is classified as a co-variant position. Hence, the Scala compiler accepts the new definition of `push`.

In fact, we have not only solved the technical variance problem but also have generalized the definition of `push`. Before, we were required to push only elements with types that conform to the declared element type of the stack. Now, we can push also elements of a supertype of this type, but the type of the returned stack will change accordingly. For instance, we can now push an `AnyRef` onto a stack of `Strings`, but the resulting stack will be a stack of `AnyRefs` instead of a stack of `Strings`!

In summary, one should not hesitate to add variance annotations to your data structures, as this yields rich natural subtyping relationships. The compiler will detect potential soundness problems. Even if the compiler’s approximation is too conservative, as in the case of method `push` of class `Stack`, this will often suggest a useful generalization of the contested method.

7.4 Least Types

Scala does not allow one to parameterize objects with types. That’s why we originally defined a generic class `EmptyStack[a]`, even though a single value denoting empty stacks of arbitrary type would do. For co-variant stacks, however, one can use the following idiom:

```scala
object EmptyStack extends Stack[All] { ... }
```
The identifier `All` refers to the bottom type `scala.All`, which is a subtype of all other types. Hence, for co-variant stacks, `Stack[All]` is a subtype of `Stack[T]`, for any other type `T`. This makes it possible to use a single empty stack object in user code. For instance:

```java
val s = EmptyStack.push("abc").push(new AnyRef());
```

Let’s analyze the type assignment for this expression in detail. The `EmptyStack` object is of type `Stack[All]`, which has a method

```java
push[b >: All](elem: b): Stack[b].
```

Local type inference will determine that the type parameter `b` should be instantiated to `String` in the application `EmptyStack.push("abc")`. The result type of that application is hence `Stack[String]`, which in turn has a method

```java
push[b >: String](elem: b): Stack[b].
```

The final part of the value definition above is the application of this method to `new AnyRef()`. Local type inference will determine that the type parameter `b` should this time be instantiated to `AnyRef`, with result type `Stack[AnyRef]`. Hence, the type assigned to value `s` is `Stack[AnyRef]`.

Besides `scala.All`, which is a subtype of every other type, there is also the type `scala.AllRef`, which is a subtype of `scala.AnyRef`, and every type derived from it. The `null` literal in Scala is of that type. This makes `null` compatible with every reference type, but not with a value type such as `int`.

We conclude this section with the complete improved definition of stacks. Stacks have now co-variant subtyping, the `push` method has been generalized, and the empty stack is represented by a single object.

```java
trait Stack[+a] {
  def push[b >: a](x: b): Stack[b] = new NonEmptyStack(x, this);
  def isEmpty: boolean
  def top: a;
  def pop: Stack[a];
}
object EmptyStack extends Stack[All] {
  def isEmpty = true;
  def top = throw new Error("EmptyStack.top");
  def pop = throw new Error("EmptyStack.pop");
}
class NonEmptyStack[[a](elem: a, rest: Stack[a]) extends Stack[a] {
  def isEmpty = false;
  def top = elem;
  def pop = rest;
}
```
Many classes in the Scala library are generic. We now present two commonly used families of generic classes, tuples and functions. The discussion of another common class, lists, is deferred to the next chapter.

7.5 Tuples

Sometimes, a function needs to return more than one result. For instance, take the function divmod which returns the integer quotient and rest of two given integer arguments. Of course, one can define a class to hold the two results of divmod, as in:

```scala
case class TwoInts(first: int, second: int);
def divmod(x: int, y: int): TwoInts = new TwoInts(x / y, x % y)
```

However, having to define a new class for every possible pair of result types is very tedious. In Scala one can use instead a the generic classes Tuple\(_n\), for each \(n\) between 2 and 9. As an example, here is the definition of Tuple2.

```scala
package scala;
case class Tuple2[a, b](\_1: a, \_2: b);
```

With Tuple2, the divmod method can be written as follows.

```scala
def divmod(x: int, y: int) = new Tuple2[int, int](x / y, x % y)
```

As usual, type parameters to constructors can be omitted if they are deducible from value arguments. Also, Scala defines an alias Pair for Tuple2 (as well as Triple for Tuple3). With these conventions, divmod can equivalently be written as follows.

```scala
def divmod(x: int, y: int) = Pair(x / y, x % y)
```

How are elements of tuples accessed? Since tuples are case classes, there are two possibilities. One can either access a tuple's fields using the names of the constructor parameters \(_i\), as in the following example:

```scala
val xy = divmod(x, y);
System.out.println("quotient: " + x._1 + ", rest: " + x._2);
```

Or one uses pattern matching on tuples, as in the following example:

```scala
divmod(x, y) match {
  case Pair(n, d) =>
    System.out.println("quotient: " + n + ", rest: " + d);
}
```

Note that type parameters are never used in patterns; it would have been illegal to write case Pair[int, int](n, d).
7.6 Functions

Scala is a functional language in that functions are first-class values. Scala is also an object-oriented language in that every value is an object. It follows that functions are objects in Scala. For instance, a function from type `String` to type `int` is represented as an instance of the trait `Function1[String, int]`. The `Function1` trait is defined as follows.

```scala
package scala;
trait Function1[-a, +b] {
  def apply(x: a): b
}
```

Besides `Function1`, there are also definitions of `Function0` and `Function2` up to `Function9` in the standard Scala library. That is, there is one definition for each possible number of function parameters between 0 and 9. Scala's function type syntax `T_1, ..., T_n => S` is simply an abbreviation for the parameterized type `Function[n][T_1, ..., T_n, S]`.

Scala uses the same syntax `f(x)` for function application, no matter whether `f` is a method or a function object. This is made possible by the following convention: A function application `f(x)` where `f` is an object (as opposed to a method) is taken to be a shorthand for `f.apply(x)`. Hence, the `apply` method of a function type is inserted automatically where this is necessary.

That's also why we defined array subscripting in Section 7.2 by an `apply` method. For any array `a`, the subscript operation `a(i)` is taken to be a shorthand for `a.apply(i)`.

Functions are an example where a contra-variant type parameter declaration is useful. For example, consider the following code:

```scala
val f: (AnyRef => int) = x => x.hashCode();
val g: (String => int) = f
g("abc")
```

It's sound to bind the value `g` of type `String => int` to `f`, which is of type `AnyRef => int`. Indeed, all one can do with function of type `String => int` is pass it a string in order to obtain an integer. Clearly, the same works for function `f`: If we pass it a string (or any other object), we obtain an integer. This demonstrates that function subtyping is contra-variant in its argument type whereas it is covariant in its result type. In short, `S => T` is a subtype of `S' => T'`, provided `S'` is a subtype of `S` and `T` is a subtype of `T'`.

Example 7.6.1 Consider the Scala code

```scala
val plus1: (int => int) = (x: int) => x + 1;
plus1(2)
```
This is expanded into the following object code.

```scala
val plus1: Function1[int, int] = new Function1[int, int] {
  def apply(x: int): int = x + 1
}
plus1.apply(2)
```

Here, the object creation `new Function1[int, int]{ ... }` represents an instance of an anonymous class. It combines the creation of a new `Function1` object with an implementation of the `apply` method (which is abstract in `Function1`). Equivalently, but more verbosely, one could have used a local class:

```scala
val plus1: Function1[int, int] = {
  class Local extends Function1[int, int] {
    def apply(x: int): int = x + 1
  }
  new Local: Function1[int, int]
}
plus1.apply(2)
```
Lists are an important data structure in many Scala programs. A list containing the elements \(x_1, \ldots, x_n \) is written \(\text{List}(x_1, \ldots, x_n) \). Examples are:

```scala
val fruit = List("apples", "oranges", "pears");
val nums = List(1, 2, 3, 4);
val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1));
val empty = List();
```

Lists are similar to arrays in languages such as C or Java, but there are also three important differences. First, lists are immutable. That is, elements of a list cannot be changed by assignment. Second, lists have a recursive structure, whereas arrays are flat. Third, lists support a much richer set of operations than arrays usually do.

8.1 Using Lists

The List type. Like arrays, lists are **homogeneous**. That is, the elements of a list all have the same type. The type of a list with elements of type \(T \) is written \(\text{List}[T] \) (compare to \(T[] \) in Java).

```scala
val fruit: List[String] = List("apples", "oranges", "pears");
val nums : List[int] = List(1, 2, 3, 4);
val diag3: List[List[int]] = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1));
val empty: List[int] = List();
```

List constructors. All lists are built from two more fundamental constructors, \(\text{Nil} \) and \(:: \) (pronounced "cons"). \(\text{Nil} \) represents an empty list. The infix operator \(:: \) expresses list extension. That is, \(x :: xs \) represents a list whose first element is \(x \), which is followed by (the elements of) list \(xs \). Hence, the list values above could also
have been defined as follows (in fact their previous definition is simply syntactic sugar for the definitions below).

```scala
val fruit = "apples" :: ("oranges" :: ("pears" :: Nil));
val nums = 1 :: (2 :: (3 :: (4 :: Nil)));
val diag3 = (1 :: (0 :: (0 :: Nil))) ::
            (0 :: (1 :: (0 :: Nil))) ::
            (0 :: (0 :: (1 :: Nil))) :: Nil;
val empty = Nil;
```

The `::` operation associates to the right: `A :: B :: C` is interpreted as `A :: (B :: C)`. Therefore, we can drop the parentheses in the definitions above. For instance, we can write shorter

```scala
val nums = 1 :: 2 :: 3 :: 4 :: Nil;
```

Basic operations on lists.

All operations on lists can be expressed in terms of the following three:

- `head` returns the first element of a list,
- `tail` returns the list consisting of all elements except the first element,
- `isEmpty` returns `true` iff the list is empty

These operations are defined as methods of list objects. So we invoke them by selecting from the list that’s operated on. Examples:

```scala
eempty.isEmpty = true
fruit.isEmpty  = false
fruit.head     = "apples"
fruit.tail.head = "oranges"
diag3.head     = List(1, 0, 0)
```

The head and tail methods are defined only for non-empty lists. When selected from an empty list, they throw an exception.

As an example of how lists can be processed, consider sorting the elements of a list of numbers into ascending order. One simple way to do so is **insertion sort**, which works as follows: To sort a non-empty list with first element `x` and rest `xs`, sort the remainder `xs` and insert the element `x` at the right position in the result. Sorting an empty list will yield the empty list. Expressed as Scala code:

```scala
def isort(xs: List[Int]): List[Int] =
  if (xs.isEmpty) Nil
  else insert(xs.head, isort(xs.tail))
```

Exercise 8.1.1 Provide an implementation of the missing function `insert`.
List patterns. In fact, :: is defined as a case class in Scala's standard library. Hence, it is possible to decompose lists by pattern matching, using patterns composed from the Nil and :: constructors. For instance, isort can be written alternatively as follows.

```
def isort(xs: List[int]): List[int] = xs match {
case List() => List()
case x :: xsl => insert(x, isort(xsl))
}
```

where

```
def insert(x: int, xs: List[int]): List[int] = xs match {
case List() => List(x)
case y :: ys => if (x <= y) x :: xs else y :: insert(x, ys)
}
```

8.2 Definition of class List I: First Order Methods

Lists are not built in in Scala; they are defined by an abstract class List, which comes with two subclasses for :: and Nil. In the following we present a tour through class List.

```
package scala;
abstract class List+[a] {

List is an abstract class, so one cannot define elements by calling the empty List constructor (e.g. by new List). The class has a type parameter a. It is co-variant in this parameter, which means that List[S] <: List[T] for all types S and T such that S <: T. The class is situated in the package scala. This is a package containing the most important standard classes of Scala. List defines a number of methods, which are explained in the following.

Decomposing lists. First, there are the three basic methods isEmpty, head, tail. Their implementation in terms of pattern matching is straightforward:

```
def isEmpty: boolean = match {
case Nil => true
case x :: xs => false
}
def head: a = match {
case Nil => throw new Error("Nil.head")
case x :: xs => x
}
```


```scala
def tail: List[a] = match {
 case Nil => throw new Error("Nil.tail")
 case x :: xs => x
}
```

The next function computes the length of a list.

```scala
def length = match {
 case Nil => 0
 case x :: xs => 1 + xs.length
}
```

**Exercise 8.2.1** Design a tail-recursive version of `length`.

The next two functions are the complements of `head` and `tail`.

```scala
def last: a;
def init: List[a];
```

`xs.last` returns the last element of list `xs`, whereas `xs.init` returns all elements of `xs` except the last. Both functions have to traverse the entire list, and are thus less efficient than their `head` and `tail` analogues. Here is the implementation of `last`.

```scala
def last: a = match {
 case Nil => throw new Error("Nil.last")
 case x :: Nil => x
 case x :: xs => xs.last
}
```

The implementation of `init` is analogous.

The next three functions return a prefix of the list, or a suffix, or both.

```scala
def take(n: int): List[a] =
 if (n == 0 || isEmpty) Nil else head :: tail.take(n-1);

def drop(n: int): List[a] =
 if (n == 0 || isEmpty) this else tail.drop(n-1);

def split(n: int): Pair[List[a], List[a]] = Pair(take(n), drop(n))
```

`(xs take n)` returns the first `n` elements of list `xs`, or the whole list, if its length is smaller than `n`. `(xs drop n)` returns all elements of `xs` except the `n` first ones. Finally, `(xs split n)` returns a pair consisting of the lists resulting from `xs take n` and `xs drop n`.

The next function returns an element at a given index in a list. It is thus analogous to array subcripting. Indices start at 0.
The `apply` method has a special meaning in Scala. An object with an `apply` method can be applied to arguments as if it was a function. For instance, to pick the 3’rd element of a list `xs`, one can write either `xs.apply(3)` or `xs(3)` – the latter expression expands into the first.

With `take` and `drop`, we can extract sublists consisting of consecutive elements of the original list. To extract the sublist `xs_m, ..., xs_{n-1}` of a list `xs`, use:

```
x . drop(m) . take(n - m)
```

**Zipping lists.** The next function combines two lists into a list of pairs. Given two lists

```
x = List(x_1, ..., x_n) , and
ys = List(y_1, ..., y_n) ,
```

`xs zip ys` constructs the list `List(Pair(x_1, y_1), ..., Pair(x_n, y_n))`. If the two lists have different lengths, the longer one of the two is truncated. Here is the definition of `zip` – note that it is a polymorphic method.

```
def zip[b](that: List[b]): List[Pair[a,b]] =
 if (this.isEmpty || that.isEmpty) Nil
 else Pair(this.head, that.head) :: (this.tail zip that.tail);
```

**Consing lists.** Like any infix operator, `::` is also implemented as a method of an object. In this case, the object is the list that is extended. This is possible, because operators ending with a ‘:’ character are treated specially in Scala. All such operators are treated as methods of their right operand. E.g.,

```
x :: y = y.::(x) whereas x + y = x.+(y)
```

Note, however, that operands of a binary operation are in each case evaluated from left to right. So, if `D` and `E` are expressions with possible side-effects, `D :: E` is translated to `{val x = D; E.::(x)}` in order to maintain the left-to-right order of operand evaluation.

Another difference between operators ending in a ‘:’ and other operators concerns their associativity. Operators ending in ‘:’ are right-associative, whereas other operators are left-associative. E.g.,

```
x :: y :: z = x :: (y :: z) whereas x + y + z = (x + y) + z
```

The definition of `::` as a method in class `List` is as follows:
def :::[b >: a](x: b): List[b] = new scala.::(x, this);

Note that :: is defined for all elements x of type B and lists of type List[A] such that the type B of x is a supertype of the list's element type A. The result is in this case a list of B's. This is expressed by the type parameter b with lower bound a in the signature of ::.

Concatenating lists. An operation similar to :: is list concatenation, written ‘:::’. The result of (xs ::: ys) is a list consisting of all elements of xs, followed by all elements of ys. Because it ends in a colon, ::: is right-associative and is considered as a method of its right-hand operand. Therefore,

\[
xs ::: ys ::: zs = xs ::: (ys ::: zs) = zs ::: (ys) ::: (xs)
\]

Here is the implementation of the ::: method:

```scala
def :::[b >: a](prefix: List[b]): List[b] = prefix match {
 case Nil => this
 case p :: ps => this.:::(ps).::(p)
}
```

Reversing lists. Another useful operation is list reversal. There is a method reverse in List to that effect. Let's try to give its implementation:

```scala
def reverse[a](xs: List[a]): List[a] = xs match {
 case Nil => Nil
 case x :: xs => reverse(xs) ::: List(x)
}
```

This implementation has the advantage of being simple, but it is not very efficient. Indeed, one concatenation is executed for every element in the list. List concatenation takes time proportional to the length of its first operand. Therefore, the complexity of reverse(xs) is

\[n + (n - 1) + ... + 1 = \frac{n(n + 1)}{2}\]

where \(n\) is the length of \(xs\). Can reverse be implemented more efficiently? We will see later that there exists another implementation which has only linear complexity.

### 8.3 Example: Merge sort

The insertion sort presented earlier in this chapter is simple to formulate, but also not very efficient. It's average complexity is proportional to the square of the length
of the input list. We now design a program to sort the elements of a list which is more efficient than insertion sort. A good algorithm for this is merge sort, which works as follows.

First, if the list has zero or one elements, it is already sorted, so one returns the list unchanged. Longer lists are split into two sub-lists, each containing about half the elements of the original list. Each sub-list is sorted by a recursive call to the sort function, and the resulting two sorted lists are then combined in a merge operation.

For a general implementation of merge sort, we still have to specify the type of list elements to be sorted, as well as the function to be used for the comparison of elements. We obtain a function of maximal generality by passing these two items as parameters. This leads to the following implementation.

```scala
def msort[α](less: (α, α) => Boolean)(xs: List[α]): List[α] = {
 def merge(xs1: List[α], xs2: List[α]): List[α] = {
 if (xs1.isEmpty) xs2
 else if (xs2.isEmpty) xs1
 else if (less(xs1.head, xs2.head)) xs1.head :: merge(xs1.tail, xs2)
 else xs2.head :: merge(xs1, xs2.tail);
 }

 val n = xs.length / 2;
 if (n == 0) xs
 else merge(msort(less)(xs take n), msort(less)(xs drop n))
}
```

The complexity of msort is $O(N \log N)$, where $N$ is the length of the input list. To see why, note that splitting a list in two and merging two sorted lists each take time proportional to the length of the argument list(s). Each recursive call of msort halves the number of elements in its input, so there are $O(\log N)$ consecutive recursive calls until the base case of lists of length 1 is reached. However, for longer lists each call spawns off two further calls. Adding everything up we obtain that at each of the $O(\log N)$ call levels, every element of the original lists takes part in one split operation and in one merge operation. Hence, every call level has a total cost proportional to $O(N)$. Since there are $O(\log N)$ call levels, we obtain an overall cost of $O(N \log N)$. That cost does not depend on the initial distribution of elements in the list, so the worst case cost is the same as the average case cost. This makes merge sort an attractive algorithm for sorting lists.

Here is an example how msort is used.

```scala
msort(x: Int, y: Int => x < y)(List(5, 7, 1, 3))
```

The definition of msort is curried, to make it easy to specialize it with particular comparison functions. For instance,

```scala
val intSort = msort(x: Int, y: Int => x < y)
val reverseSort = msort(x: Int, y: Int => x > y)
```
8.4 Definition of class List II: Higher-Order Methods

The examples encountered so far show that functions over lists often have similar structures. We can identify several patterns of computation over lists, like:

- transforming every element of a list in some way.
- extracting from a list all elements satisfying a criterion.
- combine the elements of a list using some operator.

Functional programming languages enable programmers to write general functions which implement patterns like this by means of higher order functions. We now discuss a set of commonly used higher-order functions, which are implemented as methods in class List.

Mapping over lists. A common operation is to transform each element of a list and then return the lists of results. For instance, to scale each element of a list by a given factor.

```scala
def scaleList(xs: List[double], factor: double): List[double] = xs match {
 case Nil => xs
 case x :: xs1 => x * factor :: scaleList(xs1, factor)
}
```

This pattern can be generalized to the `map` method of class List:

```scala
abstract class List[a] { ...
 def map[b](f: a => b): List[b] = this match {
 case Nil => this
 case x :: xs => f(x) :: xs.map(f)
 }
}
```

Using `map`, `scaleList` can be more concisely written as follows.

```scala
def scaleList(xs: List[double], factor: double) = xs map (x => x * factor)
```

As another example, consider the problem of returning a given column of a matrix which is represented as a list of rows, where each row is again a list. This is done by the following function `column`.

```scala
def column[a](xs: List[List[a]], index: int): List[a] = xs map (row => row at index)
```

Closely related to `map` is the `foreach` method, which applies a given function to all elements of a list, but does not construct a list of results. The function is thus applied only for its side effect. `foreach` is defined as follows.
8.4 Definition of class List II: Higher-Order Methods

```scala
def foreach(f: a => unit): unit = this match {
case Nil => ()
case x :: xs => f(x) ; xs.foreach(f)
}
```

This function can be used for printing all elements of a list, for instance:
```
x.foreach (x => System.out.println(x))
```

**Exercise 8.4.1** Consider a function which squares all elements of a list and returns a list with the results. Complete the following two equivalent definitions of `squareList`.

```scala
def squareList(xs: List[int]): List[int] = xs match {
case List() => ??
case y :: ys => ??
}
def squareList(xs: List[int]): List[int] = xs map ??
```

**Filtering Lists.** Another common operation selects from a list all elements fulfilling a given criterion. For instance, to return a list of all positive elements in some given lists of integers:

```scala
def posElems(xs: List[int]): List[int] = xs match {
case Nil => xs
 case x :: xs1 => if (x > 0) x :: posElems(xs1) else posElems(xs1)
}
```

This pattern is generalized to the `filter` method of class List:

```scala
def filter(p: a => boolean): List[a] = this match {
case Nil => this
 case x :: xs => if (p(x)) x :: xs.filter(p) else xs.filter(p)
}
```

Using `filter`, `posElems` can be more concisely written as follows.

```scala
def posElems(xs: List[int]): List[int] = xs filter (x => x > 0)
```

An operation related to filtering is testing whether all elements of a list satisfy a certain condition. Dually, one might also be interested in the question whether there exists an element in a list that satisfies a certain condition. These operations are embodied in the higher-order functions `forall` and `exists` of class List.
def forall(p: a => Boolean): Boolean =
   isEmpty || (p(head) && (tail forall p));
def exists(p: a => Boolean): Boolean =
   !isEmpty && (p(head) || (tail exists p));

To illustrate the use of `forall`, consider the question whether a number is prime. Remember that a number \( n \) is prime if it can be divided without remainder only by one and itself. The most direct translation of this definition would test that \( n \) divided by all numbers from 2 up to and excluding itself gives a non-zero remainder. This list of numbers can be generated using a function `List.range` which is defined in object `List` as follows.

package scala;
object List { ...
def range(from: int, end: int): List[int] =
   if (from >= end) Nil else from :: range(from + 1, end);

For example, `List.range(2, n)` generates the list of all integers from 2 up to and excluding \( n \). The function `isPrime` can now simply be defined as follows.

def isPrime(n: int) =
   List.range(2, n) forall (x => n % x != 0)

We see that the mathematical definition of prime-ness has been translated directly into Scala code.

Exercise: Define `forall` and `exists` in terms of `filter`.

Folding and Reducing Lists. Another common operation is to combine the elements of a list with some operator. For instance:

\[
\begin{align*}
\text{sum}(\text{List}(x_1, \ldots, x_n)) & = 0 + x_1 + \ldots + x_n \\
\text{product}(\text{List}(x_1, \ldots, x_n)) & = 1 \times x_1 \times \ldots \times x_n
\end{align*}
\]

Of course, we can implement both functions with a recursive scheme:

def sum(xs: List[int]): int = xs match {
   case Nil => 0
   case y :: ys => y + sum(ys)
}
def product(xs: List[int]): int = xs match {
   case Nil => 1
   case y :: ys => y * product(ys)
}

But we can also use the generalization of this program scheme embodied in the `reduceLeft` method of class `List`. This method inserts a given binary operator be-
8.4 Definition of class List II: Higher-Order Methods

tween adjacent elements of a given list. E.g.

\[
\text{List}(x_1, \ldots, x_n).\text{reduceLeft}(op) = \ldots (x_1 \text{ op } x_2) \text{ op } \ldots \text{ op } x_n
\]

Using reduceLeft, we can make the common pattern in sum and product apparent:

\[
\begin{align*}
\text{def} \quad \text{sum}(xs: \text{List}[\text{int}]) &= (0 :: xs) \text{ reduceLeft } \{(x, y) \Rightarrow x + y\} \\
\text{def} \quad \text{product}(xs: \text{List}[\text{int}]) &= (1 :: xs) \text{ reduceLeft } \{(x, y) \Rightarrow x * y\}
\end{align*}
\]

Here is the implementation of reduceLeft.

\[
\begin{align*}
\text{def} \quad \text{reduceLeft}(op: (a, a) \Rightarrow a): a &= \text{this} \text{ match } \{| \\
&\quad \text{case } \text{Nil} \Rightarrow \text{throw new Error("Nil.reduceLeft")} \\
&\quad \text{case } x :: xs \Rightarrow (xs \text{ foldLeft x})(op)
\} \\
\text{def} \quad \text{foldLeft}[b](z: b)(op: (b, a) \Rightarrow b): b &= \text{this} \text{ match } \{| \\
&\quad \text{case } \text{Nil} \Rightarrow z \\
&\quad \text{case } x :: xs \Rightarrow (xs \text{ foldLeft op}(z, x))(op)
\}
\end{align*}
\]

We see that the reduceLeft method is defined in terms of another generally useful method, foldLeft. The latter takes as additional parameter an accumulator \(z\), which is returned when foldLeft is applied on an empty list. That is,

\[
\text{List}(x_1, \ldots, x_n) \text{ foldLeft } z)(op) = \ldots (z \text{ op } x_1) \text{ op } \ldots \text{ op } x_n
\]

The sum and product methods can be defined alternatively using foldLeft:

\[
\begin{align*}
\text{def} \quad \text{sum}(xs: \text{List}[\text{int}]) &= (xs \text{ foldLeft } 0) \{(x, y) \Rightarrow x + y\} \\
\text{def} \quad \text{product}(xs: \text{List}[\text{int}]) &= (xs \text{ foldLeft } 1) \{(x, y) \Rightarrow x * y\}
\end{align*}
\]

**FoldRight and ReduceRight.** Applications of foldLeft and reduceLeft expand to left-leaning trees. They have duals foldRight and reduceRight, which produce right-leaning trees.

\[
\begin{align*}
\text{List}(x_1, \ldots, x_n).\text{reduceRight}(op) &= x_1 \text{ op } \ldots (x_{n-1} \text{ op } x_n)\ldots \\
\text{List}(x_1, \ldots, x_n) \text{ foldRight } \text{acc})(op) &= x_1 \text{ op } \ldots (x_n \text{ op } \text{acc})\ldots
\end{align*}
\]

These are defined as follows.

\[
\begin{align*}
\text{def} \quad \text{reduceRight}(op: (a, a) \Rightarrow a): a &= \text{match } \{| \\
&\quad \text{case } \text{Nil} \Rightarrow \text{throw new Error("Nil.reduceRight")} \\
&\quad \text{case } x :: \text{Nil} \Rightarrow x \\
&\quad \text{case } x :: xs \Rightarrow \text{op}(x, xs.\text{reduceRight}(op))
\} \\
\text{def} \quad \text{foldRight}[b](z: b)(op: (a, b) \Rightarrow b): b &= \text{match } \{| \\
&\quad \text{case } \text{Nil} \Rightarrow z \\
&\quad \text{case } x :: xs \Rightarrow \text{op}(x, xs.\text{reduceRight}(op))
\}
\end{align*}
\]
case Nil => z
  case x :: xs => op(x, (xs foldRight z)(op))
}

Class List defines also two symbolic abbreviations for foldLeft and foldRight:

\[
\begin{align*}
\text{def } /: &\quad (z: b)(f: (b, a) \Rightarrow b): b = \text{foldLeft}(z)(f); \\
\text{def } \:\\ &\quad (z: b)(f: (a, b) \Rightarrow b): b = \text{foldRight}(z)(f);
\end{align*}
\]

The method names picture the left/right leaning trees of the fold operations by forward or backward slashes. The : points in each case to the list argument whereas the end of the slash points to the accumulator (or: zero) argument z. That is,

\[
\begin{align*}
(z /: \text{List}(x_1, \ldots, x_n))(op) &= (\ldots(z \ op x_1) \ op \ \ldots) \ op \ x_n \\
(\text{List}(x_1, \ldots, x_n) :\ z)(op) &= x_1 \ op (\ldots(x_n \ op \ acc)\ldots)
\end{align*}
\]

For associative and commutative operators, /: and \:\ are equivalent (even though there may be a difference in efficiency). But sometimes, only one of the two operators is appropriate or has the right type:

**Exercise 8.4.2** Consider the problem of writing a function flatten, which takes a list of element lists as arguments. The result of flatten should be the concatenation of all element lists into a single list. Here is the an implementation of this method in terms of \:\.

\[
\begin{align*}
\text{def } \text{flatten}[a](xs: \text{List}[\text{List}[a]]): \text{List}[a] &= \\
&\quad (xs :\ Nil) \{(x, xs) \Rightarrow x :::: xs\}
\end{align*}
\]

In this case it is not possible to replace the application of \:\ with /:. Explain why.

In fact flatten is predefined together with a set of other userful function in an object called List in the standard Scala library. It can be accessed from user program by calling List.flatten. Note that flatten is not a method of class List – it would not make sense there, since it applies only to lists of lists, not to all lists in general.

**List Reversal Again.** We have seen in Section 8.2 an implementation of method reverse whose run-time was quadratic in the length of the list to be reversed. We now develop a new implementation of reverse, which has linear cost. The idea is to use a foldLeft operation based on the following program scheme.

\[
\begin{align*}
\text{class } \text{List}[^+a] \{ \\
&\quad \text{def } \text{reverse}: \text{List}[a] = (z? /: \text{this})(op?)
\end{align*}
\]

It only remains to fill in the z? and op? parts. Let's try to deduce them from examples.

\[
\begin{align*}
\text{Nil} &= \text{Nil.reverse} & // \text{by specification}
\end{align*}
\]
8.4 Definition of class List II: Higher-Order Methods

\[ (z /: \text{Nil})(\text{op}) \]  // by the template for reverse
\[ (\text{Nil foldLeft } z)(\text{op}) \]  // by the definition of /:
\[ z \]  // by definition of foldLeft

Hence, \( z \) must be \( \text{Nil} \). To deduce the second operand, let’s study reversal of a list of length one.

\[
\text{List}(x) \\
= \text{List}(x).\text{reverse} \quad // \text{by specification} \\
= (\text{Nil} /: \text{List}(x))(\text{op}) \quad // \text{by the template for reverse, with } z = \text{Nil} \\
= (\text{List}(x) \text{ foldLeft } \text{Nil})(\text{op}) \quad // \text{by the definition of /:} \\
= \text{op}(\text{Nil}, x) \quad // \text{by definition of foldLeft}
\]

Hence, \( \text{op}(\text{Nil}, x) \) equals \( \text{List}(x) \), which is the same as \( x :: \text{Nil} \). This suggests to take as \( \text{op} \) the \( :: \) operator with its operands exchanged. Hence, we arrive at the following implementation for reverse, which has linear complexity.

```scala
def reverse: List[a] =
 ((Nil: List[a]) /: this) {(xs, x) => x :: xs}
```

(Remark: The type annotation of \( \text{Nil} \) is necessary to make the type inferencer work.)

**Exercise 8.4.3** Fill in the missing expressions to complete the following definitions of some basic list-manipulation operations as fold operations.

```scala
def mapFun[a, b](xs: List[a], f: a => b): List[b] =
 (xs :\ List[b]){} ?? }

def lengthFun[a](xs: List[a]): int =
 (0 /: xs){ ?? }
```

**Nested Mappings.** We can employ higher-order list processing functions to express many computations that are normally expressed as nested loops in imperative languages.

As an example, consider the following problem: Given a positive integer \( n \), find all pairs of positive integers \( i \) and \( j \), where \( 1 \leq j < i < n \) such that \( i + j \) is prime. For instance, if \( n = 7 \), the pairs are

\[
\begin{array}{cccccccc}
  i & 2 & 3 & 4 & 5 & 6 & 6 \\
  j & 1 & 2 & 1 & 3 & 2 & 1 & 5 \\
  i+j & 3 & 5 & 5 & 7 & 7 & 7 & 11 \\
\end{array}
\]

A natural way to solve this problem consists of two steps. In a first step, one generates the sequence of all pairs \( (i, j) \) of integers such that \( 1 \leq j < i < n \). In a second step one then filters from this sequence all pairs \( (i, j) \) such that \( i + j \) is prime.
Looking at the first step in more detail, a natural way to generate the sequence of pairs consists of three sub-steps. First, generate all integers between 1 and $n$ for $i$.

Second, for each integer $i$ between 1 and $n$, generate the list of pairs $(i, 1)$ up to $(i, i-1)$. This can be achieved by a combination of range and map:

$$\text{List.range}(1, i) \text{ map } (x \Rightarrow \text{Pair}(i, x))$$

Finally, combine all sublists using foldRight with :::. Putting everything together gives the following expression:

$$\text{List.range}(1, n)\text{.map}(i \Rightarrow \text{List.range}(1, i)\text{.map}(x \Rightarrow \text{Pair}(i, x)))\text{.foldRight(List[Pair[int, int]]())} \{(xs, ys) \Rightarrow xs :::: ys\} \text{.filter}(pair \Rightarrow \text{isPrime}(pair._1 + pair._2))$$

**Flattening Maps.** The combination of mapping and then concatenating sublists resulting from the map is so common that we there is a special method for it in class List:

```scala
abstract class List[+a] { ...
 def flatMap[b](f: a => List[b]): List[b] = match {
 case Nil => Nil
 case x :: xs => f(x) ::: (xs flatMap f)
 }
}
```

With flatMap, the pairs-whose-sum-is-prime expression could have been written more concisely as follows.

$$\text{List.range}(1, n)\text{.flatMap}(i \Rightarrow \text{List.range}(1, i)\text{.map}(x \Rightarrow \text{Pair}(i, x)))\text{.filter}(pair \Rightarrow \text{isPrime}(pair._1 + pair._2))$$

### 8.5 Summary

This chapter has introduced lists as a fundamental data structure in programming. Since lists are immutable, they are a common data type in functional programming languages. They play there a role comparable to arrays in imperative languages. However, the access patterns between arrays and lists are quite different. Where array accessing is always done by indexing, this is much less common for lists. We have seen that scala.List defines a method called apply for indexing; however this operation is much more costly than in the case of arrays (linear as opposed to constant time). Instead of indexing, lists are usually traversed recursively, where
recursion steps are usually based on a pattern match over the traversed list. There is also a rich set of higher-order combinators which allow one to instantiate a set of predefined patterns of computations over lists.
Chapter 9

For-Comprehensions

The last chapter demonstrated that higher-order functions such as `map`, `flatMap`, `filter` provide powerful constructions for dealing with lists. But sometimes the level of abstraction required by these functions makes a program hard to understand.

To help understandability, Scala has a special notation which simplifies common patterns of applications of higher-order functions. This notation builds a bridge between set-comprehensions in mathematics and `for`-loops in imperative languages such as C or Java. It also closely resembles the query notation of relational databases.

As a first example, say we are given a list `persons` of persons with `name` and `age` fields. To print the names of all persons in the sequence which are aged over 20, one can write:

```scala
for (val p <- persons; p.age > 20) yield p.name
```

This is equivalent to the following expression, which uses higher-order functions `filter` and `map`:

```scala
persons filter (p => p.age > 20) map (p => p.name)
```

The for-comprehension looks a bit like a `for`-loop in imperative languages, except that it constructs a list of the results of all iterations.

Generally, a for-comprehension is of the form

```scala
for (s) yield e
```

Here, `s` is a sequence of generators and filters. A generator is of the form `val x <- e`, where `e` is a list-valued expression. It binds `x` to successive values in the list. A filter is an expression `f` of type `boolean`. It omits from consideration all bindings for which `f` is `false`. The sequence `s` starts in each case with a generator. If there are several
generators in a sequence, later generators vary more rapidly than earlier ones.

Here are two examples that show how for-comprehensions are used. First, let’s redo an example of the previous chapter: Given a positive integer \( n \), find all pairs of positive integers \( i \) and \( j \), where \( 1 \leq j < i < n \) such that \( i + j \) is prime. With a for-comprehension this problem is solved as follows:

```scala
for (val i <- List.range(1, n);
 val j <- List.range(1, i);
 isPrime(i+j)) yield Pair(i, j)
```

This is arguably much clearer than the solution using `map`, `flatMap` and `filter` that we have developed previously.

As a second example, consider computing the scalar product of two vectors \( xs \) and \( ys \). Using a for-comprehension, this can be written as follows.

```scala
sum (for (val (x, y) <- xs zip ys) yield x * y)
```

### 9.1 The N-Queens Problem

For-comprehensions are especially useful for solving combinatorial puzzles. An example of such a puzzle is the 8-queens problem: Given a standard chess-board, place 8 queens such that no queen is in check from any other (a queen can check another piece if they are on the same column, row, or diagonal). We will now develop a solution to this problem, generalizing it to chess-boards of arbitrary size. Hence, the problem is to place \( n \) queens on a chess-board of size \( n \times n \).

To solve this problem, note that we need to place a queen in each row. So we could place queens in successive rows, each time checking that a newly placed queen is not in check from any other queens that have already been placed. In the course of this search, it might arise that a queen to be placed in row \( k \) would be in check in all fields of that row from queens in row 1 to \( k - 1 \). In that case, we need to abort that part of the search in order to continue with a different configuration of queens in columns 1 to \( k - 1 \).

This suggests a recursive algorithm. Assume that we have already generated all solutions of placing \( k - 1 \) queens on a board of size \( n \times n \). We can represent each such solution by a list of length \( k - 1 \) of column numbers (which can range from 1 to \( n \)). We treat these partial solution lists as stacks, where the column number of the queen in row \( k - 1 \) comes first in the list, followed by the column number of the queen in row \( k - 2 \), etc. The bottom of the stack is the column number of the queen placed in the first row of the board. All solutions together are then represented as a list of lists, with one element for each solution.

Now, to place the \( k \)’the queen, we generate all possible extensions of each previous solution by one more queen. This yields another list of solution lists, this time of
length $k$. We continue the process until we have reached solutions of the size of the chess-board $n$. This algorithmic idea is embodied in function `placeQueens` below:

```python
def queens(n: int): List[List[int]] = {
 def placeQueens(k: int): List[List[int]] =
 if (k == 0) List(List())
 else for (val queens <- placeQueens(k - 1);
 val column <- List.range(1, n + 1);
 isSafe(column, queens, 1)) yield col :: queens;
 placeQueens(n);
}
```

**Exercise 9.1.1** Write the function

```python
def isSafe(col: int, queens: List[int], delta: int): boolean
```

which tests whether a queen in the given column col is safe with respect to the queens already placed. Here, delta is the difference between the row of the queen to be placed and the row of the first queen in the list.

### 9.2 Querying with For-Comprehensions

The for-notation is essentially equivalent to common operations of database query languages. For instance, say we are given a database `books`, represented as a list of books, where `Book` is defined as follows.

```scala
case class Book(title: String, authors: List[String]);
```

Here is a small example database:

```scala
val books: List[Book] = List(
 Book("Structure and Interpretation of Computer Programs", List("Abelson, Harold", "Sussman, Gerald J.")),
 Book("Principles of Compiler Design", List("Aho, Alfred", "Ullman, Jeffrey")),
 Book("Programming in Modula-2", List("Wirth, Niklaus")),
 Book("Introduction to Functional Programming", List("Bird, Richard")),
```

Then, to find the titles of all books whose author's last name is “Ullman”:

```scala
for (val b <- books; val a <- b.authors; a startsWith "Ullman")
yield b.title
```
(Here, startsWith is a method in java.lang.String). Or, to find the titles of all books that have the string “Program” in their title:

```scala
for (val b <- books; (b.title indexOf "Program") >= 0) yield b.title
```

Or, to find the names of all authors that have written at least two books in the database.

```scala
for (val b1 <- books; val b2 <- books; b1 != b2;
 val a1 <- b1.authors; val a2 <- b2.authors; a1 == a2)
 yield a1
```

The last solution is not yet perfect, because authors will appear several times in the list of results. We still need to remove duplicate authors from result lists. This can be achieved with the following function.

```scala
def removeDuplicates[a](xs: List[a]): List[a] =
 if (xs.isEmpty) xs
 else xs.head :: removeDuplicates(xs.tail filter (x => x != xs.head));
```

Note that the last expression in method removeDuplicates can be equivalently expressed using a for-comprehension.

```scala
xs.head :: removeDuplicates(for (val x <- xs.tail; x != xs.head) yield x)
```

### 9.3 Translation of For-Comprehensions

Every for-comprehension can be expressed in terms of the three higher-order functions `map`, `flatMap` and `filter`. Here is the translation scheme, which is also used by the Scala compiler.

- A simple for-comprehension

  ```scala
 for (val x <- e) yield e'
  ```

  is translated to

  ```scala
e.map(x => e')
  ```

- A for-comprehension

  ```scala
 for (val x <- e; f; s) yield e'
  ```

  where `f` is a filter and `s` is a (possibly empty) sequence of generators or filters

  is translated to
for (val x <- e.filter(x => f); s) yield e'

and then translation continues with the latter expression.

- A for-comprehension

for (val x <- e; y <- e'; s) yield e''

where s is a (possibly empty) sequence of generators or filters is translated to

e.flatMap(x => for (y <- e'; s) yield e'')

and then translation continues with the latter expression.

For instance, taking our "pairs of integers whose sum is prime" example:

for (val i <- range(1, n);
     val j <- range(1, i);
     isPrime(i+j))
) yield (i, j)

Here is what we get when we translate this expression:

range(1, n)
    .flatMap(i =>
        range(1, i)
            .filter(j => isPrime(i+j))
            .map(j => (i, j)))

Conversely, it would also be possible to express functions map, flatMap and filter using for-comprehensions. Here are the three functions again, this time implemented using for-comprehensions.

object Demo {
    def map[a, b](xs: List[a], f: a => b): List[b] =
         for (val x <- cs) yield f(x);

    def flatMap[a, b](xs: List[a], f: a => List[b]): List[b] =
         for (val x <- xs; val y <- f(x)) yield y;

    def filter[a](xs: List[a], p: a => boolean): List[a] =
         for (val x <- xs; p(x)) yield x;
}

Not surprisingly, the translation of the for-comprehension in the body of Demo.map will produce a call to map in class List. Similarly, Demo.flatMap and Demo.filter translate to flatMap and filter in class List.

Exercise 9.3.1 Define the following function in terms of for.
def flatten(xss: List[List[a]]): List[a] =
    (xss :\ List()) ((xs, ys) => xs ::: ys)

Exercise 9.3.2 Translate

for (val b <- books; val a <- b.authors; a startsWith "Bird") yield b.title
for (val b <- books; (b.title indexOf "Program") >= 0 ) yield b.title
to higher-order functions.

9.4 For-Loops

For-comprehensions resemble for-loops in imperative languages, except that they produce a list of results. Sometimes, a list of results is not needed but we would still like the flexibility of generators and filters in iterations over lists. This is made possible by a variant of the for-comprehension syntax, which expresses for-loops:

    for (s) e

This construct is the same as the standard for-comprehension syntax except that the keyword yield is missing. The for-loop is executed by executing the expression e for each element generated from the sequence of generators and filters s.

As an example, the following expression prints out all elements of a matrix represented as a list of lists:

    for (xs <- xss) {
        for (x <- xs) System.out.print(x + "\t")
        System.out.println()
    }

The translation of for-loops to higher-order methods of class List is similar to the translation of for-comprehensions, but is simpler. Where for-comprehensions translate to map and flatMap, for-loops translate in each case to foreach.

9.5 Generalizing For

We have seen that the translation of for-comprehensions only relies on the presence of methods map, flatMap, and filter. Therefore it is possible to apply the same notation to generators that produce objects other than lists; these objects only have to support the three key functions map, flatMap, and filter.

The standard Scala library has several other abstractions that support these three methods and with them support for-comprehensions. We will encounter some of
them in the following chapters. As a programmer you can also use this principle to enable for-comprehensions for types you define – these types just need to support methods `map`, `flatMap`, and `filter`.

There are many examples where this is useful: Examples are database interfaces, XML trees, or optional values. We will see in Chapter 13.2 how for-comprehensions can be used in the definition of parsers for context-free grammars that construct abstract syntax trees.

One caveat: It is not assured automatically that the result translating a for-comprehension is well-typed. To ensure this, the types of `map`, `flatMap` and `filter` have to be essentially similar to the types of these methods in class `List`.

To make this precise, assume you have a parameterized class `C[a]` for which you want to enable for-comprehensions. Then `C` should define `map`, `flatMap` and `filter` with the following types:

```scala
def map[b](f: a => b): C[b]
def flatMap[b](f: a => C[b]): C[b]
def filter(p: a => boolean): C[a]
```

It would be attractive to enforce these types statically in the Scala compiler, for instance by requiring that any type supporting for-comprehensions implements a standard trait with these methods \(^1\). The problem is that such a standard trait would have to abstract over the identity of the class `C`, for instance by taking `C` as a type parameter. Note that this parameter would be a type constructor, which gets applied to several different types in the signatures of methods `map` and `flatMap`. Unfortunately, the Scala type system is too weak to express this construct, since it can handle only type parameters which are fully applied types.

---

\(^1\)In the programming language Haskell, which has similar constructs, this abstraction is called a "monad with zero"
Chapter 10

Mutable State

Most programs we have presented so far did not have side-effects\(^1\). Therefore, the notion of time did not matter. For a program that terminates, any sequence of actions would have led to the same result! This is also reflected by the substitution model of computation, where a rewrite step can be applied anywhere in a term, and all rewritings that terminate lead to the same solution. In fact, this confluence property is a deep result in \(\lambda\)-calculus, the theory underlying functional programming.

In this chapter, we introduce functions with side effects and study their behavior. We will see that as a consequence we have to fundamentally modify up the substitution model of computation which we employed so far.

10.1 Stateful Objects

We normally view the world as a set of objects, some of which have state that changes over time. Normally, state is associated with a set of variables that can be changed in the course of a computation. There is also a more abstract notion of state, which does not refer to particular constructs of a programming language: An object has state (or: is stateful) if its behavior is influenced by its history.

For instance, a bank account object has state, because the question “can I withdraw 100 CHF?” might have different answers during the lifetime of the account.

In Scala, all mutable state is ultimately built from variables. A variable definition is written like a value definition, but starts with var instead of val. For instance, the following two definitions introduce and initialize two variables x and count.

\[
\text{var } x: \text{String } = \text{"abc"};
\]

\[^1\]We ignore here the fact that some of our program printed to standard output, which technically is a side effect.
var count = 111;

Like a value definition, a variable definition associates a name with a value. But in the case of a variable definition, this association may be changed later by an assignment. Such assignments are written as in C or Java. Examples:

\[
\begin{align*}
x &= "hello"; \\
count &= count + 1;
\end{align*}
\]

In Scala, every defined variable has to be initialized at the point of its definition. For instance, the statement `var x: int;` is not regarded as a variable definition, because the initializer is missing\(^2\). If one does not know, or does not care about, the appropriate initializer, one can use a wildcard instead. I.e.

\[
val x: T = _;
\]

will initialize \(x\) to some default value (null for reference types, false for booleans, and the appropriate version of 0 for numeric value types).

Real-world objects with state are represented in Scala by objects that have variables as members. For instance, here is a class that represents bank accounts.

```scala
class BankAccount {
 private var balance = 0;
 def deposit(amount: int): unit =
 if (amount > 0) balance = balance + amount;

 def withdraw(amount: int): int =
 if (0 < amount && amount <= balance) {
 balance = balance - amount;
 balance
 } else throw new Error("insufficient funds");
}
```

The class defines a variable \(balance\) which contains the current balance of an account. Methods \(deposit\) and \(withdraw\) change the value of this variable through assignments. Note that \(balance\) is private in class BankAccount – hence it can not be accessed directly outside the class.

To create bank-accounts, we use the usual object creation notation:

```scala
val myAccount = new BankAccount
```

**Example 10.1.1** Here is a scalaInt session that deals with bank accounts.

\(^2\)If a statement like this appears in a class, it is instead regarded as a variable declaration, which introduces abstract access methods for the variable, but does not associate these methods with a piece of state.
The example shows that applying the same operation (withdraw 20) twice to an account yields different results. So, clearly, accounts are stateful objects.

**Sameness and Change.** Assignments pose new problems in deciding when two expressions are “the same”. If assignments are excluded, and one writes

\[
\text{val } x = E; \text{ val } y = E;
\]

where E is some arbitrary expression, then x and y can reasonably be assumed to be the same. I.e. one could have equivalently written

\[
\text{val } x = E; \text{ val } y = x;
\]

(This property is usually called *referential transparency*). But once we admit assignments, the two definition sequences are different. Consider:

\[
\text{val } x = \text{ new } \text{BankAccount}; \text{ val } y = \text{ new } \text{BankAccount};
\]

To answer the question whether x and y are the same, we need to be more precise what “sameness” means. This meaning is captured in the notion of *operational equivalence*, which, somewhat informally, is stated as follows.

Suppose we have two definitions of x and y. To test whether x and y define the same value, proceed as follows.

- Execute the definitions followed by an arbitrary sequence S of operations that involve x and y. Observe the results (if any).
- Then, execute the definitions with another sequence S’ which results from S by renaming all occurrences of y in S to x.
- If the results of running S’ are different, then surely x and y are different.
• On the other hand, if all possible pairs of sequences \((S, S')\) yield the same results, then \(x\) and \(y\) are the same.

In other words, operational equivalence regards two definitions \(x\) and \(y\) as defining the same value, if no possible experiment can distinguish between \(x\) and \(y\). An experiment in this context are two version of an arbitrary program which use either \(x\) or \(y\).

Given this definition, let’s test whether

\[
\text{val } x = \text{new } \text{BankAccount}; \ \text{val } y = \text{new } \text{BankAccount};
\]

defines values \(x\) and \(y\) which are the same. Here are the definitions again, followed by a test sequence:

\[
> \ \text{val } x = \text{new } \text{BankAccount} \\
> \ \text{val } y = \text{new } \text{BankAccount} \\
> \ \text{x deposit 30} \\
\quad \text{30} \\
> \ \text{y withdraw 20} \\
\quad \text{java.lang.RuntimeException: insufficient funds}
\]

Now, rename all occurrences of \(y\) in that sequence to \(x\). We get:

\[
> \ \text{val } x = \text{new } \text{BankAccount} \\
> \ \text{val } y = \text{new } \text{BankAccount} \\
> \ \text{x deposit 30} \\
\quad \text{30} \\
> \ \text{x withdraw 20} \\
\quad \text{10}
\]

Since the final results are different, we have established that \(x\) and \(y\) are not the same. On the other hand, if we define

\[
\text{val } x = \text{new } \text{BankAccount}; \ \text{val } y = x
\]

then no sequence of operations can distinguish between \(x\) and \(y\), so \(x\) and \(y\) are the same in this case.

**Assignment and the Substitution Model.** These examples show that our previous substitution model of computation cannot be used anymore. After all, under this model we could always replace a value name by its defining expression. For instance in

\[
\text{val } x = \text{new } \text{BankAccount}; \ \text{val } y = x
\]

the \(x\) in the definition of \(y\) could be replaced by \text{new } \text{BankAccount}. But we have seen that this change leads to a different program. So the substitution model must be
invalid, once we add assignments.

10.2 Imperative Control Structures

Scala has the **while** and **do-while** loop constructs known from the C and Java languages. There is also a single branch **if** which leaves out the else-part as well as a **return** statement which aborts a function prematurely. This makes it possible to program in a conventional imperative style. For instance, the following function, which computes the n'th power of a given parameter $x$, is implemented using **while** and single-branch **if**.

```scala
def power (x: double, n: int): double = {
 var r = 1.0;
 var i = n;
 while (i > 0) {
 if ((i & 1) == 1) { r = r * x }
 if (i > 1) r = r * r;
 i = i >> 1;
 }
 r
}
```

These imperative control constructs are in the language for convenience. They could have been left out, as the same constructs can be implemented using just functions. As an example, let's develop a functional implementation of the while loop. **whileLoop** should be a function that takes two parameters: a condition, of type **boolean**, and a command, of type **unit**. Both condition and command need to be passed by-name, so that they are evaluated repeatedly for each loop iteration. This leads to the following definition of **whileLoop**.

```scala
def whileLoop(def condition: boolean)(def command: unit): unit =
 if (condition) {
 command; whileLoop(condition)(command)
 }
 else {}
```

Note that **whileLoop** is tail recursive, so it operates in constant stack space.

**Exercise 10.2.1** Write a function **repeatLoop**, which should be applied as follows:

```scala
repeatLoop { command } (condition)
```

Is there also a way to obtain a loop syntax like the following?

```scala
repeatLoop { command } until (condition)
```
Some other control constructs known from C and Java are missing in Scala: There are no break and continue jumps for loops. There are also no for-loops in the Java sense – these have been replaced by the more general for-loop construct discussed in Section 9.4.

10.3 Extended Example: Discrete Event Simulation

We now discuss an example that demonstrates how assignments and higher-order functions can be combined in interesting ways. We will build a simulator for digital circuits.

The example is taken from Abelson and Sussman’s book [ASS96]. We augment their basic (Scheme-) code by an object-oriented structure which allows code-reuse through inheritance. The example also shows how discrete event simulation programs in general are structured and built.

We start with a little language to describe digital circuits. A digital circuit is built from wires and function boxes. Wires carry signals which are transformed by function boxes. We will represent signals by the booleans true and false.

Basic function boxes (or: gates) are:

- An inverter, which negates its signal
- An and-gate, which sets its output to the conjunction of its input.
- An or-gate, which sets its output to the disjunction of its input.

Other function boxes can be built by combining basic ones.

Gates have delays, so an output of a gate will change only some time after its inputs change.

A Language for Digital Circuits. We describe the elements of a digital circuit by the following set of Scala classes and functions.

First, there is a class Wire for wires. We can construct wires as follows.

```scala
val a = new Wire;
val b = new Wire;
val c = new Wire;
```

Second, there are functions

```scala
def inverter(input: Wire, output: Wire): unit
def andGate(a1: Wire, a2: Wire, output: Wire): unit
def orGate(o1: Wire, o2: Wire, output: Wire): unit
```
which “make” the basic gates we need (as side-effects). More complicated function boxes can now be built from these. For instance, to construct a half-adder, we can define:

```scala
def halfAdder(a: Wire, b: Wire, s: Wire, c: Wire): unit = {
 val d = new Wire;
 val e = new Wire;
 orGate(a, b, d);
 andGate(a, b, c);
 inverter(c, e);
 andGate(d, e, s);
}
```

This abstraction can itself be used, for instance in defining a full adder:

```scala
def fullAdder(a: Wire, b: Wire, cin: Wire, sum: Wire, cout: Wire) = {
 val s = new Wire;
 val c1 = new Wire;
 val c2 = new Wire;
 halfAdder(a, cin, s, c1);
 halfAdder(b, s, sum, c2);
 orGate(c1, c2, cout);
}
```

Class Wire and functions inverter, andGate, and orGate represent thus a little language in which users can define digital circuits. We now give implementations of this class and these functions, which allow one to simulate circuits. These implementations are based on a simple and general API for discrete event simulation.

### The Simulation API.

Discrete event simulation performs user-defined actions at specified times. An action is represented as a function which takes no parameters and returns a unit result:

```scala
type Action = () => unit;
```

The time is simulated; it is not the actual “wall-clock” time.

A concrete simulation will be done inside an object which inherits from the abstract Simulation class. This class has the following signature:

```scala
abstract class Simulation {
 def currentTime: int;
 def afterDelay(delay: int, def action: Action): unit;
 def run: unit;
}
```
Here, currentTime returns the current simulated time as an integer number, afterDelay schedules an action to be performed at a specified delay after currentTime, and run runs the simulation until there are no further actions to be performed.

**The Wire Class.** A wire needs to support three basic actions.

- **getSignal**: boolean returns the current signal on the wire.
- **setSignal**(sig: boolean): unit sets the wire’s signal to sig.
- **addAction**(p: Action): unit attaches the specified procedure p to the actions of the wire. All attached action procedures will be executed every time the signal of a wire changes.

Here is an implementation of the `Wire` class:

```scala
class Wire {
 private var sigVal = false;
 private var actions: List[Action] = List();
 def getSignal = sigVal;
 def setSignal(s: boolean) =
 if (s != sigVal) {
 sigVal = s;
 actions.foreach(action => action());
 }
 def addAction(a: Action) = {
 actions = a :: actions; a()
 }
}
```

Two private variables make up the state of a wire. The variable `sigVal` represents the current signal, and the variable `actions` represents the action procedures currently attached to the wire.

**The Inverter Class.** We implement an inverter by installing an action on its input wire, namely the action which puts the negated input signal onto the output signal. The action needs to take effect at InverterDelay simulated time units after the input changes. This suggests the following implementation:

```scala
def inverter(input: Wire, output: Wire) = {
 def invertAction() = {
 val inputSig = input.getSignal;
 afterDelay(InverterDelay, () => output.setSignal(!inputSig))
 }
 input addAction invertAction
}
```
The And-Gate Class. And-gates are implemented analogously to inverters. The action of an andGate is to output the conjunction of its input signals. This should happen at AndGateDelay simulated time units after any one of its two inputs changes. Hence, the following implementation:

```scala
def andGate(a1: Wire, a2: Wire, output: Wire) = {
 def andAction() = {
 val a1Sig = a1.getSignal;
 val a2Sig = a2.getSignal;
 afterDelay(AndGateDelay, () => output.setSignal(a1Sig & a2Sig));
 }
 a1 addAction andAction;
 a2 addAction andAction;
}
```

**Exercise 10.3.1** Write the implementation of orGate.

**Exercise 10.3.2** Another way is to define an or-gate by a combination of inverters and and gates. Define a function orGate in terms of andGate and inverter. What is the delay time of this function?

The Simulation Class. Now, we just need to implement class Simulation, and we are done. The idea is that we maintain inside a Simulation object an agenda of actions to perform. The agenda is represented as a list of pairs of actions and the times they need to be run. The agenda list is sorted, so that earlier actions come before later ones.

```scala
class Simulation {
 private type Agenda = List[Pair[int, Action]];
 private var agenda: Agenda = List();

 There is also a private variable curtime to keep track of the current simulated time.

 private var curtime = 0;

 An application of the method afterDelay(delay, action) inserts the pair (curtime + delay, action) into the agenda list at the appropriate place.

 def afterDelay(int delay)(def action: Action): unit = {
 val actiontime = curtime + delay;
 def insertAction(ag: Agenda): Agenda = ag match {
 case List() =>
 Pair(actiontime, action) :: ag
 case (first @ Pair(time, act)) :: ag1 =>
 if (actiontime < time) Pair(actiontime, action) :: ag
 else first :: insert(ag1)
 }
 insertAction(agenda) = Pair(actiontime, action);
 curtime = actiontime;
 }
```
An application of the run method removes successive elements from the agenda and performs their actions. It continues until the agenda is empty:

```scala
def run = {
 afterDelay(0, () => System.out.println("*** simulation started ***");
 agenda match {
 case List() =>
 case Pair(_, action) :: agenda1 =>
 agenda = agenda1; action(); run
 }
}
```

**Running the Simulator.** To run the simulator, we still need a way to inspect changes of signals on wires. To this purpose, we write a function probe.

```scala
def probe(name: String, wire: Wire): unit = {
 wire addAction (() =>
 System.out.println(
 name + " " + currentTime + " new_value = " + wire.getSignal);
)
}
```

Now, to see the simulator in action, let's define four wires, and place probes on two of them:

```scala
val input1 = new Wire
val input2 = new Wire
val sum = new Wire
val carry = new Wire

> probe("sum", sum)
sum 0 new_value = false
> probe("carry", carry)
carry 0 new_value = false
```

Now let's define a half-adder connecting the wires:

```scala
halfAdder(input1, input2, sum, carry);
```

Finally, set one after another the signals on the two input wires to true and run the simulation.
10.4 Summary

We have seen in this chapter the constructs that let us model state in Scala – these are variables, assignments, and imperative control structures. State and Assignment complicate our mental model of computation. In particular, referential transparency is lost. On the other hand, assignment gives us new ways to formulate programs elegantly. As always, it depends on the situation whether purely functional programming or programming with assignments works best.
Chapter 11  
Computing with Streams

The previous chapters have introduced variables, assignment and stateful objects. We have seen how real-world objects that change with time can be modeled by changing the state of variables in a computation. Time changes in the real world thus are modeled by time changes in program execution. Of course, such time changes are usually stretched out or compressed, but their relative order is the same. This seems quite natural, but there is also a price to pay: Our simple and powerful substitution model for functional computation is no longer applicable once we introduce variables and assignment.

Is there another way? Can we model state change in the real world using only immutable functions? Taking mathematics as a guide, the answer is clearly yes: A time-changing quantity is simply modeled by a function $f(t)$ with a time parameter $t$. The same can be done in computation. Instead of overwriting a variable with successive values, we represent all these values as successive elements in a list. So, a mutable variable \texttt{var x: T} gets replaced by an immutable value \texttt{val x: List[T]}. In a sense, we trade space for time – the different values of the variable now all exit concurrently as different elements of the list. One advantage of the list-based view is that we can “time-travel”, i.e. view several successive values of the variable at the same time. Another advantage is that we can make use of the powerful library of list processing functions, which often simplifies computation. For instance, consider the imperative way to compute the sum of all prime numbers in an interval:

```java
def sumPrimes(start: int, end: int): int = {
 var acc = 0;
 while (i < end) {
 if (isPrime(i)) acc = acc + i;
 i = i + 1;
 }
 acc
}
```
Note that the variable \(i\) "steps through" all values of the interval \([\text{start} .. \text{end}-1]\).

A more functional way is to represent the list of values of variable \(i\) directly as \(\text{range}(	ext{start}, \text{end})\). Then the function can be rewritten as follows.

```python
def sumPrimes(start: int, end: int) =
 sum(range(start, end) filter isPrime);
```

No contest which program is shorter and clearer! However, the functional program is also considerably less efficient since it constructs a list of all numbers in the interval, and then another one for the prime numbers. Even worse from an efficiency point of view is the following example:

To find the second prime number between 1000 and 10000:

```python
range(1000, 10000) filter isPrime at 1
```

Here, the list of all numbers between 1000 and 10000 is constructed. But most of that list is never inspected!

However, we can obtain efficient execution for examples like these by a trick:

Avoid computing the tail of a sequence unless that tail is actually necessary for the computation.

We define a new class for such sequences, which is called \texttt{Stream}.

Streams are created using the constant \texttt{empty} and the constructor \texttt{cons}, which are both defined in module \texttt{scala.Stream}. For instance, the following expression constructs a stream with elements 1 and 2:

```python
Stream.cons(1, Stream.cons(2, Stream.empty))
```

As another example, here is the analogue of \texttt{List.range}, but returning a stream instead of a list:

```python
def range(start: Int, end: Int): Stream[Int] =
 if (start >= end) Stream.empty
 else Stream.cons(start, range(start + 1, end));
```

(This function is also defined as given above in module \texttt{Stream}). Even though \texttt{Stream.range} and \texttt{List.range} look similar, their execution behavior is completely different:

\texttt{Stream.range} immediately returns with a \texttt{Stream} object whose first element is \texttt{start}. All other elements are computed only when they are \texttt{demanded} by calling the \texttt{tail} method (which might be never at all).

Streams are accessed just as lists. as for lists, the basic access methods are \texttt{isEmpty}, \texttt{head} and \texttt{tail}. For instance, we can print all elements of a stream as follows.
def print(xs: Stream[a]): unit = 
    if (!xs.isEmpty) { System.out.println(xs.head); print(xs.tail) }

Streams also support almost all other methods defined on lists (see below for where their methods sets differ). For instance, we can find the second prime number between 1000 and 10000 by applying methods filter and apply on an interval stream:

Stream.range(1000, 10000) filter isPrime

The difference to the previous list-based implementation is that now we do not needlessly construct and test for primality any numbers beyond 3.

Consing and appending streams. Two methods in class List which are not supported by class Stream are :: and :::. The reason is that these methods are dispatched on their right-hand side argument, which means that this argument needs to be evaluated before the method is called. For instance, in the case of x :: xs on lists, the tail xs needs to be evaluated before :: can be called and the new list can be constructed. This does not work for streams, where we require that the tail of a stream should not be evaluated until it is demanded by a tail operation. The argument why list-append ::: cannot be adapted to streams is analogous.

Instead of x :: xs, one uses Stream.cons(x, xs) for constructing a stream with first element x and (unevaluated) rest xs. Instead of xs ::: ys, one uses the operation xs append ys.
Chapter 12

Iterators

Iterators are the imperative version of streams. Like streams, iterators describe potentially infinite lists. However, there is no data-structure which contains the elements of an iterator. Instead, iterators allow one to step through the sequence, using two abstract methods next and hasNext.

```scala
trait Iterator[a] {
 def hasNext: boolean;
 def next: a;
}
```

Method next returns successive elements. Method hasNext indicates whether there are still more elements to be returned by next. Iterators also support some other methods, which are explained later.

As an example, here is an application which prints the squares of all numbers from 1 to 100.

```scala
var it: Iterator[int] = Iterator.range(1, 100);
while (it.hasNext) {
 val x = it.next;
 System.out.println(x * x)
}
```

12.1 Iterator Methods

Iterators support a rich set of methods besides next and hasNext, which is described in the following. Many of these methods mimic a corresponding functionality in lists.
Append. Method append constructs an iterator which resumes with the given iterator it after the current iterator has finished.

```scala
def append[b >: a](that: Iterator[b]): Iterator[b] =
 new Iterator[b] {
 def hasNext = Iterator.this.hasNext || that.hasNext;
 def next = if (Iterator.this.hasNext) Iterator.this.next else that.next;
 }
```

The terms `Iterator.this.next` and `Iterator.this.hasNext` in the definition of append call the corresponding methods as they are defined in the enclosing `Iterator` class. If the `Iterator` prefix to `this` would have been missing, `hasNext` and `next` would have called recursively the methods being defined in the result of `append`, which is not what we want.

Map, FlatMap, Foreach. Method `map` constructs an iterator which returns all elements of the original iterator transformed by a given function `f`.

```scala
def map[b](f: a => b): Iterator[b] =
 new Iterator[b] {
 def hasNext = Iterator.this.hasNext;
 def next = f(Iterator.this.next)
 }
```

Method `flatMap` is like method `map`, except that the transformation function `f` now returns an iterator. The result of `flatMap` is the iterator resulting from appending together all iterators returned from successive calls of `f`.

```scala
def flatMap[b](f: a => Iterator[b]): Iterator[b] =
 new Iterator[b] {
 private var cur: Iterator[b] = Iterator.empty;
 def hasNext: Boolean =
 if (cur.hasNext) true
 else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); hasNext }
 else false;
 def next: b =
 if (cur.hasNext) cur.next
 else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); next }
 else throw new Error("next on empty iterator");
 }
```

Closely related to `map` is the `foreach` method, which applies a given function to all elements of an iterator, but does not construct a list of results

```scala
def foreach(f: a => Unit): Unit =
 while (hasNext) { f(next) }
```
**Filter.** Method filter constructs an iterator which returns all elements of the original iterator that satisfy a criterion \( p \).

```scala
def filter(p: a => Boolean) = new BufferedIterator[a] {
 private val source = Iterator.this.buffered;
 private def skip: Unit =
 while (source.hasNext && !p(source.head)) { source.next; () }
 def hasNext: Boolean = { skip; source.hasNext }
 def next: a = { skip; source.next }
 def head: a = { skip; source.head; }
}
```

In fact, filter returns instances of a subclass of iterators which are “buffered”. A `BufferedIterator` object is an iterator which has in addition a method `head`. This method returns the element which would otherwise have been returned by `head`, but does not advance beyond that element. Hence, the element returned by `head` is returned again by the next call to `head` or `next`. Here is the definition of the `BufferedIterator` trait.

```scala
trait BufferedIterator[+a] extends Iterator[a] {
 def head: a
}
```

Since `map`, `flatMap`, `filter`, and `foreach` exist for iterators, it follows that for-comprehensions and for-loops can also be used on iterators. For instance, the application which prints the squares of numbers between 1 and 100 could have equivalently been expressed as follows.

```scala
for (val i <- Iterator.range(1, 100))
 System.out.println(i * i);
```

**Zip.** Method `zip` takes another iterator and returns an iterator consisting of pairs of corresponding elements returned by the two iterators.

```scala
def zip[b](that: Iterator[b]) = new Iterator[Pair[a, b]] {
 def hasNext = Iterator.this.hasNext && that.hasNext;
 def next = Pair(Iterator.this.next, that.next);
}
```
12.2 Constructing Iterators

Concrete iterators need to provide implementations for the two abstract methods `next` and `hasNext` in class `Iterator`. The simplest iterator is `Iterator.empty` which always returns an empty sequence:

```scala
object Iterator {
 object empty extends Iterator[All] {
 def hasNext = false;
 def next: a = throw new Error("next on empty iterator");
 }
}
```

A more interesting iterator enumerates all elements of an array. This iterator is constructed by the `fromArray` method, which is also defined in the object `Iterator`:

```scala
def fromArray(a)(xs: Array[a]) = new Iterator[a] {
 private var i = 0;
 def hasNext: Boolean =
 i < xs.length;
 def next: a =
 if (i < xs.length) { val x = xs(i) ; i = i + 1 ; x }
 else throw new Error("next on empty iterator");
}
```

Another iterator enumerates an integer interval. The `Iterator.range` function returns an iterator which traverses a given interval of integer values. It is defined as follows.

```scala
object Iterator {
 def range(start: int, end: int) = new Iterator[int] {
 private var current = start;
 def hasNext = current < end;
 def next = {
 val r = current;
 if (current < end) current = current + 1
 else throw new Error("end of iterator");
 r
 }
 }
}
```

All iterators seen so far terminate eventually. It is also possible to define iterators that go on forever. For instance, the following iterator returns successive integers from some start value\(^1\).

---

\(^1\)Due to the finite representation of type `int`, numbers will wrap around at \(2^{31}\).
12.3 Using Iterators

Here are two more examples how iterators are used. First, to print all elements of an
array `xs: Array[int]`, one can write:

```scala
import Iterator._;
fromArray(xs) foreach (x =>
 System.out.println(x))
```

Or, using a for-comprehension:

```scala
for (val x <- fromArray(xs))
 System.out.println(x)
```

As a second example, consider the problem of finding the indices of all the elements
in an array of doubles greater than some limit. The indices should be returned as
an iterator. This is achieved by the following expression.

```scala
import Iterator._;
fromArray(xs)
.zip(from(0))
.filter(case Pair(x, i) => x > limit)
.map(case Pair(x, i) => i)
```

Or, using a for-comprehension:

```scala
import Iterator._;
for (val Pair(x, i) <- fromArray(xs) zip from(0); x > limit)
 yield i
```
Chapter 13

Combinator Parsing

In this chapter we describe how to write combinator parsers in Scala. Such parsers are constructed from predefined higher-order functions, so called parser combinator, that closely model the constructions of an EBNF grammar [Wir77].

As running example, we consider parsers for possibly nested lists of identifiers and numbers, which are described by the following context-free grammar.

\[
\begin{align*}
\text{letter} &::= /* all letters */ \\
\text{digit} &::= /* all digits */ \\
\text{ident} &::= \text{letter} \{\text{letter} | \text{digit}\} \\
\text{number} &::= \text{digit} \{\text{digit}\} \\
\text{list} &::= '(' [\text{listElems}] ')' \\
\text{listElems} &::= \text{expr} [',', \text{listElems}] \\
\text{expr} &::= \text{ident} | \text{number} | \text{list}
\end{align*}
\]

13.1 Simple Combinator Parsing

In this section we will only be concerned with the task of recognizing input strings, not with processing them. So we can describe parsers by the sets of input strings they accept. There are two fundamental operators over parsers: $\&\&\&$ expresses the sequential composition of a parser with another, while $\mid\mid\mid$ expresses an alternative. These operations will both be defined as methods of a Parser class. We will also define constructors for the following primitive parsers:
The parser that accepts the empty string
The parser that accepts no string
The parser that accepts the single-character string “c”.
The parser that accepts single-character strings “c” for which \( p(c) \) is true.

There are also the two higher-order parser combinators \( \text{opt} \), expressing optionality and \( \text{rep} \), expressing repetition. For any parser \( p \), \( \text{opt}(p) \) yields a parser that accepts the strings accepted by \( p \) or else the empty string, while \( \text{rep}(p) \) accepts arbitrary sequences of the strings accepted by \( p \). In EBNF, \( \text{opt}(p) \) corresponds to \( [p] \) and \( \text{rep}(p) \) corresponds to \( \{p\} \).

The central idea of parser combinators is that parsers can be produced by a straightforward rewrite of the grammar, replacing ::= with =, sequencing with &&&, choice | with |||, repetition {...} with rep(...) and optional occurrence [...] with opt(...). Applying this process to the grammar of lists yields the following class.

```scala
abstract class ListParsers extends Parsers {
 def chr(p: char => boolean): Parser;
 def chr(c: char): Parser = chr(d: char => d == c);

 def letter : Parser = chr(Character.isLetter);
 def digit : Parser = chr(Character.isDigit);

 def ident : Parser = letter &&& rep(letter ||| digit);
 def number : Parser = digit &&& rep(digit);
 def list : Parser = chr('(') &&& opt(listElems) &&& chr(')');
 def listElems : Parser = expr &&& (chr(',') &&& listElems ||| empty);
 def expr : Parser = ident ||| number ||| list;
}
```

This class isolates the grammar from other aspects of parsing. It abstracts over the type of input and over the method used to parse a single character (represented by the abstract method \( \text{chr}(p: \text{char} => \text{boolean}) \)). The missing bits of information need to be supplied by code applying the parser class.

It remains to explain how to implement a library with the combinators described above. We will pack combinators and their underlying implementation in a base class Parsers, which is inherited by ListParsers. The first question to decide is which underlying representation type to use for a parser. We treat parsers here essentially as functions that take a datum of the input type intype and that yield a parse result of type Option[intype]. The Option type is predefined as follows.

```scala
trait Option[+a];
case object None extends Option[All];
case class Some[a](x: a) extends Option[a];
```

A parser applied to some input either succeeds or fails. If it fails, it returns the con-
stant None. If it succeeds, it returns a value of the form Some(in1) where in1 represents the input that remains to be parsed.

### 13.1 Simple Combinator Parsing

abstract class Parsers {
  type intype;
abstract class Parser {
  type Result = Option[intype];
def apply(in: intype): Result;
}

A parser also implements the combinators for sequence and alternative:

```scala
/*** p &&& q applies first p, and if that succeeds, then q */
def &&& (def q: Parser) = new Parser {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(in1) => q(in1)
}
}

/*** p ||| q applies first p, and, if that fails, then q. */
def ||| (def q: Parser) = new Parser {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => q(in)
case s => s
}
}
```

The implementations of the primitive parsers `empty` and `fail` are trivial:

```scala
val empty = new Parser { def apply(in: intype): Result = Some(in) }
val fail = new Parser { def apply(in: intype): Result = None }
```

The higher-order parser combinators `opt` and `rep` can be defined in terms of the combinators for sequence and alternative:

```scala
def opt(p: Parser): Parser = p ||| empty; // p? = (p | <empty>)
def rep(p: Parser): Parser = opt(rep1(p)); // p* = [p+]
def rep1(p: Parser): Parser = p &&& rep(p); // p+ = p p*
```

To run combinator parsers, we still need to decide on a way to handle parser input. Several possibilities exist: The input could be represented as a list, an array, or as a random access file. Note that the presented combinator parsers use backtracking to change from one alternative to another. Therefore, it must be possible to reset input to a point that was previously parsed. If one restricted the focus to
LL(1) grammars, a non-backtracking implementation of the parser combinators in class Parsers would also be possible. In that case sequential input methods based on (say) iterators or sequential files would also be possible.

In our example, we represent the input by a pair of a string, which contains the input phrase as a whole, and an index, which represents the portion of the input which has not yet been parsed. Since the input string does not change, just the index needs to be passed around as a result of individual parse steps. This leads to the following class of parsers that read strings:

```scala
class ParseString(s: String) extends Parsers {
 type intype = int;
 def chr(p: char => boolean) = new Parser {
 def apply(in: int): Parser#Result =
 if (in < s.length() && p(s.charAt in)) Some(in + 1);
 else None;
 }
 val input = 0;
}
```

This class implements a method `chr(p: char => boolean)` and a value `input`. The `chr` method builds a parser that either reads a single character satisfying the given predicate `p` or fails. All other parsers over strings are ultimately implemented in terms of that method. The `input` value represents the input as a whole. In our case, it is simply value 0, the start index of the string to be read.

Note `apply`'s result type, `Parser#Result`. This syntax selects the type element `Result` of the type `Parser`. It thus corresponds roughly to selecting a static inner class from some outer class in Java. Note that we could not have written `Parser.Result`, as the latter would express selection of the `Result` element from a `value` named `Parser`.

We have now extended the root class `Parsers` in two different directions: Class `ListParsers` defines a grammar of phrases to be parsed, whereas class `ParseString` defines a method by which such phrases are input. To write a concrete parsing application, we need to define both grammar and input method. We do this by combining two extensions of `Parsers` using a `mixin composition`. Here is the start of a sample application:

```scala
object Test {
 def main(args: Array[String]): unit = {
 val ps = new ListParsers with ParseString(args(0));
 }
}
```

The last line above creates a new family of parsers by composing class `ListParsers` with class `ParseString`. The two classes share the common superclass `Parsers`. The abstract method `chr` in `ListParsers` is implemented by class `ParseString`.

To run the parser, we apply the start symbol of the grammar `expr` the argument
codeinput and observe the result:

```scala
 ps.expr(input) match {
 case Some(n) =>
 System.out.println("parsed: " + args(0).substring(0, n));
 case None =>
 System.out.println("nothing parsed");
 }
 }
 // end Test
```

Note the syntax `ps.expr(input)`, which treats the expr parser as if it was a function. In Scala, objects with apply methods can be applied directly to arguments as if they were functions.

Here is an example run of the program above:

```shell
> java examples.Test "(x,1,(y,z))"
parsed: (x,1,(y,z))
> java examples.Test "(x,,1,(y,z))"
nothing parsed
```

## 13.2 Parsers that Produce Results

The combinator library of the previous section does not support the generation of output from parsing. But usually one does not just want to check whether a given string belongs to the defined language, one also wants to convert the input string into some internal representation such as an abstract syntax tree.

In this section, we modify our parser library to build parsers that produce results. We will make use of the for-comprehensions introduced in Chapter 9. The basic combinator of sequential composition, formerly `p &&& q`, now becomes

```scala
 for (val x <- p; val y <- q) yield e .
```

Here, the names `x` and `y` are bound to the results of executing the parsers `p` and `q`. `e` is an expression that uses these results to build the tree returned by the composed parser.

Before describing the implementation of the new parser combinators, we explain how the new building blocks are used. Say we want to modify our list parser so that it returns an abstract syntax tree of the parsed expression. Syntax trees are given by the following class hierarchy:

```scala
abstract class Tree{}
 case class Id (s: String) extends Tree {}
 case class Num(n: int) extends Tree {}
```
case class Lst(elems: List[Tree]) extends Tree {}
to a number by a fold-left operation.

Here is a parser for lists:

```scala
def list: Parser[Tree] =
 for {
 val _ <- chr('(');
 val es <- listElems ||| succeed(List());
 val _ <- chr(')')
 } yield Lst(es);

def listElems: Parser[List[Tree]] =
 for {
 val x <- expr;
 val xs <- chr(',') &&& listElems ||| succeed(List())
 } yield x :: xs;
```

The list parser returns a `Lst` node with a list of trees as elements. That list is either the result of `listElems`, or, if that fails, the empty list (expressed here as: the result of a parser which always succeeds with the empty list as result).

The highest level of our grammar is represented by function `expr`:

```scala
def expr: Parser[Tree] =
 ident ||| number ||| list
}
```

We now present the parser combinators that support the new scheme. Parsers that succeed now return a parse result besides the un-consumed input.

```scala
abstract class Parsers {
 type intype;
 trait Parser[a] {
 type Result = Option[Pair[a, intype]];
 def apply(in: intype): Result;
 }
}
```

Parsers are parameterized with the type of their result. The class `Parser[a]` now defines new methods `map`, `flatMap` and `filter`. The `for` expressions are mapped by the compiler to calls of these functions using the scheme described in Chapter 9.

For parsers, these methods are implemented as follows.

```scala
def filter(pred: a => boolean) = new Parser[a] {
 def apply(in: intype): Result = Parser.this.apply(in) match {
 case None => None
 case Some(Pair(x, in1)) => if (pred(x)) Some(Pair(x, in1)) else None
 }
}
def map[b](f: a => b) = new Parser[b] {
The `filter` method takes as parameter a predicate `p` which it applies to the results of the current parser. If the predicate is false, the parser fails by returning `None`; otherwise it returns the result of the current parser. The `map` method takes as parameter a function `f` which it applies to the results of the current parser. The `flatMap` takes as parameter a function `f` which returns a parser. It applies `f` to the result of the current parser and then continues with the resulting parser. The `|||` method is essentially defined as before. The `&&&` method can now be defined in terms of `for`.

```scala
def ||| (def p: Parser[a]) = new Parser[a] {
  def apply(in: intype): Result = Parser.this.apply(in) match {
    case None => p(in)
    case s => s
  }
}

def &&& [b](def p: Parser[b]): Parser[b] =
  for (val _ <- this; val x <- p) yield x;
}// end Parser
```

The primitive parser `succeed` replaces `empty`. It consumes no input and returns its parameter as result.

```scala
def succeed[a](x: a) = new Parser[a] {
  def apply(in: intype) = Some(Pair(x, in))
}
```

The parser combinators `rep` and `opt` now also return results. `rep` returns a list which contains as elements the results of each iteration of its sub-parser. `opt` returns a list which is either empty or returns as single element the result of the optional parser.

```scala
def rep[a](p: Parser[a]): Parser[List[a]] =
  rep1(p) ||| succeed(List());

def rep1[a](p: Parser[a]): Parser[List[a]] =
  for (val x <- p; val xs <- rep(p)) yield x :: xs;
```
def opt[a](p: Parser[a]): Parser[List[a]] =
 (for (val x <- p) yield List(x)) ||| succeed(List());
} // end Parsers

The root class Parsers abstracts over which kind of input is parsed. As before, we determine the input method by a separate class. Here is ParseString, this time adapted to parsers that return results. It defines now the method any, which returns the first input character.

class ParseString(s: String) extends Parsers {
 type intype = int;
 val input = 0;
 def any = new Parser[char] {
 def apply(in: int): Parser[char]#Result =
 if (in < s.length()) Some(Pair(s.charAt in, in + 1)) else None;
 }
}

The rest of the application is as before. Here is a test program which constructs a list parser over strings and prints out the result of applying it to the command line argument.

object Test {
 def main(args: Array[String]): unit = {
 val ps = new ListParsers with ParseString(args(0));
 ps.expr(ps.input) match {
 case Some(Pair(list, _)) => System.out.println("parsed: " + list);
 case None => "nothing parsed"
 }
 }
}

Exercise 13.2.1 The parsers we have defined so far can succeed even if there is some input beyond the parsed text. To prevent this, one needs a parser which recognizes the end of input. Redesign the parser library so that such a parser can be introduced. Which classes need to be modified?
This chapter demonstrates Scala's data types and pattern matching by developing a type inference system in the Hindley/Milner style [Mil78]. The source language for the type inferrer is lambda calculus with a let construct called Mini-ML. Abstract syntax trees for the Mini-ML are represented by the following data type of Terms.

```scala
trait Term {}
case class Var(x: String) extends Term {
  override def toString() = x
}
case class Lam(x: String, e: Term) extends Term {
  override def toString() = "(\" + x + ")." + e + "")"
}
case class App(f: Term, e: Term) extends Term {
  override def toString() = "(" + f + " " + e + ")"
}
case class Let(x: String, e: Term, f: Term) extends Term {
  override def toString() = "let " + x + " = " + e + " in " + f;
}
```

There are four tree constructors: Var for variables, Lam for function abstractions, App for function applications, and Let for let expressions. Each case class overrides the toString() method of class Any, so that terms can be printed in legible form.

We next define the types that are computed by the inference system.

```scala
sealed trait Type {}
case class Tyvar(a: String) extends Type {
  override def toString() = a
}
case class Arrow(t1: Type, t2: Type) extends Type {
  override def toString() = "(" + t1 + "->" + t2 + ")"
}
```
case class Tycon(k: String, ts: List[Type]) extends Type {
 override def toString() =
 k + (if (ts.isEmpty) "" else ts.mkString("[", ",", "]"))
}

There are three type constructors: Tyvar for type variables, Arrow for function types and Tycon for type constructors such as boolean or List. Type constructors have as component a list of their type parameters. This list is empty for type constants such as boolean. Again, the type constructors implement the toString method in order to display types legibly.

Note that Type is a sealed class. This means that no subclasses or data constructors that extend Type can be formed outside the sequence of definitions in which Type is defined. This makes Type a closed algebraic data type with exactly three alternatives. By contrast, type Term is an open algebraic type for which further alternatives can be defined.

The main parts of the type inferencer are contained in object typeInfer. We start with a utility function which creates fresh type variables:

object typeInfer {
 private var n: Int = 0;
 def newTyvar(): Type = { n = n + 1 ; Tyvar("a" + n) }
}

We next define a class for substitutions. A substitution is an idempotent function from type variables to types. It maps a finite number of type variables to some types, and leaves all other type variables unchanged. The meaning of a substitution is extended point-wise to a mapping from types to types.

trait Subst extends Any with Function1[Type,Type] {
 def lookup(x: Tyvar): Type;
 def apply(t: Type): Type = t match {
 case tv @ Tyvar(a) => val u = lookup(tv); if (t == u) t else apply(u);
 case Arrow(t1, t2) => Arrow(apply(t1), apply(t2))
 case Tycon(k, ts) => Tycon(k, ts map apply)
 }
 def extend(x: Tyvar, t: Type) = new Subst {
 def lookup(y: Tyvar): Type = if (x == y) t else Subst.this.lookup(y);
 }
}

val emptySubst = new Subst { def lookup(t: Tyvar): Type = t }
We represent substitutions as functions, of type \(\text{Type} \Rightarrow \text{Type} \). This is achieved by making class \texttt{Subst} inherit from the unary function type \texttt{Function1[Type, Type]}\(^1\). To be an instance of this type, a substitution \(s \) has to implement an \texttt{apply} method that takes a \texttt{Type} as argument and yields another \texttt{Type} as result. A function application \(s(t) \) is then interpreted as \(s \cdot \texttt{apply}(t) \).

The \texttt{lookup} method is abstract in class \texttt{Subst}. There are two concrete forms of substitutions which differ in how they implement this method. One form is defined by the \texttt{emptySubst} value, the other is defined by the \texttt{extend} method in class \texttt{Subst}.

The next data type describes type schemes, which consist of a type and a list of names of type variables which appear universally quantified in the type scheme. For instance, the type scheme \(\forall a \forall b. a \rightarrow b \) would be represented in the type checker as:

\[
\text{TypeScheme}((\text{List(TyVar("a"), TyVar("b"))}, \text{Arrow(Tyvar("a"), Tyvar("b"))})) .
\]

The class definition of type schemes does not carry an extends clause; this means that type schemes extend directly class \texttt{AnyRef}. Even though there is only one possible way to construct a type scheme, a case class representation was chosen since it offers convenient ways to decompose an instance of this type into its parts.

```scala
case class TypeScheme(tyvars: List[String], tpe: Type) {
  def newInstance: Type = {
    (emptySubst /: tyvars) ((s, tv) => s.extend(tv, newTyvar())) (tpe);
  }
}
```

Type scheme objects come with a method \texttt{newInstance}, which returns the type contained in the scheme after all universally type variables have been renamed to fresh variables. The implementation of this method folds (with \(\:/ \)) the type scheme's type variables with an operation which extends a given substitution \(s \) by renaming a given type variable \(tv \) to a fresh type variable. The resulting substitution renames all type variables of the scheme to fresh ones. This substitution is then applied to the type part of the type scheme.

The last type we need in the type inferencer is \texttt{Env}, a type for environments, which associate variable names with type schemes. They are represented by a type alias \texttt{Env} in module \texttt{typeInfer}:

```scala
type Env = List[Pair[String, TypeScheme]]
```

There are two operations on environments. The \texttt{lookup} function returns the type scheme associated with a given name, or \texttt{null} if the name is not recorded in the environment.

\(^1\) The class inherits the function type as a mixin rather than as a direct superclass. This is because in the current Scala implementation, the \texttt{Function1} type is a Java interface, which cannot be used as a direct superclass of some other class.
def lookup(env: Env, x: String): TypeScheme = env match {
 case List() => null
 case Pair(y, t) :: env1 => if (x == y) t else lookup(env1, x)
}

The gen function turns a given type into a type scheme, quantifying over all type variables that are free in the type, but not in the environment.

def gen(env: Env, t: Type): TypeScheme =
 TypeScheme(tyvars(t) diff tyvars(env), t);

The set of free type variables of a type is simply the set of all type variables which occur in the type. It is represented here as a list of type variables, which is constructed as follows.

def tyvars(t: Type): List[Tyvar] = t match {
 case tv @ Tyvar(a) =>
 List(tv)
 case Arrow(t1, t2) =>
 tyvars(t1) union tyvars(t2)
 case Tycon(k, ts) =>
 (List[Tyvar]() /: ts) ((tvs, t) => tvs union tyvars(t));
}

Note that the syntax tv @ ... in the first pattern introduces a variable which is bound to the pattern that follows. Note also that the explicit type parameter [Tyvar] in the expression of the third clause is needed to make local type inference work.

The set of free type variables of a type scheme is the set of free type variables of its type component, excluding any quantified type variables:

def tyvars(ts: TypeScheme): List[Tyvar] =
 tyvars(ts.tpe) diff ts.tyvars;

Finally, the set of free type variables of an environment is the union of the free type variables of all type schemes recorded in it.

def tyvars(env: Env): List[Tyvar] =
 (List[Tyvar]() /: env) ((tvs, nt) => tvs union tyvars(nt._2));

A central operation of Hindley/Milner type checking is unification, which computes a substitution to make two given types equal (such a substitution is called a unifier). Function mgu computes the most general unifier of two given types \(t \) and \(u \) under a pre-existing substitution \(s \). That is, it returns the most general substitution \(s' \) which extends \(s \), and which makes \(s'(t) \) and \(s'(u) \) equal types.

def mgu(t: Type, u: Type, s: Subst): Subst = Pair(s(t), s(u)) match {
 case Pair(Tyvar(a), Tyvar(b)) if (a == b) =>
The mgu function throws a TypeError exception if no unifier substitution exists. This can happen because the two types have different type constructors at corresponding places, or because a type variable is unified with a type that contains the type variable itself. Such exceptions are modeled here as instances of case classes that inherit from the predefined Exception class.

```scala
case class TypeError(s: String) extends Exception(s) {}
```

The main task of the type checker is implemented by function `tp`. This function takes as parameters an environment `env`, a term `e`, a proto-type `t`, and a pre-existing substitution `s`. The function yields a substitution `s'` that extends `s` and that turns \(s'(env) \vdash e : s'(t) \) into a derivable type judgment according to the derivation rules of the Hindley/Milner type system [Mil78]. A TypeError exception is thrown if no such substitution exists.

```scala
def tp(env: Env, e: Term, t: Type, s: Subst): Subst = {
  current = e;
  e match {
    case Var(x) =>
      val u = lookup(env, x);
      if (u == null) throw new TypeError("undefined: " + x);
      else mgu(u.newInstance, t, s)
    case Lam(x, e1) =>
      val a = newTyvar(), b = newTyvar();
      val sl = mgu(t, Arrow(a, b), s);
      val envl = Pair(x, TypeScheme(List(), a)) :: env;
      tp(envl, e1, b, sl)
    case App(e1, e2) =>
      val a = newTyvar();
      val sl = tp(env, e1, Arrow(a, t), s);
      tp(env, e2, a, sl)
  }
  s
  case Pair(Tyvar(a), _) if !tyvars(u) contains a) =>
    s.extend(Tyvar(a), u)
  case Pair(_, Tyvar(a)) =>
    mgu(u, t, s)
  case Pair(Arrow(t1, t2), Arrow(u1, u2)) =>
    mgu(t1, u1, mgu(t2, u2, s))
  case Pair(Tycon(k1, ts), Tycon(k2, us)) if (k1 == k2) =>
    (s /: (ts zip us)) ((s, tu) => mgu(tu._1, tu._2, s))
  case _ =>
    throw new TypeError("cannot unify " + s(t) + " with " + s(u))
}
```
To aid error diagnostics, the \texttt{tp} function stores the currently analyzed sub-term in variable \texttt{current}. Thus, if type checking is aborted with a \texttt{TypeError} exception, this variable will contain the subterm that caused the problem.

The last function of the type inference module, \texttt{typeOf}, is a simplified facade for \texttt{tp}. It computes the type of a given term \texttt{e} in a given environment \texttt{env}. It does so by creating a fresh type variable \texttt{a}, computing a typing substitution that makes \texttt{env \vdash e : a} into a derivable type judgment, and returning the result of applying the substitution to \texttt{a}.

```scala
def typeOf(env: Env, e: Term): Type = {
  val a = newTyvar();
  tp(env, e, a, emptySubst)(a)
}
```

To apply the type inferencer, it is convenient to have a predefined environment that contains bindings for commonly used constants. The module \texttt{predefined} defines an environment \texttt{env} that contains bindings for the types of booleans, numbers and lists together with some primitive operations over them. It also defines a fixed point operator \texttt{fix}, which can be used to represent recursion.

```scala
object predefined {
  val booleanType = Tycon("Boolean", List());
  val intType = Tycon("Int", List());
  def listType(t: Type) = Tycon("List", List(t));

  private def gen(t: Type): typeInfer.TypeScheme = typeInfer.gen(List(), t);
  private val a = typeInfer.newTyvar();

  val env = List(
    Pair("true", gen(booleanType)),
    Pair("false", gen(booleanType)),
    Pair("if", gen(Arrow(booleanType, Arrow(a, Arrow(a, a))))),
    Pair("zero", gen(intType)),
    Pair("succ", gen(Arrow(intType, intType))),
    Pair("nil", gen(listType(a))),
    Pair("cons", gen(Arrow(a, Arrow(listType(a), listType(a))))),
    Pair("isEmpty", gen(Arrow(listType(a), booleanType))))
}
```
Here's an example how the type inferencer can be used. Let's define a function `showType` which returns the type of a given term computed in the predefined environment `Predefined.env`:

```scala
object testInfer {
  def showType(e: Term): String =
  try {
    typeInfer.typeOf(predefined.env, e).toString();
  } catch {
    case typeInfer.TypeError(msg) =>
      "\n  cannot type: " + typeInfer.current +
      "\n  reason: " + msg;
  }
}
```

Then the application

```shell
> testInfer.showType(Lam("x", App(App(Var("cons"), Var("x")), Var("nil"))));
```

would give the response

```shell
> (a6->List[a6])
```

To make the type inferencer more useful, we complete it with a parser. Function `main` of module `testInfer` parses and typechecks a Mini-ML expression which is given as the first command line argument.

```scala
def main(args: Array[String]): unit = {
  val ps = new MiniMLParsers with ParseString(args(0));
  ps.all(ps.input) match {
    case Some(Pair(term, _)) =>
      System.out.println("" + term + ": " + showType(term));
    case None =>
      System.out.println("syntax error");
  }
}
```

To do the parsing, method `main` uses the combinator parser scheme of Chapter 13. It creates a parser family `ps` as a mixin composition of parsers that understand MiniML (but do not know where input comes from) and parsers that read input from a given string. The `MiniMLParsers` object implements parsers for the following gram-
term ::= "\" ident "." term
 | term1 {term1}
 | "let" ident "=" term "in" term
term1 ::= ident
 | "(" term ")"
all ::= term ";"

Input as a whole is described by the production all; it consists of a term followed by
a semicolon. We allow “whitespace” consisting of one or more space, tabulator or
newline characters between any two lexemes (this is not reflected in the grammar
above). Identifiers are defined as in Chapter 13 except that an identifier cannot be
one of the two reserved words "let" and "in".

abstract class MiniMLParsers[intype] extends CharParsers[intype] {
 /** whitespace */
 def whitespace = rep{chr(' ') ||| chr('	') ||| chr('
')};

 /** A given character, possible preceded by whitespace */
 def wschr(ch: char) = whitespace &&& chr(ch);

 /** identifiers or keywords */
 def id: Parser[String] =
 for |
 val c: char <- whitespace &&& chr(Character.isLetter);
 val cs: List[char] <- rep(chr(Character.isLetterOrDigit))
) yield (c :: cs).mkString("", ",", ");

 /** Non-keyword identifiers */
 def ident: Parser[String] =
 for (val s <- id; s != "let" && s != "in") yield s;

 /** term = \" ident "." term | term1 {term1} | let ident "=" term in term */
 def term: Parser[Term] =
 (for |
 val _ <- wschr('\\');
 val x <- ident;
 val _ <- wschr('.');
 val t <- term)
 yield Lam(x, t): Term
 | |
 (for |
 val letid <- id; letid == "let";
 val x <- ident;
 val _ <- wschr('=');}
val t <- term;
val inid <- id; inid == "in";
val c <- term
yield Let(x, t, c)

|||
(for (val t <- term;
 val ts <- rep(term))
yield (t #: ts)((f, arg) => App(f, arg)))

/** term1 = ident | '(' term ')' */
def term1: Parser[Term] =
(for (val s <- ident)
yield Var(s): Term)
|||
(for (val _ <- wschr(' '); val t <- term;
 val _ <- wschr('')))
yield t

/** all = term ';' */
def all: Parser[Term] =
for (val t <- term;
 val _ <- wschr(' ;'))
yield t;
}

Here are some sample MiniML programs and the output the type inferencer gives for each of them:

> java testInfer
| "|\.f.f(f x);"
|\.(\.(f (f x))))): (a8->((a8->a8)->a8)

> java testInfer
| "let id = \x.x
| in if (id true) (id nil) (id (cons zero nil));"
let id = (\x.x) in (((if (id true)) (id nil)) (id ((cons zero) nil))): List[Int]

> java testInfer
| "let id = \x.x
| in if (id true) (id nil);"
let id = (\x.x) in (((if (id true)) (id nil))): (List[a13]->List[a13])
> java testInfer
| "let length = fix (\len.\xs.
| if (isEmpty xs)
| zero
| (succ (len (tail xs)))
| in (length nil);"
| let length = (fix (\len.(\xs.(((if (isEmpty xs)) zero)
| (succ (len (tail xs))))))) in (length nil): Int

> java testInfer
| "let id = \x.x
| in if (id true) (id nil) zero;"
| let id = (\x.x) in (((if (id true)) (id nil)) zero):
| cannot type: zero
| reason: cannot unify Int with List[a14]

Exercise 14.0.2 Using the parser library constructed in Exercise Exercise 13.2.1, modify the MiniML parser library so that no marker “;” is necessary for indicating the end of input.

Exercise 14.0.3 Extend the Mini-ML parser and type inferencer with a letrec construct which allows the definition of recursive functions. Syntax:

```
letrec ident "=" term in term .
```

The typing of letrec is as for let, except that the defined identifier is visible in the defining expression. Using letrec, the length function for lists can now be defined as follows.

```
letrec length = \xs.
  if (isEmpty xs)
    zero
    (succ (length (tail xs)))
in ...
Chapter 15

Abstractions for Concurrency

This section reviews common concurrent programming patterns and shows how they can be implemented in Scala.

15.1 Signals and Monitors

Example 15.1.1 The monitor provides the basic means for mutual exclusion of processes in Scala. Every instance of class AnyRef can be used as a monitor by calling one or more of the methods below.

```scala
def synchronized[a] (def e: a): a;
def wait(): unit;
def wait(msec: long): unit;
def notify(): unit;
def notifyAll(): unit;
```

The synchronized method executes its argument computation e in mutual exclusive mode – at any one time, only one thread can execute a synchronized argument of a given monitor.

Threads can suspend inside a monitor by waiting on a signal. Threads that call the wait method wait until a notify method of the same object is called subsequently by some other thread. Calls to notify with no threads waiting for the signal are ignored.

There is also a timed form of wait, which blocks only as long as no signal was received or the specified amount of time (given in milliseconds) has elapsed. Furthermore, there is a notifyAll method which unblocks all threads which wait for the signal. These methods, as well as class Monitor are primitive in Scala; they are implemented in terms of the underlying runtime system.
Typically, a thread waits for some condition to be established. If the condition does not hold at the time of the wait call, the thread blocks until some other thread has established the condition. It is the responsibility of this other thread to wake up waiting processes by issuing a notify or notifyAll. Note however, that there is no guarantee that a waiting process gets to run immediately after the call to notify is issued. It could be that other processes get to run first which invalidate the condition again. Therefore, the correct form of waiting for a condition $C$ uses a while loop:

```scala
while (!C) wait();
```

As an example of how monitors are used, here is an implementation of a bounded buffer class.

```scala
class BoundedBuffer[a](N: Int) {
 var in = 0, out = 0, n = 0;
 val elems = new Array[a](N);

 def put(x: a) = synchronized {
 while (n >= N) wait();
 elems(in) = x; in = (in + 1) % N; n = n + 1;
 if (n == 1) notifyAll();
 }

 def get: a = synchronized {
 while (n == 0) wait();
 val x = elems(out); out = (out + 1) % N; n = n - 1;
 if (n == N - 1) notifyAll();
 x
 }
}
```

And here is a program using a bounded buffer to communicate between a producer and a consumer process.

```scala
import scala.concurrent.ops._;
...
val buf = new BoundedBuffer[String](10)
spaw { while (true) { val s = produceString; buf.put(s) } }
spaw { while (true) { val s = buf.get; consumeString(s) } }
```

The `spaw` method spawns a new thread which executes the expression given in the parameter. It is defined in object `concurrent.ops` as follows.

```scala
def spaw(def p: unit) = {
 val t = new Thread() { override def run() = p; }
 t.start()
```
15.2 SyncVars

A synchronized variable (or syncvar for short) offers get and put operations to read and set the variable. Get operations block until the variable has been defined. An unset operation resets the variable to undefined state.

Here’s the standard implementation of synchronized variables.

```scala
package scala.concurrent;

class SyncVar[a] {
 private var isDefined: Boolean = false;
 private var value: a = _;
 def get = synchronized {
 if (!isDefined) wait();
 value
 }
 def set(x: a) = synchronized {
 value = x ; isDefined = true ; notifyAll();
 }
 def isSet: Boolean = synchronized {
 isDefined;
 }
 def unset = synchronized {
 isDefined = false;
 }
}
```

15.3 Futures

A future is a value which is computed in parallel to some other client thread, to be used by the client thread at some future time. Futures are used in order to make good use of parallel processing resources. A typical usage is:

```scala
import scala.concurrent.ops._;
...
val x = future(someLengthyComputation);
anotherLengthyComputation;
val y = f(x()) + g(x());
```

The future method is defined in object scala.concurrent.ops as follows.

```scala
def future[a](def p: a): unit => a = {
```
val result = new SyncVar[a];
fork { result.set(p) }
(() => result.get)
}

The future method gets as parameter a computation \( p \) to be performed. The type of the computation is arbitrary; it is represented by future's type parameter \( a \). The future method defines a guard \( result \), which takes a parameter representing the result of the computation. It then forks off a new thread that computes the result and invokes the \( result \) guard when it is finished. In parallel to this thread, the function returns an anonymous function of type \( a \). When called, this function waits on the \( result \) guard to be invoked, and, once this happens returns the result argument. At the same time, the function reinvokes the \( result \) guard with the same argument, so that future invocations of the function can return the result immediately.

### 15.4 Parallel Computations

The next example presents a function \( \text{par} \) which takes a pair of computations as parameters and which returns the results of the computations in another pair. The two computations are performed in parallel.

The function is defined in object scala.concurrent.ops as follows.

```scala
def par[a, b](xp: a, yp: b): Pair[a, b] = {
 val y = new SyncVar[b];
 spawn { y set yp }
 Pair(xp, y.get)
}
```

Defined in the same place is a function \( \text{replicate} \) which performs a number of replicates of a computation in parallel. Each replication instance is passed an integer number which identifies it.

```scala
def replicate(start: Int, end: Int)(p: Int => Unit): Unit = {
 if (start == end)
 ()
 else if (start + 1 == end)
 p(start)
 else {
 val mid = (start + end) / 2;
 spawn { replicate(start, mid)(p) }
 replicate(mid, end)(p)
 }
}
```
The next function uses replicate to perform parallel computations on all elements of an array.

```
def parMap[a,b](f: a => b, xs: Array[a]): Array[b] = {
 val results = new Array[b](xs.length);
 replicate(0, xs.length) { i => results(i) = f(xs(i)) }
 results
}
```

### 15.5 Semaphores

A common mechanism for process synchronization is a lock (or: semaphore). A lock offers two atomic actions: acquire and release. Here's the implementation of a lock in Scala:

```
package scala.concurrent;

class Lock {
 var available = true;
 def acquire = synchronized {
 if (!available) wait();
 available = false
 }
 def release = synchronized {
 available = true;
 notify()
 }
}
```

### 15.6 Readers/Writers

A more complex form of synchronization distinguishes between readers which access a common resource without modifying it and writers which can both access and modify it. To synchronize readers and writers we need to implement operations startRead, startWrite, endRead, endWrite, such that:

- there can be multiple concurrent readers,
- there can only be one writer at one time,
- pending write requests have priority over pending read requests, but don't preempt ongoing read operations.

The following implementation of a readers/writers lock is based on the mailbox concept (see Section 15.10).
import scala.concurrent._;

class ReadersWriters {
    val m = new MailBox;
    private case class Writers(n: int), Readers(n: int) { m send this; }
    Readers(0); Writers(0);
    def startRead = m receive {
        case Writers(n) if n == 0 => m receive {
            case Readers(n) => Writers(0); Readers(n+1);
        }
    }
    def startWrite = m receive {
        case Writers(n) => Writers(n+1);
        m receive {
            case Readers(n) if n == 0 =>
        }
    }
    def endRead = m receive {
        case Readers(n) => Readers(n-1)
    }
    def endWrite = m receive {
        case Writers(n) => Writers(n-1); if (n == 0) Readers(0)
    }
}

15.7 Asynchronous Channels

A fundamental way of interprocess communication is the asynchronous channel. Its implementation makes use the following simple class for linked lists:

class LinkedList[a] {
    var elem: a = _;
    var next: LinkedList[a] = null;
}

To facilitate insertion and deletion of elements into linked lists, every reference into a linked list points to the node which precedes the node which conceptually forms the top of the list. Empty linked lists start with a dummy node, whose successor is null.

The channel class uses a linked list to store data that has been sent but not read yet. In the opposite direction, a threads that wish to read from an empty channel, register their presence by incrementing the nreaders field and waiting to be notified.

package scala.concurrent;
Here's an implementation of synchronous channels, where the sender of a message blocks until that message has been received. Synchronous channels only need a single variable to store messages in transit, but three signals are used to coordinate reader and writer processes.

```scala
package scala.concurrent;

class SyncChannel[a] {
 private var data: a = _;
 private var reading = false;
 private var writing = false;

 def write(x: a) = synchronized {
 while (writing) wait();
 data = x;
 writing = true;
 }

 def read: a = synchronized {
 if (written.next == null) {
 nreaders = nreaders + 1; wait(); nreaders = nreaders - 1;
 }
 val x = written.elem;
 written = written.next;
 x
 }
}
```
if (reading) notifyAll();
else while (!reading) wait();
}

def read: a = synchronized {
  while (reading) wait();
  reading = true;
  while (!writing) wait();
  val x = data;
  writing = false;
  reading = false;
  notifyAll();
  x
}
}

15.9 Workers

Here’s an implementation of a compute server in Scala. The server implements a future method which evaluates a given expression in parallel with its caller. Unlike the implementation in Section 15.3 the server computes futures only with a prede- fined number of threads. A possible implementation of the server could run each thread on a separate processor, and could hence avoid the overhead inherent in context-switching several threads on a single processor.

import scala.concurrent._, scala.concurrent.ops._;

class ComputeServer(n: Int) {

  private trait Job {
    type t;
    def task: t;
    def ret(x: t): Unit;
  }

  private val openJobs = new Channel[Job]();

  private def processor(i: Int): Unit = {
    while (true) {
      val job = openJobs.read;
      job.ret(job.task)
    }
  }
}
Expressions to be computed (i.e. arguments to calls of future) are written to the openJobs channel. A job is an object with

- An abstract type `t` which describes the result of the compute job.
- A parameterless task method of type `t` which denotes the expression to be computed.
- A return method which consumes the result once it is computed.

The compute server creates `n` processor processes as part of its initialization. Every such process repeatedly consumes an open job, evaluates the job’s task method and passes the result on to the job’s return method. The polymorphic future method creates a new job where the return method is implemented by a guard named reply and inserts this job into the set of open jobs by calling the isOpen guard. It then waits until the corresponding reply guard is called.

The example demonstrates the use of abstract types. The abstract type `t` keeps track of the result type of a job, which can vary between different jobs. Without abstract types it would be impossible to implement the same class to the user in a statically type-safe way, without relying on dynamic type tests and type casts.

Here is some code which uses the compute server to evaluate the expression `41 + 1`.

```scala
object Test with Executable {
 val server = new ComputeServer(1);
 val f = server.future(41 + 1);
 Console.println(f())
}
```
15.10 Mailboxes

Mailboxes are high-level, flexible constructs for process synchronization and communication. They allow sending and receiving of messages. A *message* in this context is an arbitrary object. There is a special message `TIMEOUT` which is used to signal a time-out.

```scala
case object TIMEOUT;
```

Mailboxes implement the following signature.

```scala
class MailBox {
 def send(msg: Any): unit;
 def receive[a](f: PartialFunction[Any, a]): a;
 def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a;
}
```

The state of a mailbox consists of a multi-set of messages. Messages are added to the mailbox the `send` method. Messages are removed using the `receive` method, which is passed a message processor `f` as argument, which is a partial function from messages to some arbitrary result type. Typically, this function is implemented as a pattern matching expression. The `receive` method blocks until there is a message in the mailbox for which its message processor is defined. The matching message is then removed from the mailbox and the blocked thread is restarted by applying the message processor to the message. Both sent messages and receivers are ordered in time. A receiver `r` is applied to a matching message `m` only if there is no other `(message, receiver)` pair which precedes `(m, r)` in the partial ordering on pairs that orders each component in time.

As a simple example of how mailboxes are used, consider a one-place buffer:

```scala
class OnePlaceBuffer {
 private val m = new MailBox; // An internal mailbox
 private case class Empty, Full(x: int); // Types of messages we deal with
 m send Empty; // Initialization
def write(x: int): unit =
 m receive { case Empty => m send Full(x) }
def read: int =
 m receive { case Full(x) => m send Empty ; x }
}
```

Here’s how the mailbox class can be implemented:

```scala
class MailBox {
 private abstract class Receiver extends Signal {
 def isDefined(msg: Any): boolean;
 var msg = null;
```
We define an internal class for receivers with a test method `isDefined`, which indicates whether the receiver is defined for a given message. The receiver inherits from class `Signal` a `notify` method which is used to wake up a receiver thread. When the receiver thread is woken up, the message it needs to be applied to is stored in the `msg` variable of `Receiver`.

```scala
private val sent = new LinkedList[Any];
private var lastSent = sent;
private val receivers = new LinkedList[Receiver];
private var lastReceiver = receivers;
```

The mailbox class maintains two linked lists, one for sent but unconsumed messages, the other for waiting receivers.

```scala
def send(msg: Any): unit = synchronized {
 var r = receivers, r1 = r.next;
 while (r1 != null && !r1.elem.isDefined(msg)) {
 r = r1; r1 = r1.next;
 }
 if (r1 != null) {
 r.next = r1.next; r1.elem.msg = msg; r1.elem.notify;
 } else {
 lastSent = insert(lastSent, msg);
 }
}
```

The `send` method first checks whether a waiting receiver is applicable to the sent message. If yes, the receiver is notified. Otherwise, the message is appended to the linked list of sent messages.

```scala
def receive[a](f: PartialFunction[Any, a]): a = {
 val msg: Any = synchronized {
 var s = sent, s1 = s.next;
 while (s1 != null && !f.isDefinedAt(s1.elem)) {
 s = s1; s1 = s1.next
 }
 if (s1 != null) {
 s.next = s1.next; s1.elem
 } else {
 val r = insert(lastReceiver, new Receiver {
 def isDefined(msg: Any) = f.isDefinedAt(msg);
 });
 lastReceiver = r;
 r.elem.wait();
 r.elem.msg
 }
 }
}
```
The receive method first checks whether the message processor function $f$ can be applied to a message that has already been sent but that was not yet consumed. If yes, the thread continues immediately by applying $f$ to the message. Otherwise, a new receiver is created and linked into the receivers list, and the thread waits for a notification on this receiver. Once the thread is woken up again, it continues by applying $f$ to the message that was stored in the receiver. The insert method on linked lists is defined as follows.

```scala
def insert(l: LinkedList[a], x: a): LinkedList[a] = {
 l.next = new LinkedList[a];
 l.next.elem = x;
 l.next.next = l.next;
 l
}
```

The mailbox class also offers a method `receiveWithin` which blocks for only a specified maximal amount of time. If no message is received within the specified time interval (given in milliseconds), the message processor argument $f$ will be unblocked with the special `TIMEOUT` message. The implementation of `receiveWithin` is quite similar to `receive`:

```scala
def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a = {
 val msg: Any = synchronized {
 var s = sent, s1 = s.next;
 while (s1 != null && !f.isDefinedAt(s1.elem)) {
 s = s1; s1 = s1.next
 }
 if (s1 != null) {
 s.next = s1.next; s1.elem
 } else {
 val r = insert(lastReceiver, new Receiver {
 def.isDefined(msg: Any) = f.isDefinedAt(msg);
 });
 lastReceiver = r;
 r.elem.wait(msec);
 if (r.elem.msg == null) r.elem.msg = TIMEOUT;
 r.elem.msg
 }
 }
 f(msg)
}
```
The only differences are the timed call to `wait`, and the statement following it.

### 15.11 Actors

Chapter 2 sketched as a program example the implementation of an electronic auction service. This service was based on high-level actor processes, that work by inspecting messages in their mailbox using pattern matching. An actor is simply a thread whose communication primitives are those of a mailbox. Actors are hence defined as a mixin composition extension of Java’s standard `Thread` class with the `MailBox` class.

```java
abstract class Actor extends Thread with MailBox;
```
III THE SCALA LANGUAGE SPECIFICATION

VERSION 1.0
Chapter 16

Lexical Syntax

Scala programs are written using the Unicode character set. This chapter defines the two modes of Scala's lexical syntax, the Scala mode and the XML mode. If not otherwise mentioned, the following descriptions of Scala tokens refer to Scala mode, and literal characters 'c' refer to the ASCII fragment \u0000-\u007F.

In Scala mode, Unicode escapes are replaced by the corresponding Unicode character with the given hexadecimal code.

```
UnicodeEscape ::= \{\\}u{u} HexDigit HexDigit HexDigit HexDigit
HexDigit ::= '0' | ... | '9' | 'A' | ... | 'F' | 'a' | ... | 'f'
```

To construct tokens, characters are distinguished according to the following classes (Unicode general category given in parentheses):

1. Whitespace characters. \u0020 | \u0009 | \u000D | \u000A
2. Letters, which include lower case letters(Ll), upper case letters(Lu), title-case letters(Lt), other letters(Lo), letter numerals(Nl) and the two characters \u0024 and \u005F, which both count as upper case letters
3. Digits ‘0’ | ... | ‘9’.
4. Parentheses ‘(’ | ‘)’ | ‘[’ | ‘]’ | ‘{’ | ‘}’.
5. Delimiter characters ‘’ | ‘’ | ‘”’ | ‘.’ | ‘;’ | ‘,’.
6. Operator characters. These consist of all printable ASCII characters \u0020-\u007F, which are in none of the sets above, mathematical symbols(Sm) and other symbols(So).
16.1 Identifiers

Syntax:

```
op ::= special {special}
varid ::= lower idrest
id ::= upper idrest
 | varid
 | op
 | '''string chars'''
idrest ::= {letter | digit} {'_'} (op | idrest)
```

There are three ways to form an identifier. First, an identifier can start with a letter which can be followed by an arbitrary sequence of letters and digits. This may be followed by underscore `_' characters and other string composed of either letters and digits or of special characters. Second, an identifier can start with a special character followed by an arbitrary sequence of special characters. Finally, an identifier may also be formed by an arbitrary string between back-quotes (host systems may impose some restrictions on which strings are legal for identifiers). As usual, a longest match rule applies. For instance, the string

```
big_bob++=z3
```

decomposes into the three identifiers `big_bob`, `++=`, and `z3`. The rules for pattern matching further distinguish between variable identifiers, which start with a lower case letter, and constant identifiers, which do not.

The `$` character is reserved for compiler-synthesized identifiers. User programs are not allowed to define identifiers which contain `$` characters.

The following names are reserved words instead of being members of the syntactic class `id` of lexical identifiers.

```
abstract case catch class def
do else extends false final
finally for if import new
null object override package private
protected return sealed super this
throw trait try true type
val var while with yield
```

The Unicode operator \u21D2 `⇒` has the ASCII equivalent `=>`, which is also reserved.

**Example 16.1.1** Here are examples of identifiers:

```
x Object maxIndex p2p empty_?
```
16.2 Braces and Semicolons

A semicolon ‘;’ is implicitly inserted after every closing brace if there is a new line character between closing brace and the next regular token after it, except if that token cannot legally start a statement.

The tokens which cannot legally start a statement are the following delimiters and reserved words:

```
catch else extends finally with yield
,
. ; = => <- <: <% >: # @)] }
```

16.3 Literals

There are literals for integer numbers (of types `Int` and `Long`), floating point numbers (of types `Float` and `Double`), characters, and strings. The syntax of these literals is in each case as in Java.

**Syntax:**

```
intLit ::= \"as in Java\"
floatLit ::= \"as in Java\"
charLit ::= \"as in Java\"
stringLit ::= \"as in Java\"
```

16.4 Whitespace and Comments

Tokens may be separated by whitespace characters and/or comments. Comments come in two forms:

A single-line comment is a sequence of characters which starts with `//` and extends to the end of the line.

A multi-line comment is a sequence of characters between `/*` and `*/`. Multi-line comments may be nested.

16.5 XML mode

In order to allow literal inclusion of XML fragments, lexical analysis switches from Scala mode to XML mode when encountering an opening angle bracket ‘<’ in the
following circumstance: The ‘<’ must be preceded either by whitespace, an opening parenthesis or an opening brace and immediately followed by a character starting an XML name.

**Syntax:**

\[
( \text{whitespace} | ' ( ' | '{' ) '<' \text{XNameStart}
\]

\[
\text{XNameStart ::= '}' \mid \text{BaseChar} \mid \text{Ideographic (as in W3C XML, but without ':')}
\]

The scanner switches from XML mode to Scala mode if either

- the XML expression or the XML pattern started by the initial ‘<’ has been successfully parsed, or if
- the parser encounters an embedded Scala expression or pattern and forces the Scanner back to normal mode, until the Scala expression or pattern is successfully parsed. In this case, since code and XML fragments can be nested, the parser has to maintain a stack that reflects the nesting of XML and Scala expressions adequately.

Note that no Scala tokens are constructed in XML mode, and that comments are interpreted as text.
Chapter 17

Identifiers, Names and Scopes

Names in Scala identify types, values, methods, and classes which are collectively called *entities*. Names are introduced by definitions, declarations (§19) or import clauses (§19.7), which are collectively called *binders*.

There are two different name spaces, one for types (§18) and one for terms (§21). The same name may designate a type and a term, depending on the context where the name is used.

A definition or declaration has a *scope* in which the entity defined by a single name can be accessed using a simple name. Scopes are nested, and a definition or declaration in some inner scope *shadows* a definition in an outer scope that contributes to the same name space. Furthermore, a definition or declaration shadows bindings introduced by a preceding import clause, even if the import clause is in the same block. Import clauses, on the other hand, only shadow bindings introduced by other import clauses in outer blocks.

A reference to an unqualified (type- or term-) identifier $x$ is bound by the unique binder, which

- defines an entity with name $x$ in the same namespace as the identifier, and
- shadows all other binders that define entities with name $x$ in that namespace.

It is an error if no such binder exists. If $x$ is bound by an import clause, then the simple name $x$ is taken to be equivalent to the qualified name to which $x$ is mapped by the import clause. If $x$ is bound by a definition or declaration, then $x$ refers to the entity introduced by that binder. In that case, the type of $x$ is the type of the referenced entity.

**Example 17.0.1** Consider the following nested definitions and imports:

```scala
object m1 {
```
A reference to a qualified (type- or term-) identifier \texttt{e.y} refers to the member of the type \texttt{T} of \texttt{e} which has the name \texttt{y} in the same namespace as the identifier. It is an error if \texttt{T} is not a value type (§18.2). The type of \texttt{e.y} is the member type of the referenced entity in \texttt{T}.
Chapter 18

Types

Syntax:

\[
\begin{align*}
\text{Type} & ::= \text{Type1} \to \text{Type} \\
& \quad | \left( [\text{Types}] \right) \to \text{Type} \\
& \quad | \text{Type1} \\
\text{Type1} & ::= \text{SimpleType} \{\text{with SimpleType}\} [\text{Refinement}] \\
\text{SimpleType} & ::= \text{StableId} \\
& \quad | \text{SimpleType} \# \text{id} \\
& \quad | \text{Path}. \text{type} \\
& \quad | \text{SimpleType} \text{TypeArgs} \\
& \quad | \left( \text{Type} \right) \\
\text{Types} & ::= \text{Type} \{\text{',' Type}\}
\end{align*}
\]

We distinguish between first-order types and type constructors, which take type parameters and yield types. A subset of first-order types called value types represents sets of (first-class) values. Value types are either concrete or abstract. Every concrete value type can be represented as a class type, i.e. a type designator (§18.2.3) that refers to a class\(^1\) (§20.2), or as a compound type (§18.2.5) consisting of class types and possibly also a refinement (§18.2.5) that further constrains the types of its members.

A shorthand exists for denoting function types (§18.2.6). Abstract value types are introduced by type parameters and abstract type bindings (§19.3). Parentheses in types are used for grouping.

Non-value types capture properties of identifiers that are not values (§18.3). There is no syntax to express these types directly in Scala.

---

\(^1\)We assume that objects and packages also implicitly define a class (of the same name as the object or package, but inaccessible to user programs).
18.1 Paths

Syntax:

```
StableId ::= id
 | Path '.' id
 | [id '.'] super ['[id ']'] '.' id
Path ::= StableId
 | [id '.'] this
```

Paths are not types themselves, but they can be a part of named types and in that way form a central role in Scala’s type system.

A path is one of the following.

- The empty path \( \epsilon \) (which cannot be written explicitly in user programs).
- \( C \).\texttt{this} where \( C \) references a class. The path \texttt{this} is taken as a shorthand for \( C \).\texttt{this} where \( C \) is the name of the class directly enclosing the reference.
- \( p \).\text{\textit{x}} where \( p \) is a path and \textit{x} is a stable member of \( p \). Stable members are members introduced by value or object definitions, as well as packages.
- \( C \).\texttt{super.\text{\textit{x}}} or \( C \).\texttt{super[M].\text{\textit{x}}} where \( C \) references a class and \textit{x} references a stable member of the super class or designated mixin class \( M \) of \( C \). The prefix \texttt{super} is taken as a shorthand for \( C \).\texttt{super} where \( C \) is the name of the class directly enclosing the reference.

A stable identifier is a path which ends in an identifier.

18.2 Value Types

18.2.1 Singleton Types

Syntax:

```
SimpleType ::= Path '.' type
```

A singleton type is of the form \( p \).\text{\textit{type}} where \( p \) is a path pointing to a value expected to conform to scala.AnyRef. The type denotes the set of values consisting of the value denoted by \( p \) and \texttt{null}.

18.2.2 Type Projection

Syntax:

```
SimpleType ::= SimpleType '#' id
```
A type projection \( T\#x \) references the type member named \( x \) of type \( T \). \( T \) must be either a singleton type, or a non-abstract class type, or a Java class type (in either of the last two cases, it is guaranteed that \( T \) has no abstract type members).

### 18.2.3 Type Designators

**Syntax:**

\[
\text{SimpleType ::= StableId}
\]

A type designator refers to a named value type. It can be simple or qualified. All such type designators are shorthands for type projections.

Specifically, the unqualified type name \( t \) where \( t \) is bound in some class, object, or package \( C \) is taken as a shorthand for \( C\.\text{this.type}\#t \). If \( t \) is not bound in a class, object, or package, then \( t \) is taken as a shorthand for \( \epsilon\.\text{type}\#t \).

A qualified type designator has the form \( p\.t \) where \( p \) is a path (§18.1) and \( t \) is a type name. Such a type designator is equivalent to the type projection \( p\.\text{type}\#x \).

**Example 18.2.1** Some type designators and their expansions are listed below. We assume a local type parameter \( t \), a value maintable with a type member Node and the standard class scala.Int,

\[
\begin{align*}
\text{t} & \quad \epsilon\.\text{type}\#t \\
\text{Int} & \quad \text{scala.type}\#\text{Int} \\
\text{scala.Int} & \quad \text{scala.type}\#\text{Int} \\
\text{data.maintable.Node} & \quad \text{data.maintable.type}\#\text{Node}
\end{align*}
\]

### 18.2.4 Parameterized Types

**Syntax:**

\[
\begin{align*}
\text{SimpleType} & ::= \text{SimpleType TypeArgs} \\
\text{TypeArgs} & ::= '\[' \text{Types } ']
\end{align*}
\]

A parameterized type \( T[U_1, \ldots, U_n] \) consists of a type designator \( T \) and type parameters \( U_1, \ldots, U_n \) where \( n \geq 1 \). \( T \) must refer to a type constructor which takes \( n \) type parameters \( a_1, \ldots, a_n \) with lower bounds \( L_1, \ldots, L_n \) and upper bounds \( U_1, \ldots, U_n \).

The parameterized type is well-formed if each actual type parameter conforms to its bounds, i.e. \( L_i\sigma <: T_i <: U_i\sigma \) where \( \sigma \) is the substitution \([a_1 := T_1, \ldots, a_n := T_n]\).

**Example 18.2.2** Given the partial type definitions:

\[
\begin{align*}
\text{class TreeMap}[a <: \text{Ord}[a], b] & \{ \ldots \} \\
\text{class List}[a] & \{ \ldots \} \\
\text{class I extends Ord[I]} & \{ \ldots \}
\end{align*}
\]
the following parameterized types are well formed:

```
TreeMap[I, String]
List[I]
List[List[Boolean]]
```

**Example 18.2.3** Given the type definitions of Example 18.2.2, the following types are ill-formed:

```
TreeMap[I] // illegal: wrong number of parameters
TreeMap[List[I], Boolean] // illegal: type parameter not within bound
```

### 18.2.5 Compound Types

**Syntax:**

```
Type ::= SimpleType {with SimpleType} [Refinement]
Refinement ::= '{' [RefineStat {';' RefineStat}] '}'
RefineStat ::= Dcl
| typeTypeDef
```

A compound type $T_1 \text{ with } ... \text{ with } T_n \{R\}$ represents objects with members as given in the component types $T_1, ..., T_n$ and the refinement $\{R\}$. Each component type $T_i$ must be a class type. A refinement $\{R\}$ contains declarations and type definitions. Each declaration or definition in a refinement must override a declaration or definition in one of the component types $T_1, ..., T_n$. The usual rules for overriding (§20.1.5) apply. If no refinement is given, the empty refinement is implicitly added, i.e. $T_1 \text{ with } ... \text{ with } T_n$ is a shorthand for $T_1 \text{ with } ... \text{ with } T_n \{\}$.

### 18.2.6 Function Types

**Syntax:**

```
SimpleType ::= Type1 ‘=>’ Type
| ‘(’ [Types] ‘)’ ‘=>’ Type
```

The type $(T_1, ..., T_n) => U$ represents the set of function values that take arguments of types $T_1, ..., T_n$ and yield results of type $U$. In the case of exactly one argument type $T => U$ is a shorthand for $(T) => U$. Function types associate to the right, e.g. $(S) => (T) => U$ is the same as $(S) => ((T) => U)$.

Function types are shorthands for class types that define apply functions. Specifically, the $n$-ary function type $(T_1, ..., T_n) => U$ is a shorthand for the class type `Function[n[T1,...,Tn,U]]`. Such class types are defined in the Scala library for $n$ between 0 and 9 as follows.
package scala;

trait Functionn[-$T_1, ..., -$T_n, +$R] {
    def apply($x_1$: $T_1$, ..., $x_n$: $T_n$): $R$
    override def toString() = "<function>";
}

Hence, function types are covariant in their result type, and contravariant in their argument types.

### 18.3 Non-Value Types

The types explained in the following do not denote sets of values, nor do they appear explicitly in programs. They are introduced in this report as the internal types of defined identifiers.

#### 18.3.1 Method Types

A method type is denoted internally as ($Ts$)$U$, where ($Ts$) is a sequence of types ($T_1, ..., T_n$) for some $n \geq 0$ and $U$ is a (value or method) type. This type represents named methods that take arguments of types $T_1, ..., T_n$ and that return a result of type $U$.

Method types associate to the right: ($Ts_1$)($Ts_2$)$U$ is treated as ($Ts_1$)($($Ts_2$)$U$).

A special case are types of methods without any parameters. They are written here => $T$. Parameterless methods name expressions that are re-evaluated each time the parameterless method name is referenced.

Method types do not exist as types of values. If a method name is used as a value, its type is implicitly converted to a corresponding function type (§18.7).

**Example 18.3.1** The declarations

```scala
def a: Int
def b (x: Int): Boolean
def c (x: Int) (y: String, z: String): String
```

produce the typings

```scala
a: => Int
b: (Int) Boolean
c: (Int) (String, String) String
```
18.3.2 Polymorphic Method Types

A polymorphic method type is denoted internally as \([tps]T\) where \([tps]\) is a type parameter section \([a_1 >: L_1 <: U_1, \ldots, a_n >: L_n <: U_n]\) for some \(n \geq 0\) and \(T\) is a (value or method) type. This type represents named methods that take type arguments \(S_1, \ldots, S_n\) which conform (§18.2.4) to the lower bounds \(L_1, \ldots, L_n\) and the upper bounds \(U_1, \ldots, U_n\) and that yield results of type \(T\).

Example 18.3.2 The declarations

\[
def\ empty[a]\colon List[a]\n\def\ union[a <: Comparable[a]] (x: Set[a], xs: Set[a])\colon Set[a]\n\]

produce the typings

\[
empty : [a >: All <: Any] List[a] \\
union : [a >: All <: Comparable[a]] (x: Set[a], xs: Set[a]) Set[a] .
\]

18.4 Base Classes and Member Definitions

Types, bounds and base classes of class members depend on the way the members are referenced. Central here are three notions, namely:

1. the notion of the set of base classes of a type \(T\),
2. the notion of a type \(T\) in some class \(C\) seen from some prefix type \(S\),
3. the notion of a member binding of some type \(T\).

These notions are defined mutually recursively as follows.

1. The set of base classes of a type is a set of class types, given as follows.
   - The base classes of a class type \(C\) are the base classes of class \(C\).
   - The base classes of an aliased type are the base classes of its alias.
   - The base classes of an abstract type are the base classes of its upper bound.
   - The base classes of a parameterized type \(C[T_1, \ldots, T_n]\) are the base classes of type \(C\), where every occurrence of a type parameter \(a_i\) of \(C\) has been replaced by the corresponding parameter type \(T_i\).
   - The base classes of a singleton type \(p\.type\) are the base classes of the type of \(p\).
   - The base classes of a compound type \(T_1 with \ldots with T_n \{R\}\) are the reduced union of the base classes of all \(T_i\)’s. This means: Let the multi-set \(\mathcal{P}\) be the multi-set-union of the base classes of all \(T_i\)’s. If \(\mathcal{P}\) contains several
type instances of the same class, say \( S^i \# C[ T_1^i, \ldots, T_n^i ] \) \((i \in I)\), then all those instances are replaced by one of them which conforms to all others. It is an error if no such instance exists, or if \( C \) is not a trait (§20.3). It follows that the reduced union, if it exists, produces a set of class types, where different types are instances of different classes.

- The base classes of a type selection \( S \# T \) are determined as follows. If \( T \) is an alias or abstract type, the previous clauses apply. Otherwise, \( T \) must be a (possibly parameterized) class type, which is defined in some class \( B \). Then the base classes of \( S \# T \) are the base classes of \( T \) in \( B \) seen from the prefix type \( S \).

2. The notion of a type \( T \) in class \( C \) seen from some prefix type \( S \) makes sense only if the prefix type \( S \) has a type instance of class \( C \) as a base class, say \( S' \# C[ T_1, \ldots, T_n ] \).

Then we define as follows.

- If \( S = \epsilon \), type, then \( T \) in \( C \) seen from \( S \) is \( T \) itself.
- Otherwise, if \( T \) is the \( i \)’th type parameter of some class \( D \), then
  - If \( S \) has a base class \( D[ U_1, \ldots, U_n ] \), for some type parameters \( [ U_1, \ldots, U_n ] \), then \( T \) in \( C \) seen from \( S \) is \( U_i \).
  - Otherwise, if \( C \) is defined in a class \( C' \), then \( T \) in \( C \) seen from \( S \) is the same as \( T \) in \( C' \) seen from \( S' \).
  - Otherwise, if \( C \) is not defined in another class, then \( T \) in \( C \) seen from \( S \) is \( T \) itself.
- Otherwise, if \( T \) is the singleton type \( D \). this.type for some class \( D \) then
  - If \( D \) is a subclass of \( C \) and \( S \) has a type instance of class \( D \) among its base classes, then \( T \) in \( C \) seen from \( S \) is \( S \).
  - Otherwise, if \( C \) is defined in a class \( C' \), then \( T \) in \( C \) seen from \( S \) is the same as \( T \) in \( C' \) seen from \( S' \).
  - Otherwise, if \( C \) is not defined in another class, then \( T \) in \( C \) seen from \( S \) is \( T \) itself.
- Otherwise, if \( T \) is some other type, then the described mapping is performed to all its type components.

If \( T \) is a possibly parameterized class type, where \( T \)’s class is defined in some other class \( D \), and \( S \) is some prefix type, then we use “\( T \) seen from \( S \)” as a shorthand for “\( T \) in \( D \) seen from \( S \)”.

3. The member bindings of a type \( T \) are all bindings \( d \) such that there exists a type instance of some class \( C \) among the base classes of \( T \) and there exists a definition or declaration \( d' \) in \( C \) such that \( d \) results from \( d' \) by replacing every type \( T' \) in \( d' \) by \( T' \) in \( C \) seen from \( T \).
The definition of a type projection $S\# t$ is the member binding $d$ of the type $t$ in $S$. In that case, we also say that $S\# t$ is defined by $d$.

## 18.5 Relations between types

We define two relations between types.

- **Type equivalence** $T \equiv U$ $T$ and $U$ are interchangeable in all contexts.
- **Conformance** $T <: U$ Type $T$ conforms to type $U$.

### 18.5.1 Type Equivalence

Equivalence ($\equiv$) between types is the smallest congruence\(^2\) such that the following holds:

- If $t$ is defined by a type alias `type t = T`, then $t$ is equivalent to $T$.
- If a path $p$ has a singleton type `q.type`, then $p.type \equiv q.type$.
- If $O$ is defined by an object definition, and $p$ is a path consisting only of package or object selectors and ending in $O$, then $O.this.type \equiv p.type$.
- Two compound types are equivalent if their component types are pairwise equivalent and their refinements are equivalent. Two refinements are equivalent if they bind the same names and the modifiers, types and bounds of every declared entity are equivalent in both refinements.
- Two method types are equivalent if they have equivalent result types, both have the same number of parameters, and corresponding parameters have equivalent types as well as the same `def` or `*` modifiers. Note that the names of parameters do not matter for method type equivalence.
- Two polymorphic types are equivalent if they have the same number of type parameters, and, after renaming one set of type parameters by another, the result types as well as lower and upper bounds of corresponding type parameters are equivalent.
- Two overloaded types are equivalent if for every alternative type in either type there exists an equivalent alternative type in the other.

### 18.5.2 Conformance

The conformance relation ($<:)$ is the smallest transitive relation that satisfies the following conditions.

- Conformance includes equivalence. If $T \equiv U$ then $T <: U$.

\(^2\) A congruence is an equivalence relation which is closed under formation of contexts
• For every value type \( T \), scala.All <: \( T \) <: scala.Any.
• For every value type \( T <: \) scala.AnyRef one has scala.AllRef <: \( T \).

• A type variable or abstract type \( t \) conforms to its upper bound and its lower bound conforms to \( t \).

• A class type or parameterized type \( c \) conforms to any of its base-types, \( b \).

• A type projection \( T#t \) conforms to \( U#t \) if \( T \) conforms to \( U \).

• A parameterized type \( T[T_1, \ldots, T_n] \) conforms to \( T[U_1, \ldots, U_n] \) if the following three conditions hold for \( i = 1, \ldots, n \).
  
  - If the \( i \)'th type parameter of \( T \) is declared covariant, then \( T_i <: U_i \).
  - If the \( i \)'th type parameter of \( T \) is declared contravariant, then \( U_i <: T_i \).
  - If the \( i \)'th type parameter of \( T \) is declared neither covariant nor contravariant, then \( U_i \equiv T_i \).

• A compound type \( T_1 \textbf{ with } \ldots \textbf{ with } T_n \{R\} \) conforms to each of its component types \( T_i \).

• If \( T <: U_i \) for \( i = 1, \ldots, n \) and for every binding of a type or value \( x \) in \( R \) there exists a member binding of \( x \) in \( T \) subsuming it, then \( T \) conforms to the compound type \( T_1 \textbf{ with } \ldots \textbf{ with } T_n \{R\} \).

• If \( T_i \equiv T'_i \) for \( i = 1, \ldots, n \) and \( U \) conforms to \( U' \) then the method type \( (T_1, \ldots, T_n)U \) conforms to \((T'_1, \ldots, T'_n)U'\).

• If, assuming \( L'_1 <: a_1 <: U'_1, \ldots, L'_n <: a_n <: U'_n \) one has \( L_i <: L'_i \) and \( U'_i <: U_i \) for \( i = 1, \ldots, n \), as well as \( T <: T' \), then the polymorphic type \( \{a_1 >: L_1 <: U_1, \ldots, a_n >: L_n <: U_n\}T \) conforms to the polymorphic type \( \{a_1 >: L'_1 <: U'_1, \ldots, a_n >: L'_n <: U'_n\}T' \).

• An overloaded type \( T_1 \langle\text{and}\rangle \ldots \langle\text{and}\rangle T_n \) conforms to each of its alternative types \( T_i \).

• A type \( S \) conforms to the overloaded type \( T_1 \langle\text{and}\rangle \ldots \langle\text{and}\rangle T_n \) if \( S \) conforms to each alternative type \( T_i \).

A declaration or definition in some compound type of class type \( C \) is subsumes another declaration of the same name in some compound type or class type \( C' \), if one of the following holds.

• A value declaration \textbf{val} \( x \): \( T \) or value definition \textbf{val} \( x \): \( T = e \) subsumes a value declaration \textbf{val} \( x \): \( T' \) if \( T <: T' \).

• A type alias \textbf{type} \( t = T \) subsumes a type alias \textbf{type} \( t = T' \) if \( T \equiv T' \).

• A type declaration \textbf{type} \( t \triangleright: L <: U \) subsumes a type declaration \textbf{type} \( t \triangleright: L' <: U' \) if \( L' <: L \) and \( U <: U' \).
• A type or class definition of some type \( t \) subsumes an abstract type declaration \( \text{type } t : \ L <: U \) if \( L <: t <: U \).

The \( (<:) \) relation forms a partial order between types. The least upper bound or the greatest lower bound of a set of types is understood to be relative to that order.

Note. The least upper bound of a set of types does not always exist. For instance, consider the class definitions

```scala
class A[+t] {}
class B extends A[B];
class C extends A[C];
```

Then the types \( A[\text{Any}], A[A[\text{Any}]], A[A[A[\text{Any}]]], \ldots \) form a descending sequence of upper bounds for \( B \) and \( C \). The least upper bound would be the infinite limit of that sequence, which does not exist as a Scala type. Since cases like this are in general impossible to detect, a Scala compiler is free to reject a term which has a type specified as a least upper or greatest lower bound, and that bound would be more complex than some compiler-set limit\(^3\).

### 18.6 Type Erasure

A type is called generic if it contains type arguments or type variables. Type erasure is a mapping from (possibly generic) types to non-generic types. We write \( |T| \) for the erasure of type \( T \). The erasure mapping is defined as follows.

- The erasure of a type variable is the erasure of its upper bound.
- The erasure of a parameterized type \( T[T_1, \ldots, T_n] \) is \( |T| \).
- The erasure of a singleton type \( p \#. \text{type} \) is the erasure of the type of \( p \).
- The erasure of a type projection \( T\#x \) is \( |T|\#x \).
- The erasure of a compound type \( T_1 \text{ with } \ldots \text{ with } T_n \{ R \} \) is \( |T_1| \).
- The erasure of every other type is the type itself.

### 18.7 Implicit Conversions

The following implicit conversions are applied to expressions of method type that are used as values, rather than being applied to some arguments.

\(^3\)The current Scala compiler limits the nesting level of parameterization in a such bounds to 10.
• A parameterless method \( m \) of type \( \Rightarrow T \) is converted to type \( T \) by evaluating the expression to which \( m \) is bound.

• An expression \( e \) of polymorphic type

\[
[a_1 >: L_1 <: U_1, \ldots, a_n >: L_n <: U_n]T
\]

which does not appear as the function part of a type application is converted to type \( T \) by determining with local type inference (§25) instance types \( T_1, \ldots, T_n \) for the type variables \( a_1, \ldots, a_n \) and implicitly embedding \( e \) in the type application \( e[U_1, \ldots, U_n] \) (§21.5).

• An expression \( e \) of monomorphic method type \( (T_s_1) \ldots (T_s_n) U \) of arity \( n > 0 \) which does not appear as the function part of an application is converted to a function type by implicitly embedding \( e \) in the following term, where \( x \) is a fresh variable and each \( ps_i \) is a parameter section consisting of parameters with fresh names of types \( T_s_i \):

\[
(val \ x = e ; (ps_1) \ldots \Rightarrow \ldots (ps_n) \Rightarrow x(ps_1) \ldots (ps_n))
\]

This conversion is not applicable to functions with call-by-name parameters \( x: \Rightarrow T \) or repeated parameters \( x: T^* \) (§19.5), because its result would violate the well-formedness rules for anonymous functions (§21.20). Hence, methods with such parameters always need to be applied to arguments immediately.

When used in an expression, a value of type `byte`, `char`, or `short` is always implicitly converted to a value of type `int`.

Implicit conversions can also be user-defined. This is explained in Chapter 23.
Chapter 19

Basic Declarations and Definitions

Syntax:

\[
\begin{align*}
\text{Dcl} & \quad ::= \quad \text{val ValDcl} \\
& \quad \mid \quad \text{var VarDcl} \\
& \quad \mid \quad \text{def FunDcl} \\
& \quad \mid \quad \text{type TypeDcl} \\
\text{Def} & \quad ::= \quad \text{val PatDef} \\
& \quad \mid \quad \text{var VarDef} \\
& \quad \mid \quad \text{def FunDef} \\
& \quad \mid \quad \text{type TypeDef} \\
& \quad \mid \quad \text{TmplDef}
\end{align*}
\]

A declaration introduces names and assigns them types. It can appear as one of the statements of a class definition (§20.1) or as part of a refinement in a compound type (18.2.5).

A definition introduces names that denote terms or types. It can form part of an object or class definition or it can be local to a block. Both declarations and definitions produce bindings that associate type names with type definitions or bounds, and that associate term names with types.

The scope of a name introduced by a declaration or definition is the whole statement sequence containing the binding. However, there is a restriction on forward references: In a statement sequence \(s_1 \ldots s_n\), if a simple name in \(s_i\) refers to an entity defined by \(s_j\) where \(j \geq i\), then every non-empty statement between and including \(s_i\) and \(s_j\) must be an import clause, or a function, type, class, or object definition. It may not be a value definition, a variable definition, or an expression.
19.1 Value Declarations and Definitions

Syntax:

\[
\text{Dcl ::= val ValDcl} \\
\text{ValDcl ::= id \{',' id\} ':' Type} \\
\text{Def ::= val PatDef} \\
\text{PatDef ::= Pattern2 \{',' Pattern2\} [':' Type] '=' Expr}
\]

A value declaration `val x: T` introduces `x` as a name of a value of type `T`.

A value definition `val x: T = e` defines `x` as a name of the value that results from the evaluation of `e`. The type `T` may be omitted, in which case the type of expression `e` is assumed. If a type `T` is given, then `e` is expected to conform to it.

Evaluation of the value definition implies evaluation of its right-hand side `e`. The effect of the value definition is to bind `x` to the value of `e` converted to type `T`.

Value definitions can alternatively have a pattern (§22.1) as left-hand side. If `p` is some pattern other than a simple name or a name followed by a colon and a type, then the value definition `val p = e` is expanded as follows:

1. If the pattern `p` has bound variables `x_1, ..., x_n`, where `n > 1`:

   ```scala
 val $x = e.match { case p => scala.Tuple(n)(x_1, ..., x_n) }
 val x_1 = $x._1 ...
 val x_n = $x._n .
   ```

   Here, `$x` is a fresh name. The class `Tuple(n)` is defined for `n = 2, ..., 9` in package `scala`.

2. If `p` has a unique bound variable `x`:

   ```scala
 val x = e.match { case p => x }
   ```

3. If `p` has no bound variables:

   ```scala
 e.match { case p => ()}
   ```

**Example 19.1.1** The following are examples of value definitions

```scala
val pi = 3.1415;
val pi: double = 3.1415; // equivalent to first definition
val Some(x) = f(); // a pattern definition
val x :: xs = mylist; // an infix pattern definition
```

The last two definitions have the following expansions.

```scala
val x = f().match { case Some(x) => x }
```
val x$ = mylist.match { case x :: xs => scala.Tuple2(x, xs) }
val x = x$._1;
val xs = x$._2;

A value declaration `val x₁, ..., xₙ : T` is a shorthand for the sequence of value declarations `val x₁ : T; ... ; val xₙ : T`. A value definition `val p₁, ..., pₙ = e` is a shorthand for the sequence of value definitions `val p₁ = e; ... ; val pₙ = e`. A value definition `val p₁, ..., pₙ : T = e` is a shorthand for the sequence of value definitions `val p₁ : T = e; ... ; val pₙ : T = e`.

### 19.2 Variable Declarations and Definitions

**Syntax:**

\[\begin{align*}
  \text{Dcl} & ::= \text{var VarDcl} \\
  \text{Def} & ::= \text{var VarDef} \\
  \text{VarDcl} & ::= \text{id} \{\text{',' id}\} \text{ ':' Type} \\
  \text{VarDef} & ::= \text{id} \{\text{',' id}\} \{\text{ ':' Type}\} \text{ '=' Expr} \\
 & \quad \mid \text{id} \{\text{',' id}\} \text{ ':' Type} \text{ '=' _'}
\end{align*}\]

A variable declaration `var x : T` is equivalent to declarations of a *getter function* `x` and a *setter function* `x_=_`, defined as follows:

\[
\begin{align*}
  \text{def} & \ x : T; \\
  \text{def} & \ x_=_ (y : T) : \text{unit}
\end{align*}
\]

An implementation of a class containing variable declarations may define these variables using variable definitions, or it may define setter and getter functions directly.

A variable definition `var x : T = e` introduces a mutable variable with type `T` and initial value as given by the expression `e`. The type `T` can be omitted, in which case the type of `e` is assumed. If `T` is given, then `e` is expected to conform to it.

A variable definition `var x : T = _` introduces a mutable variable with type `T` and a default initial value. The default value depends on the type `T` as follows:

\[
\begin{align*}
  0 & \quad \text{if } T \text{ is int or one of its subrange types}, \\
  0L & \quad \text{if } T \text{ is long}, \\
  0.0f & \quad \text{if } T \text{ is float}, \\
  0.0d & \quad \text{if } T \text{ is double}, \\
  \text{false} & \quad \text{if } T \text{ is boolean}, \\
  () & \quad \text{if } T \text{ is unit}, \\
  \text{null} & \quad \text{for all other types } T.
\end{align*}
\]
When they occur as members of a template, both forms of variable definition also introduce a getter function \( x \) which returns the value currently assigned to the variable, as well as a setter function \( x_\leftarrow \) which changes the value currently assigned to the variable. The functions have the same signatures as for a variable declaration. The getter and setter functions are then members of the template instead of the variable accessed by them.

**Example 19.2.1** The following example shows how *properties* can be simulated in Scala. It defines a class `TimeOfDayVar` of time values with updatable integer fields representing hours, minutes, and seconds. Its implementation contains tests that allow only legal values to be assigned to these fields. The user code, on the other hand, accesses these fields just like normal variables.

```scala
class TimeOfDayVar {
 private var h: int = 0;
 private var m: int = 0;
 private var s: int = 0;

 def hours = h;
 def hours_=(h: int) =
 if (0 <= h && h < 24) this.h = h
 else throw new DateError();

 def minutes = m;
 def minutes_=(m: int) =
 if (0 <= m && m < 60) this.m = m
 else throw new DateError();

 def seconds = s;
 def seconds_=(s: int) =
 if (0 <= s && s < 60) this.s = s
 else throw new DateError();
}

val d = new TimeOfDayVar;
d.hours = 8; d.minutes = 30; d.seconds = 0;
d.hours = 25; // throws a DateError exception
```

A variable declaration \( \text{var } x_1, \ldots, x_n : T \) is a shorthand for the sequence of variable declarations \( \text{var } x_1 : T; \ldots; \text{var } x_n : T. \) A variable definition \( \text{var } x_1, \ldots, x_n = e \) is a shorthand for the sequence of variable definitions \( \text{var } x_1 = e; \ldots; \text{var } x_n = e. \) A variable definition \( \text{var } x_1, \ldots, x_n : T = e \) is a shorthand for the sequence of variable definitions \( \text{var } x_1 : T = e; \ldots; \text{var } x_n : T = e. \)

### 19.3 Type Declarations and Type Aliases

**Syntax:**
A *type declaration* `type t >: L <: U` declares `t` to be an abstract type with lower bound type `L` and upper bound type `U`. If such a declaration appears as a member declaration of a type, implementations of the type may implement `t` with any type `T` for which `L <: T <: U`. Either or both bounds may be omitted. If the lower bound `L` is missing, the bottom type `scala.All` is assumed. If the upper bound `U` is missing, the top type `scala.Any` is assumed.

A *type alias* `type t = T` defines `t` to be an alias name for the type `T`. The left hand side of a type alias may have a type parameter clause, e.g. `type T[tps] = T`. The scope of a type parameter extends over the right hand side `T` and the type parameter clause `tps` itself.

The scope rules for definitions (§19) and type parameters (§19.5) make it possible that a type name appears in its own bound or in its right-hand side. However, it is a static error if a type alias refers recursively to the defined type constructor itself. That is, the type `T` in a type alias `type t[tps] = T` may not refer directly or indirectly to the name `t`. It is also an error if an abstract type is directly or indirectly its own upper or lower bound.

**Example 19.3.1** The following are legal type declarations and definitions:

```scala
 type IntList = List[Integer];
 type T <: Comparable[T];
 type Two[a] = Tuple2[a, a];
```

The following are illegal:

```scala
 type Abs = Comparable[Abs]; // recursive type alias
 type S <: T; // S, T are bounded by themselves.
 type T <: S;
 type T <: AnyRef with T; // T is abstract, may not be part of
 type T >: Comparable[T.That]; // compound type
 type T >: Comparable[T.That]; // Cannot select from T.
 type T >: Comparable[T.That]; // T is a type, not a value
```

If a type alias `type t[tps] = S` refers to a class type `S`, the name `t` can also be used as a constructor for objects of type `S`.

**Example 19.3.2** The `Predef` module contains a definition which establishes `Pair` as an alias of the parameterized class `Tuple2`:
As a consequence, for any two types $S$ and $T$, the type `Pair[S, T]` is equivalent to the type `Tuple2[S, T]`. `Pair` can also be used as a constructor instead of `Tuple2`, as in

```java
new Pair[Int, Int](1, 2).
```

### 19.4 Type Parameters

**Syntax:**

```
TypeParamClause ::= ['[VarTypeParam {' , ' VarTypeParam} ']'
VarTypeParam ::= ['+' | '-'] TypeParam
TypeParam ::= id [>: Type] [<: Type | <% Type]
```

Type parameters appear in type definitions, class definitions, and function definitions. The most general form of a type parameter is $\pm t >: L <: U$. Here, $L$, and $U$ are lower and upper bounds that constrain possible type arguments for the parameter, and $\pm$ is a variance, i.e. an optional prefix of either $+$, or $-$. The names of all type parameters in a type parameter clause must be pairwise different. The scope of a type parameter includes in each case the whole type parameter clause. Therefore it is possible that a type parameter appears as part of its own bounds or the bounds of other type parameters in the same clause. However, a type parameter may not be bounded directly or indirectly by itself.

**Example 19.4.1** Here are some well-formed type parameter clauses:

```
[s, t]
[ex <: Throwable]
[a <: Ord[b], b <: a]
[a, b, c >: a <: b]
```

The following type parameter clauses are illegal since type parameter are bounded by themselves.

```
[a >: a]
[a <: b, b <: c, c <: a]
```

Variance annotations indicate how type instances with the given type parameters vary with respect to subtyping (§18.5.2). A $+'$ variance indicates a covariant dependency, a $-'$ variance indicates a contravariant dependency, and a missing variance indication indicates an invariant dependency.

A variance annotation constrains the way the annotated type variable may ap-
pear in the type or class which binds the type parameter. In a type definition \( \text{type } t[tps] = S \), type parameters labeled ‘+’ must only appear in covariant position in \( S \) whereas type parameters labeled ‘-’ must only appear in contravariant position. Analogously, for a class definition \( \text{class } c[tps](ps): s \text{ extends } t \), type parameters labeled ‘+’ must only appear in covariant position in the self type \( s \) and the template \( t \), whereas type parameters labeled ‘-’ must only appear in contravariant position.

The variance position of a type parameter in a type or template is defined as follows. Let the opposite of covariance be contravariance, and the opposite of invariance be itself. The top-level of the type or template is always in covariant position. The variance position changes at the following constructs.

- The variance position of a method parameter is the opposite of the variance position of the enclosing parameter clause.
- The variance position of a type parameter is the opposite of the variance position of the enclosing type parameter clause.
- The variance position of the lower bound of a type declaration or type parameter is the opposite of the variance position of the type declaration or parameter.
- The right hand side \( S \) of a type alias \( \text{type } t[tps] = S \) is always in invariant position.
- The type of a mutable variable is always in invariant position.
- The prefix \( S \) of a type selection \( S#T \) is always in invariant position.
- For a type argument \( T \) of a type \( S[...T...] \): If the corresponding type parameter is invariant, then \( T \) is in invariant position. If the corresponding type parameter is contravariant, the variance position of \( T \) is the opposite of the variance position of the enclosing type \( S[...T...] \).

**Example 19.4.2** The following variance annotation is legal.

```scala
abstract class P[+a, +b] {
 def fst: a; def snd: b
}
```

With this variance annotation, elements of type \( P \) subtype covariantly with respect to their arguments. For instance,

\[ P[IOException, String] <: P[Throwable, AnyRef] \]

If we make the elements of \( P \) mutable, the variance annotation becomes illegal.

```scala
abstract class Q[+a, +b] {
 var fst: a; // **** error: illegal variance:
  ```
Example 19.4.3 The following variance annotation is illegal, since \( a \) appears in contravariant position in the parameter of append:

```scala
trait Vector[+a] {
 def append(x: Vector[a]): Vector[a];
 // **** error: illegal variance:
 // 'a' occurs in contravariant position.
}
```

The problem can be avoided by generalizing the type of append by means of a lower bound:

```scala
trait Vector[+a] {
 def append(b >: a)(x: Vector[b]): Vector[b];
}
```

Example 19.4.4 Here is a case where a contravariant type parameter is useful.

```scala
trait OutputChannel[-a] {
 def write(x: a): unit
}
```

With that annotation, we have that \( \text{OutputChannel[AnyRef]} \) conforms to \( \text{OutputChannel[String]} \). That is, a channel on which one can write any object can substitute for a channel on which one can write only strings.

19.5 Function Declarations and Definitions

Syntax:

- `Dcl` ::= `def` `FunDcl`
- `FunDcl` ::= `FunSig` `{`,` `FunSig` `:` `Type`
- `Def` ::= `def` `FunDef`
- `FunDef` ::= `FunSig` `{`,` `FunSig` `:` `Type` `=` `Expr`
- `FunSig` ::= `id` `[FunTypeParamClause]` `{ParamClause}`
- `FunTypeParamClause` ::= `['` `TypeParam` `{`,` `TypeParam` `]'`
- `ParamClause` ::= `('` `[Param` `{`,` `Param` `)` `)'
- `Param` ::= `id` `:::` `['` `Type` `]'`

A function declaration has the form `def fpsig: T`, where \( f \) is the function’s name, \( psig \) is its parameter signature and \( T \) is its result type. A function definition `fpsig: T = e` also includes a function body `e`, i.e. an expression which defines
the function's result. A parameter signature consists of an optional type parameter clause \([tps]\), followed by zero or more value parameter clauses \((ps_1)\ldots(ps_n)\). Such a declaration or definition introduces a value with a (possibly polymorphic) method type whose parameter types and result type are as given.

A type parameter clause \(tps\) consists of one or more type declarations (§19.3), which introduce type parameters, possibly with bounds. The scope of a type parameter includes the whole signature, including any of the type parameter bounds as well as the function body, if it is present.

A value parameter clause \(ps\) consists of zero or more formal parameter bindings such as \(x: T\), which bind value parameters and associate them with their types. The scope of a formal value parameter name \(x\) is the function body, if one is given. Both type parameter names and value parameter names must be pairwise distinct.

The type of a value parameter may be prefixed by \(=\to\), e.g. \(x: =\to T\). The type of such a parameter is then the parameterless method type \(=\to T\). This indicates that the corresponding argument is not evaluated at the point of function application, but instead is evaluated at each use within the function. That is, the argument is evaluated using call-by-name.

**Example 19.5.1** The declaration

```scala
def whileLoop (cond: =\to Boolean) (stat: =\to Unit): Unit
```

indicates that both parameters of \(while\) are evaluated using call-by-name.

The last value parameter of a parameter section may be suffixed by \("*\)”, e.g. \((\ldots, x:T*)\). The type of such a repeated parameter inside the method is then the sequence type \(\text{scala.Seq}[T]\). Methods with repeated parameters \(T*\) take a variable number of arguments of type \(T\). That is, if a method \(m\) with type \((T_1,\ldots, T_n, S*)U\) is applied to arguments \((e_1,\ldots, e_k)\) where \(k \geq n\), then \(m\) is taken in that application to have type \((T_1,\ldots, T_n, S,\ldots, S)U\), with \(k - n\) occurrences of type \(S\).

**Example 19.5.2** The following method definition computes the sum of a variable number of integer arguments.

```scala
def sum(args: int*) {
 var result = 0;
 for (val arg <- args.elements) result = result + arg;
 result
}
```

The following applications of this method yield 0, 1, 6, in that order.

- \(\text{sum()}\)
- \(\text{sum(1)}\)
- \(\text{sum(1, 2, 3, 4, 5)}\)
The type of the function body must conform to the function's declared result type, if one is given. If the function definition is not recursive, the result type may be omitted, in which case it is determined from the type of the function body.

For any index $i$ let $\text{fsig}_i$ be a function signature consisting of a function name, an optional type parameter section, and zero or more parameter sections. Then a function declaration $\text{def } \text{fsig}_1, \ldots, \text{fsig}_n : T$ is a shorthand for the sequence of function declarations $\text{def } \text{fsig}_1 : T$; $\ldots$; $\text{def } \text{fsig}_n : T$. A function definition $\text{def } \text{fsig}_1, \ldots, \text{fsig}_n = e$ is a shorthand for the sequence of function definitions $\text{def } \text{fsig}_1 = e$; $\ldots$; $\text{def } \text{fsig}_n = e$. A function definition $\text{def } \text{fsig}_1, \ldots, \text{fsig}_n : T = e$ is a shorthand for the sequence of function definitions $\text{def } \text{fsig}_1 : T = e$; $\ldots$; $\text{def } \text{fsig}_n : T = e$.

19.6 Overloaded Definitions

An overloaded definition is a set of $n > 1$ value or function definitions in the same statement sequence that define the same name, binding it to types $T_1, \ldots, T_n$, respectively. The individual definitions are called alternatives. Overloaded definitions may only appear in the statement sequence of a template. Alternatives always need to specify the type of the defined entity completely. It is an error if the types of two alternatives $T_i$ and $T_j$ have the same erasure (§18.6).

19.7 Import Clauses

Syntax:

\begin{align*}
\text{Import} & ::= \text{import } \text{ImportExpr} \{',', \text{ImportExpr}\} \\
\text{ImportExpr} & ::= \text{StableId} \text{'.'} \text{(id | '_') | ImportSelectors} \\
\text{ImportSelectors} & ::= '{' \{\text{ImportSelector} ' ,'\} \text{(ImportSelector | '_') '}'} \\
\text{ImportSelector} & ::= \text{id ['=>' id | '=>' '_']} \\
\end{align*}

An import clause has the form $\text{import } p.I$ where $p$ is a stable identifier (§18.1) and $I$ is an import expression. The import expression determines a set of names of members of $p$ which are made available without qualification. The most general form of an import expression is a list of import selectors

\{ $x_1 \Rightarrow y_1, \ldots, x_n \Rightarrow y_n, \_ \} \]

for $n \geq 0$, where the final wildcard `_` may be absent. It makes available each member $p.x_i$ under the unqualified name $y_i$. I.e. every import selector $x_i \Rightarrow y_i$ re-names $p.x_i$ to $y_i$. If a final wildcard is present, all members $z$ of $p$ other than $x_1, \ldots, x_n$ are also made available under their own unqualified names.
Import selectors work in the same way for type and term members. For instance, an import clause `import p.{x => y}` renames the term name `p.x` to the term name `y` and the type name `p.x` to the type name `y`. At least one of these two names must reference a member of `p`.

If the target in an import selector is a wildcard, the import selector hides access to the source member. For instance, the import selector `x => _` “renames” `x` to the wildcard symbol (which is unaccessible as a name in user programs), and thereby effectively prevents unqualified access to `x`. This is useful if there is a final wildcard in the same import selector list, which imports all members not mentioned in previous import selectors.

Several shorthands exist. An import selector may be just a simple name `x`. In this case, `x` is imported without renaming, so the import selector is equivalent to `x => x`. Furthermore, it is possible to replace the whole import selector list by a single identifier or wildcard. The import clause `import p.x` is equivalent to `import p.{x}`, i.e. it makes available without qualification the member `x` of `p`. The import clause `import p._` is equivalent to `import p._`, i.e. it makes available without qualification all members of `p` (this is analogous to `import p.*` in Java).

An import clause with multiple import expressions `import p_1.I_1, ..., p_n.I_n` is interpreted as a sequence of import clauses `import p_1.I_1; ...; import p_n.I_n`.

**Example 19.7.1** Consider the object definition:

```scala
object M {
 def z = 0, one = 1;
 def add(x: Int, y: Int): Int = x + y
}
```

Then the block

```scala
{ import M.{one, z => zero, _}; add(zero, one) }
```

is equivalent to the block

```scala
{ M.add(M.z, M.one) }
```
Chapter 20

Classes and Objects

Syntax:

\[
\begin{align*}
\text{TmplDef} & := ([\text{case}] \text{ class } \mid \text{ trait}) \text{ ClassDef} \\
& \quad \mid [\text{case}] \text{ object ObjectDef}
\end{align*}
\]

Classes ($\S$20.2) and objects ($\S$20.4) are both defined in terms of templates.

20.1 Templates

Syntax:

\[
\begin{align*}
\text{Template} & := \text{Constr} \{\text{with} \ \text{Constr}\} \text{ [TemplateBody]} \\
\text{TemplateBody} & := \{\text{'} \text{ [TemplateStat \{'; TemplateStat\}] \text{'}}\}
\end{align*}
\]

A template defines the type signature, behavior and initial state of a class of objects or of a single object. Templates form part of instance creation expressions, class definitions, and object definitions. A template \( sc \ \text{with} \ mc_1 \ \text{with} \ ... \ \text{with} \ mc_n \ \{\text{stats}\} \) consists of a constructor invocation \( sc \) which defines the template's superclass, constructor invocations \( mc_1, ..., mc_n \ (n \geq 0) \), which define the template's mixin classes, and a statement sequence \( \text{stats} \) which contains additional member definitions for the template. Superclass and mixin classes together are called the parent classes of a template. They must be pairwise different. The superclass of a template must be a subtype of the superclass of each mixin class. The least proper supertype of a template is the class type or compound type ($\S$18.2.5) consisting of the its parent classes.

Member definitions define new members or overwrite members in the parent classes. If the template forms part of a class definition, the statement part \( \text{stats} \) may also contain declarations of abstract members.
Inheriting from Java Types. A template may have a Java class as its superclass and Java interfaces as its mixin classes. On the other hand, it is not permitted to have a Java class as a mixin class, or a Java interface as a superclass.

20.1.1 Constructor Invocations

Syntax:

\[
\text{Constr ::= StableId [TypeArgs] ['(' [Exprs] ')']}
\]

Constructor invocations define the type, members, and initial state of objects created by an instance creation expression, or of parts of an object's definition which are inherited by a class or object definition. A constructor invocation is a function application \( x \cdot c(args) \), where \( x \) is a stable identifier (§18.1), \( c \) is a type name which either designates a class or defines an alias type for one, and \( args \) is an argument list, which matches one of the constructors of that class. The prefix \( 'x.' \) can be omitted. The argument list \( (args) \) can also be omitted, in which case an empty argument list () is implicitly added.

20.1.2 Base Classes

For every template, class type and constructor invocation we define two sets of class types: the base classes and mixin base classes. Their definitions are as follows.

The mixin base classes of a template \( sc \ with \ mc_1 \ with \ ... \ with \ mc_n \ {stats} \) are the reduced union (§18.4) of the base classes of all mixins \( mc_i. \) The mixin base classes of a class type \( C \) are the mixin base classes of the template augmented by \( C \) itself. The mixin base classes of a constructor invocation of type \( T \) are the mixin base classes of class \( T. \)

The base classes of a template consist are the reduced union of the base classes of its superclass and the template's mixin base classes. The base classes of class \( scala.Any \) consist of just the class itself. The base classes of some other class type \( C \) are the base classes of the template represented by \( C \) augmented by \( C \) itself. The base classes of a constructor invocation of type \( T \) are the base classes of \( T. \)

The notions of mixin base classes and base classes are extended from classes to arbitrary types following the definitions of §18.4.

Example 20.1.1 Consider the following class definitions:

```scala
class A;
class B extends A;
trait C extends A;
class D extends A;
class E extends B with C with D;
class F extends B with D with E;
```
The mixin base classes and base classes of classes A–F are given in the following table:

<table>
<thead>
<tr>
<th>Mixin base classes</th>
<th>Base classes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A, ScalaObject, AnyRef, Any</td>
</tr>
<tr>
<td>B</td>
<td>B, A, ScalaObject, AnyRef, Any</td>
</tr>
<tr>
<td>C</td>
<td>C, A, ScalaObject, AnyRef, Any</td>
</tr>
<tr>
<td>D</td>
<td>D, A, ScalaObject, AnyRef, Any</td>
</tr>
<tr>
<td>E</td>
<td>E, B, C, D, A, ScalaObject, AnyRef, Any</td>
</tr>
<tr>
<td>F</td>
<td>F, B, D, E, C, A, ScalaObject, AnyRef, Any</td>
</tr>
</tbody>
</table>

Note that D is inherited twice by F, once directly, the other time indirectly through E. This is permitted, since D is a trait.

20.1.3 Evaluation

The evaluation of a template or constructor invocation depends on whether the template defines an object or is a superclass of a constructed object, or whether it is used as a mixin for a defined object. In the second case, the evaluation of a template used as a mixin depends on an actual superclass, which is known at the point where the template is used in a definition of an object, but not at the point where it is defined. The actual superclass is used in the determination of the meaning of super (§21.3).

We therefore define two notions of template evaluation: (Plain) evaluation (as a defining template or superclass) and mixin evaluation with a given superclass $sc$. These notions are defined for templates and constructor invocations as follows.

A *mixin evaluation with superclass* $sc$ of a template $sc'$ with $mc_1$ with $mc_n$ {stats} consists of mixin evaluations with superclass $sc$ of the mixin constructor invocations $mc_1, \ldots, mc_n$ in the order they are given, followed by an evaluation of the statement sequence stats. Within stats the actual superclass refers to $sc$. A mixin evaluation with superclass $sc$ of a class constructor invocation $ci$ consists of an evaluation of the constructor function and its arguments in the order they are given, followed by a mixin evaluation with superclass $sc$ of the template represented by the constructor invocation.

An *evaluation* of a template $sc$ with $mc_1$ with $mc_n$ with (stats) consists of an evaluation of the superclass constructor invocation $sc$, followed by a mixin evaluation with superclass $sc$ of the template. An evaluation of a class constructor invocation $ci$ consists of an evaluation of the constructor function and its arguments in the order they are given, followed by an evaluation of the template represented by the constructor invocation.
20.1.4 Template Members

The object resulting from evaluation of a template has directly bound members and inherited members. Members can be abstract or concrete. For a template $T$ these categories are defined as follows.

1. A directly bound member of $T$ is an entity introduced by a member definition or declaration in $T$’s statement sequence. The member is called abstract if it is introduced by a declaration, concrete otherwise.

2. A concrete inherited member of $T$ is a non-private, concrete member of one of $T$’s parent classes, except if a member with the same name is already directly bound in $T$ or the member is mixin-overridden in $T$. A member $m$ of $T$’s superclass is mixin-overridden in $T$ if there is a concrete member of a mixin base class of $T$ which either overrides $m$ itself or overrides a member named $m$ of a base class of $T$’s superclass.

3. An abstract inherited member of $T$ is a non-private, abstract member of one of $T$’s parent classes $P_i$, except if the template has a directly bound or concrete inherited member with the same name, or the template has an abstract member inherited from a parent class $P_j$ where $j > i$.

It is an error if a template has more than one member with the same name.

Example 20.1.2 Consider the class definitions

```scala
class A { def f: Int = 1 ; def g: Int = 2 ; def h: Int = 3 }
abstract class B { def f: Int = 4 ; def g: Int }
abstract class C extends A with B { def h: Int }
```

Then class C has a directly bound abstract member h. It inherits member f from class B and member g from class A.

20.1.5 Overriding

A template member $M$ that has the same name as a non-private member $M'$ of a base class (and that belongs to the same namespace) is said to override that member. In this case the binding of the overriding member $M$ must subsume (§18.5.2) the binding of the overridden member $M'$. Furthermore, the overridden definition may not be a class definition. Method definitions may only override other method definitions (or the methods implicitly defined by a variable definition). They may not override value definitions. Finally, the following restrictions on modifiers apply to $M$ and $M'$:

- $M'$ must not be labeled final.
- $M$ must not be labeled private.
• If \( M \) is labeled `protected`, then \( M' \) must also be labeled `protected`.
• If \( M' \) is not an abstract member, then \( M \) must be labeled `override`.
• If \( M' \) is labeled `abstract` and `override`, and \( M' \) is a member of the static superclass of the class containing the definition of \( M \), then \( M \) must also be labeled `abstract` and `override`.

**Example 20.1.3** Consider the definitions:

```
trait Root { type T <: Root }
trait A extends Root { type T <: A }
trait B extends Root { type T <: B }
trait C extends A with B;
```

Then the trait definition \( C \) is not well-formed because the binding of \( T \) in \( C \) is `type T <: B`, which fails to subsume the binding `type T <: A` of \( T \) in type \( A \). The problem can be solved by adding an overriding definition of type \( T \) in class \( C \):

```
class C extends A with B { type T <: C }
```

20.1.6 Modifiers

**Syntax:**

```
Modifier ::= LocalModifier |
private |
protected |
override
LocalModifier ::= abstract |
final |
sealed
```

Member definitions may be preceded by modifiers which affect the accessibility and usage of the identifiers bound by them. If several modifiers are given, their order does not matter, but the same modifier may not occur repeatedly. Modifiers preceding a repeated definition apply to all constituent definitions. The rules governing the validity and meaning of a modifier are as follows.

• The `private` modifier can be used with any definition in a template. Private members can be accessed only from within the template that defines them. Private members are not inherited by subclasses and they may not override definitions in parent classes. `private` may not be applied to abstract members, and it may not be combined in one modifier list with `protected`, `final` or `override`.

• The `protected` modifier applies to class member definitions. Protected members can be accessed from within the template of the defining class as well as
in all templates that have the defining class as a base class. A protected identifier x may be used as a member name in a selection r.x only if r is one of the reserved words this and super, or if r’s type conforms to a type-instance of the class which contains the access.

- The override modifier applies to class member definitions. It is mandatory for member definitions that override some other concrete member definition in a super- or mixin-class. If an override modifier is given, there must be at least one overridden member definition.

The override modifier has an additional significance when combined with the abstract modifier. That modifier combination is only allowed for members of abstract classes. A member labeled abstract and override must override some member of the superclass of the class containing the definition.

We call a member of a template incomplete if it is either abstract (i.e. defined by a declaration), or it is labeled abstract and override and it overrides an incomplete member of the template’s superclass.

Note that the abstract override modifier combination does not influence the concept whether a member is concrete or abstract. A member for which only a declaration is given is abstract, whereas a member for which a full definition is given is concrete.

- The abstract modifier is used in class definitions. It is mandatory if the class has incomplete members. Abstract classes cannot be instantiated (§21.7) with a constructor invocation unless followed by mixin constructors or statements which override all incomplete members of the class.

The abstract modifier can also be used in conjunction with override for class member definitions. In that case the meaning of the previous discussion applies.

- The final modifier applies to class member definitions and to class definitions. A final class member definition may not be overridden in subclasses. A final class may not be inherited by a template. final is redundant for object definitions. Members of final classes or objects are implicitly also final, so the final modifier is redundant for them, too. final may not be applied to incomplete members, and it may not be combined in one modifier list with private or sealed.

- The sealed modifier applies to class definitions. A sealed class may not be inherited, except if either

  - the inheriting template is nested within the definition of the sealed class itself, or
  - the inheriting template belongs to a class or object definition which forms part of the same statement sequence as the definition of the sealed class.
Example 20.1.4 A useful idiom to prevent clients of a class from constructing new instances of that class is to declare the class `abstract` and `sealed`:

```scala
object m {
 abstract sealed class C (x: Int) {
 def nextC = C(x + 1) {}
 }
 val empty = new C(0) {}
}
```

For instance, in the code above clients can create instances of class `m.C` only by calling the `nextC` method of an existing `m.C` object; it is not possible for clients to create objects of class `m.C` directly. Indeed the following two lines are both in error:

```scala
 m.C(0) // **** error: C is abstract, so it cannot be instantiated.
 m.C(0) {} // **** error: illegal inheritance from sealed class.
```

20.1.7 Attributes

Syntax:

- `AttributeClause ::= [' Attribute {, Attribute} ']`
- `Attribute ::= Constr`

Attributes associate meta-information with definitions. A simple attribute clause has the form `[C]` or `[C(a1, ..., an)]`. Here, `c` is a constructor of a class `C`, which must conform to the class `scala.Attribute`. All given constructor arguments `a1, ..., an` must be constant expressions. An attribute clause applies to the first definition or declaration following it. More than one attribute clause may precede a definition and declaration. The order in which these clauses are given does not matter. It is also possible to combine several attributes separated by commas in one clause. Such a combined clause `[A1, ..., An]` is equivalent to a set of clauses `[A1]...[An]`.

The meaning of attribute clauses is implementation-dependent. On the Java platform, the following attributes have a standard meaning.

**transient**

Marks a field to be non-persistent; this is equivalent to the `transient` modifier in Java.

**volatile**

Marks a field which can change its value outside the control of the program; this is equivalent to the `volatile` modifier in Java.

**Serializable**
Marks a class to be serializable; this is equivalent to inheriting from the 
java.io.Serializable interface in Java.

SerialVersionUID(<longlit>)

Attaches a serial version identifier (a long constant) to a class. This is 
equivalent to a the following field definition in Java:

```java
private final static SerialVersionUID = <longlit>;
```

### 20.2 Class Definitions

**Syntax:**

```plaintext
TmplDef ::= class ClassDef
ClassDef ::= ClassSig {',' ClassSig} [':' SimpleType] ClassTemplate
ClassSig ::= id [TypeParamClause] [ClassParamClause]
ClassTemplate ::= extends Template | TemplateBody |
ClassParamClause ::= '(' [ClassParam {',' ClassParam}] ')
ClassParam ::= [{Modifier} 'val'] Param
```

The most general form of class definition is `class c[tps](ps): s extends t.`

Here,

- `c` is the name of the class to be defined.
- `tps` is a non-empty list of type parameters of the class being defined. The 
scope of a type parameter is the whole class definition including the type pa-
rameter section itself. It is illegal to define two type parameters with the same 
name. The type parameter section `[tps]` may be omitted. A class with a type 
parameter section is called *polymorphic*, otherwise it is called *monomorphic*.

- `ps` is a formal value parameter clause for the primary constructor of the class. 
The scope of a formal value parameter includes the template `t`. However, a 
formal value parameter may not form part of the types of any of the parent 
classes or members of `t`. It is illegal to define two formal value parameters 
with the same name. The formal parameter section `(ps)` may be omitted, in 
which case an empty parameter section `()` is assumed.

If a formal parameter declaration `x: T` is preceded by a `val` keyword, an acces-
sor definition for this parameter is implicitly added to the class. The accessor 
introduces a value member `x` of `c` that is defined as alias of the parameter. The 
formal parameter declaration may contain modifiers, which then carry over to 
the accessor definition.
s is the self type of the class. Inside the class, the type of this is assumed to be s. The self type must conform to the self types of all classes which are inherited by the template t. The self type declaration ':s' may be omitted, in which case the self type of the class is assumed to be equal to c[tps].

\[ t \text{ is a template (§20.1) of the form} \]
\[ sc \text{ with } m_{c_1} \text{ with } ... \text{ with } m_{c_n} \{ \text{stats} \} \quad (n \geq 0) \]

which defines the base classes, behavior and initial state of objects of the class. The extends clause extends sc can be omitted, in which case extends scala.AnyRef is assumed. The class body \{stats\} may also be omitted, in which case the empty body {} is assumed.

This class definition defines a type c[tps] and a constructor which when applied to parameters conforming to types ps initializes instances of type c[tps] by evaluating the template t.

For any index \(i\) let csig\(_i\) be a class signature consisting of a class name and optional type parameter and value parameter sections. Let \(ct\) be a class template. Then a class definition class csig\(_1\),..., csig\(_n\) ct is a shorthand for the sequence of class definitions class csig\(_1\) ct; ...; class csig\(_n\) ct. A class definition class csig\(_1\),..., csig\(_n\):T ct is a shorthand for the sequence of class definitions class csig\(_1\):T ct; ...; class csig\(_n\):T ct.

### 20.2.1 Constructor Definitions

**Syntax:**

\[
\text{FunDef} \quad ::= \quad \text{this ParamClause}=’ ConstrExpr
\]
\[
\text{ConstrExpr} \quad ::= \quad \text{this ArgumentExprs}
\quad | \quad \{’ this ArgumentExprs \{ ‘;’ BlockStat} ‘\}
\]

A class may have additional constructors besides the primary constructor. These are defined by constructor definitions of the form def this(ps) = e. Such a definition introduces an additional constructor for the enclosing class, with parameters as given in the formal parameter list ps, and whose evaluation is defined by the constructor expression e. The scope of each formal parameter is the constructor expression e. A constructor expression is either a self constructor invocation this(args) or a block which begins with a self constructor invocation. Neither the signature, nor the self constructor invocation of a constructor definition may refer to this, or refer to value parameters or members of the enclosing class by simple name.

If there are auxiliary constructors of a class C, they define together with C’s primary constructor an overloaded constructor value. The usual rules for overloading resolution (§19.6) apply for constructor invocations of C, including the self constructor
invocations in the constructor expressions themselves. To prevent infinite cycles
of constructor invocations, there is the restriction that every self constructor invo-
cation must refer to a constructor definition which precedes it (i.e. it must refer
to either a preceding auxiliary constructor or the primary constructor of the class).
The type of a constructor expression must be always so that a generic instance of
the class is constructed. I.e., if the class in question has name \( C \) and type param-
eters \( [tps] \), then each constructor must construct an instance of \( C[tps] \); it is not
permitted to instantiate formal type parameters.

**Example 20.2.1** Consider the class definition

```scala
class LinkedList[a]() {
 var head = _;
 var tail = null;
 def isEmpty = tail != null;
 def this(head: a) = { this(); this.head = head; }
 def this(head: a, tail: List[a]) = { this(head); this.tail = tail }
}
```

This defines a class LinkedList with an overloaded constructor of type

\[
[a](): \text{LinkedList}[a] \quad \text{(and)}
[a](x: a): \text{LinkedList}[a] \quad \text{(and)}
[a](x: a, xs: \text{LinkedList}[a]): \text{LinkedList}[a] .
\]

The second constructor alternative constructs an singleton list, while the third one
constructs a list with a given head and tail.

### 20.2.2 Case Classes

**Syntax:**

\[
\text{TmplDef ::= case class ClassDef}
\]

If a class definition is prefixed with **case**, the class is said to be a **case class**. The
primary constructor of a case class may be used in a constructor pattern (§22.1). The
following four restrictions ensure efficient pattern matching for case classes.

1. None of the base classes of a case class may be a case class.
2. No type may have two different case classes among its base types.
3. A case class may not inherit indirectly from a **sealed** class. That is, if a base
class \( b \) of a case class \( c \) is marked **sealed**, then \( b \) must be a parent class of \( c \).
4. The primary constructor of a case class may not have any call-by-name pa-
rameters (§19.5).
A case class definition of $c[tps](ps)$ with type parameters $tps$ and value parameters $ps$ implicitly generates a function definition for a case class factory together with the class definition itself:

```scala
def c[tps](ps): s = new c[tps](ps)
```

(Here, $s$ is the self type of class $c$. If a type parameter section is missing in the class, it is also missing in the factory definition).

All formal value parameters of a case class are implicitly prefixed with a `val` keyword. Therefore, accessor definitions (§20.2) for such parameters are generated.

Also implicitly defined are accessor member definitions in the class that return its value parameters. Every binding $x : T$ in the parameter section leads to a value definition of $x$ that defines $x$ to be an alias of the parameter.

Every case class implicitly overrides some method definitions of class `scala.AnyRef` (§27.1) unless a definition of the same method is already given in the case class itself or a concrete definition of the same method is given in some base class of the case class different from `AnyRef`. In particular:

- **Method equals**: `(Any)boolean` is structural equality, where two instances are equal if they belong to the same class and have equal (with respect to `equals`) primary constructor arguments.
- **Method hashCode**: `()int` computes a hash-code depending on the data structure in a way which maps equal (with respect to `equals`) values to equal hash-codes.
- **Method toString**: `()String` returns a string representation which contains the name of the class and its primary constructor arguments.

**Example 20.2.2** Here is the definition of abstract syntax for lambda calculus:

```scala
class Expr;

case class Var (x: String) extends Expr,
 Apply (f: Expr, e: Expr) extends Expr,
 Lambda (x: String, e: Expr) extends Expr;
```

This defines a class `Expr` with case classes `Var`, `Apply` and `Lambda`. A call-by-value evaluator for lambda expressions could then be written as follows.

```scala
type Env = String => Value;
case class Value(e: Expr, env: Env);

def eval(e: Expr, env: Env): Value = e match {
 case Var (x) =>
 env(x)
```
case Apply(f, g) =>
  val Value(Lambda (x, e1), env1) = eval(f, env);
  val v = eval(g, env);
  eval (e1, (y => if (y == x) v else env1(y)))

It is possible to define further case classes that extend type Expr in other parts of the program, for instance

    case class Number(x: Int) extends Expr;

This form of extensibility can be excluded by declaring the base class Expr sealed; in this case, the only classes permitted to extend Expr are those which are nested inside Expr, or which appear in the same statement sequence as the definition of Expr.

20.3 Traits

Syntax:

    TmplDef ::= trait ClassDef

A class definition which starts with the reserved word trait instead of class defines a trait. A trait is a specific instance of an abstract class, so the abstract modifier is redundant for it. The trait definition must satisfy the following four restrictions.

1. There are no value parameters in the trait’s primary constructor, nor are there secondary constructors.
2. All mixin base classes of the trait are traits.
3. All parent class constructors of the trait are primary constructors with empty value parameter lists.
4. All non-empty statements in the trait’s template are either imports or pure definitions.

A pure definition can be evaluated without any side effect. Function, type, class, or object definitions are always pure. A value definition is pure if its right-hand side expression is pure. A secondary constructor definition is pure if its right-hand side consists only Pure expressions are paths, literals, and typed expressions \( e : T \) where \( e \) is pure.

These restrictions ensure that the evaluation of the mixin constructor of a trait has no effect. Therefore, traits may appear several times in the base classes of a template, whereas other classes cannot.
Example 20.3.1 The following trait class defines the property of being ordered, i.e. comparable to objects of some type. It contains an abstract method $<$ and default implementations of the other comparison operators $\leq$, $\geq$, and $\geq$.

```scala
trait Ord[t <: Ord[t]]: t {
 def < (that: t): Boolean;
 def <=(that: t): Boolean = this < that || this == that;
 def > (that: t): Boolean = that < this;
 def >=(that: t): Boolean = that <= this;
}
```

20.4 Object Definitions

Syntax:

```
ObjectDef ::= id {',' id} [':' SimpleType] ClassTemplate
```

An object definition defines a single object of a new class. Its most general form is `object m: s extends t`. Here,

- $m$ is the name of the object to be defined.
- $s$ is the `self type` of the object. References to $m$ are assumed to have type $s$. Furthermore, inside the template $t$, the type of `this` is also assumed to be $s$.
- The type of the anonymous class defined by $t$ must conform to $s$ and $s$ must conform to the self types of all classes which are inherited by $t$. The self type declaration `:` $s$ may be omitted, in which case the self type is assumed to be equal to the anonymous class defined by $t$.
- $t$ is a template (§20.1) of the form 

```
sc with mc1 with ... with mc_n { stats }
```

which defines the base classes, behavior and initial state of $m$. The extends clause `extends sc` can be omitted, in which case `extends scala.AnyRef` is assumed. The class body `{stats}` may also be omitted, in which case the empty body `{}` is assumed.

The object definition defines a single object (or: `module`) conforming to the template $t$. It is roughly equivalent to a class definition and a value definition that creates an object of the class:

```
final class m$cls: s extends t;
final val m: s = new m$cls;
```

(The `final` modifiers are omitted if the definition occurs as part of a block. The class name $m$cls is not accessible for user programs.)
There are however two differences between an object definition and a pair of class and value definitions such as the one given above. First, object definitions may appear as top-level definitions in a compilation unit, whereas value definitions may not. Second, the module defined by an object definition is instantiated lazily. The \texttt{new \$cls} constructor is evaluated not at the point of the object definition, but is instead evaluated the first time \$m is dereferenced during execution of the program (which might be never at all). An attempt to dereference \$m again in the course of evaluation of the constructor leads to an infinite loop or run-time error. Other threads trying to dereference \$m while the constructor is being evaluated block until evaluation is complete.

Example 20.4.1 Classes in Scala do not have static members; however, an equivalent effect can be achieved by an accompanying object definition E.g.

\begin{verbatim}
abstract class Point {
  val x: Double;
  val y: Double;
  def isOrigin = (x == 0.0 && y == 0.0);
}
object Point {
  val origin = new Point() { val x = 0.0; val y = 0.0 }
}
\end{verbatim}

This defines a class \texttt{Point} and an object \texttt{Point} which contains \texttt{origin} as a member. Note that the double use of the name \texttt{Point} is legal, since the class definition defines the name \texttt{Point} in the type name space, whereas the object definition defines a name in the term namespace.

This technique is applied by the Scala compiler when interpreting a Java class with static members. Such a class \texttt{C} is conceptually seen as a pair of a Scala class that contains all instance members of \texttt{C} and a Scala object that contains all static members of \texttt{C}.

Let \texttt{ct} be a class template. Then an object definition \texttt{object \(x_1, ..., x_n\) ct} is a shorthand for the sequence of object definitions \texttt{object \(x_1\) ct; \ldots; object \(x_n\) ct}. An object definition \texttt{object \(x_1, ..., x_n: T\) ct} is a shorthand for the sequence of object definitions \texttt{object \(x_1:T\) ct; \ldots; object \(x_n:T\) ct}.
Chapter 21

Expressions

Syntax:

Expr ::= [Bindings ‘=>’] Expr
    | Expr1
Expr1 ::= if ‘(’ Expr ‘)’ Expr [[‘;’] else Expr]
    | try ‘{’ block ‘}’ [catch Expr] [finally Expr]
    | while ‘(’ Expr ‘)’ Expr
    | do Expr [‘;’] while ‘(’ Expr ‘)’
    | for ‘(’ Enumerators ‘)’ (do | yield) Expr
    | return [Expr]
    | throw Expr
    | [SimpleExpr ‘.’] id ‘=’ Expr
    | SimpleExpr ArgumentExprs ‘=’ Expr
    | PostfixExpr [‘:’ Type1]
    | MethodClosure

PostfixExpr ::= InfixExpr [id]
InfixExpr ::= PrefixExpr
    | InfixExpr id PrefixExpr
PrefixExpr ::= [‘-’ | ‘+’ | ‘-’ | ‘!’] SimpleExpr

SimpleExpr ::= Literal
    | Path
    | ‘(’ [Expr] ‘)’
    | BlockExpr
    | new Template
    | SimpleExpr ‘.’ id
    | SimpleExpr TypeArgs
    | SimpleExpr ArgumentExprs
    | XmlExpr
ArgumentExprs ::= ‘(’ [Exprs] ‘)’
    | BlockExpr
MethodClosure ::= ‘.’ Id {'.’ Id | TypeArgs | ArgumentExprs}
Expressions are composed of operators and operands. Expression forms are discussed subsequently in decreasing order of precedence.

The typing of expressions is often relative to some expected type. When we write “expression e is expected to conform to type T”, we mean: (1) the expected type of e is T, and (2) the type of expression e must conform to T.

### 21.1 Literals

**Syntax:**

\[
\begin{align*}
\text{SimpleExpr} & ::= \text{Literal} \\
\text{Literal} & ::= \text{intLit} \\
& | \text{floatLit} \\
& | \text{charLit} \\
& | \text{stringLit} \\
& | \text{symbolLit} \\
& | \text{true} \\
& | \text{false} \\
& | \text{null}
\end{align*}
\]

Typing and evaluation of numeric, character, and string literals are generally as in Java. An integer literal denotes an integer number. Its type is normally int. However, if the expected type pt of the expression is either byte, short, or char and the integer number fits in the numeric range defined by the type, then the number is converted to type pt and the expression’s type is pt. A floating point literal denotes a single-precision or double precision IEEE floating point number. A character literal denotes a Unicode character. A string literal denotes a member of String.

A symbol literal ‘x’ is a shorthand for the expression scala.Symbol("x"). If the symbol literal is followed by actual parameters, as in ‘x(args), then the whole expression is taken to be a shorthand for scala.Symbol("x", args).

The boolean truth values are denoted by the reserved words true and false. The type of these expressions is boolean, and their evaluation is immediate.

The null literal is of type scala.AnyRef. It denotes a reference value which refers to a special "null" object, which implements methods in class scala.AnyRef as follows:

- eq(x), == (x), equals(x) return true iff their argument x is also the "null"
21.2 Designators

Syntax:

\[
\text{Designator ::= Path} \\
| \text{SimpleExpr} \ ' \cdot \ id}
\]

A designator refers to a named term. It can be a simple name or a selection. If \( r \) is a stable identifier of type \( T \), the selection \( r.x \) refers to the term member of \( r \) that is identified in \( T \) by the name \( x \). For other expressions \( e \), \( e.x \) is typed as if it was \( (\text{val } y = e ; y.x) \) for some fresh name \( y \). The typing rules for blocks implies that in that case \( x \)'s type may not refer to any abstract type member of \( e \).

The expected type of a designator's prefix is always missing. The type of a designator is normally the type of the entity it refers to. However, if the designator is a path (§18.1) \( p \), its type is \( p.\text{type} \), provided the expression's expected type is a singleton type, or \( p \) occurs as the prefix of a selection or type selection.

The selection \( e.x \) is evaluated by first evaluating the qualifier expression \( e \). The selection's result is then the value to which the selector identifier is bound in the object resulting from evaluation of \( e \).

21.3 This and Super

Syntax:

\[
\text{SimpleExpr ::= [id \ ' \cdot \] this} \\
| [id \ ' \cdot \] super [‘[ id ‘] \ ‘ \cdot \ id}
\]

The expression this can appear in the statement part of a template or compound type. It stands for the object being defined by the innermost template or compound type enclosing the reference. If this is a compound type, the type of this is that compound type. If it is a template of an instance creation expression, the type of this is the type of that template. If it is a template of a class or object definition with simple name \( C \), the type of this is the same as the type of \( C.\text{this} \).
The expression `C.this` is legal in the statement part of an enclosing class or object definition with simple name `C`. It stands for the object being defined by the innermost such definition. If the expression's expected type is a singleton type, or `C.this` occurs as the prefix of a selection, its type is `C.this.type`, otherwise it is the self type of class `C`.

A reference `super.m` in a template refers to the definition of `m` in the actual superclass (§20.1.2) of the template. A reference `C.super.m` refers to the definition of `m` in the actual superclass of the innermost enclosing class or object definition named `C` which encloses the reference. The definition `m` referred to via `super` or `C.super` must be concrete, or the template containing the reference must have an incomplete (§20.1.6) member `m'` which overrides `m`.

The `super` prefix may be followed by a mixin qualifier `[M]`, as in `C.super[M].x`. This is called a `mixin super reference`. In this case, the reference is to the member of `x` in the (first) mixin class of `C` whose simple name is `M`. That member may not be abstract.

**Example 21.3.1** Consider the following class definitions

```scala
class Root { val x = "Root" }
class A extends Root { override val x = "A" ; val superA = super.x }
class B extends Root { override val x = "B" ; val superB = super.x }
class C extends A with B {
 override val x = "C" ; val superC = super.x
}
class D extends A { val superD = super.x }
class E extends C with D { val superE = super.x }
```

Then we have:

```scala
(new A).superA == "Root", (new B).superB == "Root"
(new E).superD == "C", (new E).superE == "C"
```

Note that the `superB` function returns different results depending on whether `B` is used as defining class or as a mixin class.

**Example 21.3.2** Consider the following class definitions:

```scala
class Shape {
 override def equals(other: Any) = ...;
 ...
}
trait Bordered extends Shape {
 val thickness: int;
```
override def equals(other: Any) = other match {
    case that: Bordered =>
        super equals other && this.thickness == that.thickness
    case _ => false
}

trait Colored extends Shape {
    val color: Color;
    override def equals(other: Any) = other match {
        case that: Colored =>
            super equals other && this.color == that.color
        case _ => false
    }
}

Both definitions of equals are combined in the class below.

trait BorderedColoredShape extends Shape with Bordered with Colored {
    override def equals(other: Any) =
        super[Bordered].equals(that) && super[Colored].equals(that)
}

## 21.4 Function Applications

Syntax:

\[
\text{SimpleExpr ::= SimpleExpr ArgumentExprs}
\]

An application \( f(e_1, \ldots, e_n) \) applies the function \( f \) to the argument expressions \( e_1, \ldots, e_n \). If \( f \) has a method type \((T_1, \ldots, T_n)\)\#U, the type of each argument expression \( e_i \) must conform to the corresponding parameter type \( T_i \). If \( f \) has some value type, the application is taken to be equivalent to \( f.\text{apply}(e_1, \ldots, e_n) \), i.e. the application of an apply method defined by \( f \).

Evaluation of \( f(e_1, \ldots, e_n) \) usually entails evaluation of \( f \) and \( e_1, \ldots, e_n \) in that order. Each argument expression is converted to the type of its corresponding formal parameter. After that, the application is rewritten to the function's right hand side, with actual arguments substituted for formal parameters. The result of evaluating the rewritten right-hand side is finally converted to the function's declared result type, if one is given.

The case of a formal parameter with a parameterless method type \( \Rightarrow T \) is treated specially. In this case, the corresponding actual argument expression is not eval-
uated before the application. Instead, every use of the formal parameter on the right-hand side of the rewrite rule entails a re-evaluation of the actual argument expression. In other words, the evaluation order for def-parameters is call-by-name whereas the evaluation order for normal parameters is call-by-value.

### 21.5 Type Applications

Syntax:

\[
\text{SimpleExpr} ::= \text{SimpleExpr} '[' \text{Types} ']' 
\]

A type application \( e[T_1, \ldots, T_n] \) instantiates a polymorphic value \( e \) of type \( [a_1 :: L_1 <: U_1, \ldots, a_n :: L_n <: U_n]S \) with argument types \( T_1, \ldots, T_n \). Every argument type \( T_i \) must obey corresponding bounds \( L_i \) and \( U_i \). That is, for each \( i = 1, \ldots, n \), we must have \( L_i \sigma <: T_i <: U_i \sigma \), where \( \sigma \) is the substitution \( [a_1 := T_1, \ldots, a_n := T_n] \). The type of the application is \( S\sigma \).

The function part \( e \) may also have some value type. In this case the type application is taken to be equivalent to \( e.\text{apply}[T_1, \ldots, T_n] \), i.e. the application of an apply method defined by \( e \).

Type applications can be omitted if local type inference (§25) can infer best type parameters for a polymorphic function from the types of the actual function arguments and the expected result type.

### 21.6 References to Overloaded Bindings

If a name \( f \) referenced in an identifier or selection is overloaded (§19.6), the context of the reference has to identify a unique alternative of the overloaded binding. The way this is done depends on whether or not \( f \) is used as a function. Let \( \mathcal{A} \) be the set of all type alternatives of \( f \).

Assume first that \( f \) appears as a function in an application, as in \( f(\text{args}) \). If there is precisely one alternative in \( \mathcal{A} \) which is a (possibly polymorphic) method type whose arity matches the number of arguments given, that alternative is chosen.

Otherwise, let \( T_s \) be the vector of types obtained by typing each argument with a missing expected type. One determines first the set of applicable alternatives. A method type alternative is *applicable* if each type in \( T_s \) is compatible with the corresponding formal parameter type in the alternative, and, if the expected type is defined, the method's result type is compatible to it. A polymorphic method type is applicable if local type inference can determine type arguments so that the instantiated method type is applicable.

Here, a type \( T \) is *compatible* to a type \( U \) if \( T \) conforms to \( U \) after applying implicit conversions (§18.7).
Let $B$ be the set of applicable alternatives. It is an error if $B$ is empty. Otherwise, one chooses the most specific alternative among the alternatives in $B$, according to the following definition of being "more specific".

- A method type $(Ts) U$ is more specific than some other type $S$ if $S$ is applicable to arguments $(ps)$ of types $Ts$.

- A polymorphic method type $[a_1 >: L_1 <: U_1, \ldots, a_n >: L_n <: U_n]T$ is more specific than some other type $S$ if $T$ is more specific than $S$ under the assumption that for $i = 1, \ldots, n$ each $a_i$ is an abstract type name bounded from below by $L_i$ and from above by $U_i$.

- Any other type is always more specific than a parameterized method type or a polymorphic type.

It is an error if there is no unique alternative in $B$ which is more specific than all other alternatives in $B$.

Assume next that $f$ appears as a function in a type application, as in $f[targs]$. Then we choose an alternative in $A$ which takes the same number of type parameters as there are type arguments in $targs$. It is an error if no such alternative exists, or if it is not unique.

Assume finally that $f$ does not appear as a function in either an application or a type application. If an expected type is given, let $B$ be the set of those alternatives in $A$ which are compatible to it. Otherwise, let $B$ be the same as $A$. We choose in this case the most specific alternative among all alternatives in $B$. It is an error if there is no unique alternative in $B$ which is more specific than all other alternatives in $B$.

Example 21.6.1 Consider the following definitions:

```scala
class A extends B {
}
def f(x: B, y: B) = ...
def f(x: A, y: B) = ...
val a: A;
val b: B
```

Then the application $f(b, b)$ refers to the first definition of $f$ whereas the application $f(a, a)$ refers to the second. Assume now we add a third overloaded definition

```scala
def f(x: B, y: A) = ...
```

Then the application $f(a, a)$ is rejected for being ambiguous, since no most specific applicable signature exists.
21.7 Instance Creation Expressions

Syntax:

\[
\text{SimpleExpr} ::= \text{new Template}
\]

A simple instance creation expression is of the form \texttt{new c} where \(c\) is a constructor invocation (§20.1.1). Let \(T\) be the type of \(c\). Then \(T\) must denote a (a type instance of) a non-abstract subclass of \texttt{scala.AnyRef} which conforms to its self type (§20.2). The expression is evaluated by creating a fresh object of type \(T\) which is is initialized by evaluating \(c\). The type of the expression is \(T\)'s self type (which might be less specific than \(T\)).

A general instance creation expression is of the form

\[
\text{new sc with mc}_1 \text{ with } ... \text{ with } mc_n \{\text{stats}\}
\]

where \(n \geq 0\), \(sc\) as well as \(mc_1, ..., mc_n\) are constructor invocations (of types \(S, T_1, ..., T_n\), say) and \(\text{stats}\) is a statement sequence containing initializer statements and member definitions (§20.1.4). The type of such an instance creation expression is then the compound type \(S \text{ with } T_1 \text{ with } ... \text{ with } T_n \{R\}\), where \(\{R\}\) is a refinement (§18.2.5) which declares exactly those members of \(\text{stats}\) that override a member of \(S \text{ or } T_1, ..., T_n\). For this type to be well-formed, \(R\) may not reference types defined in \(\text{stats}\) which do not themselves form part of \(R\).

The instance creation expression is evaluated by creating a fresh object, which is initialized by evaluating the expression template.

Example 21.7.1 Consider the class

\[
\text{abstract class } C \{
\text{ type } T; \text{ val } x: T; \text{ def } f(x: T): \text{AnyRef}
\}
\]

and the instance creation expression

\[
C \{ \text{ type } T = \text{Int}; \text{ val } x: T = 1; \text{ def } f(x: T): T = y; \text{ val } y: T = 2 \}
\]

Then the created object’s type is:

\[
C \{ \text{ type } T = \text{Int}; \text{ val } x: T; \text{ def } f(x: T): T \}
\]

The value \(y\) is missing from the type, since \(y\) does not override a member of \(C\).

21.8 Blocks

Syntax:
21.9 Prefix, Infix, and Postfix Operations

Syntax:

\[
\begin{align*}
\text{BlockExpr} & ::= \{ \text{Block} \} \\
\text{Block} & ::= [\{ \text{BlockStat} ; \} \ \text{ResultExpr}]
\end{align*}
\]

A block expression \( \{ s_1 ; \ldots ; s_n ; e \} \) is constructed from a sequence of block statements \( s_1, \ldots, s_n \) and a final expression \( e \). The final expression can be omitted, in which case the unit value (\( () \)) is assumed.

The expected type of the final expression \( e \) is the expected type of the block. The expected type of all preceding statements is missing.

The type of a block \( s_1 ; \ldots; s_n ; e \) is usually the type of \( e \). That type must be equivalent to a type which does not refer to an entity defined locally in the block. If this condition is violated, but a fully defined expected type is given, the type of the block is instead assumed to be the expected type.

Evaluation of the block entails evaluation of its statement sequence, followed by an evaluation of the final expression \( e \), which defines the result of the block.

**Example 21.8.1** Written in isolation, the block

\[
\{ \text{class C extends B} \{ \ldots \} ; \text{new C} \}
\]

is illegal, since its type refers to class \( C \), which is defined locally in the block.

However, when used in a definition such as

\[
\text{val x: B = \{ class C extends B} \{ \ldots \} ; \text{new C} \}
\]

the block is well-formed, since the problematic type \( C \) can be replaced by the expected type \( B \).

21.9 Prefix, Infix, and Postfix Operations

**Syntax:**

\[
\begin{align*}
\text{PostfixExpr} & ::= \text{InfixExpr} [\text{id}] \\
\text{InfixExpr} & ::= \text{PrefixExpr} \\
& \quad | \text{InfixExpr id PrefixExpr} \\
\text{PrefixExpr} & ::= [\text{‘-’ | ‘+’ | ‘!’ | ‘~’}] \text{SimpleExpr}
\end{align*}
\]

Expressions can be constructed from operands and operators. A prefix operation \( op e \) consists of a prefix operator \( op \), which must be one of the identifiers ‘+’, ‘-’, ‘!’ , or ‘~’, and a simple expression \( e \). The expression is equivalent to the postfix method application \( e. op \).

Prefix operators are different from normal function applications in that their operand expression need not be atomic. For instance, the input sequence \(-\sin(x)\) is read as \((- (\sin(x)))\), whereas the function application \( \text{negate} \ \sin(x) \) would be
parsed as the application of the infix operator \( \sin \) to the operands \( \text{ negate } \) and \( (x) \).

An infix or postfix operator can be an arbitrary identifier. Infix operators have precedence and associativity defined as follows:

The *precedence* of an infix operator is determined by the operator’s first character. Characters are listed below in increasing order of precedence, with characters on the same line having the same precedence.

\[
(\text{all letters}) \\
| \\
^ \\
& \\
< > \\
= ! \\
: \\
+ - \\
* / \% \\
(\text{all other special characters})
\]

That is, operators starting with a letter have lowest precedence, followed by operators starting with ‘|’, etc.

The *associativity* of an operator is determined by the operator’s last character. Operators ending with a colon ‘:’ are right-associative. All other operators are left-associative.

Precedence and associativity of operators determine the grouping of parts of an expression as follows.

- If there are several infix operations in an expression, then operators with higher precedence bind more closely than operators with lower precedence.
- If there are consecutive infix operations \( e_0 \ op_1 \ e_1 \ op_2 \ldots \ op_n \ e_n \) with operators \( op_1, \ldots, \ op_n \) of the same precedence, then all these operators must have the same associativity. If all operators are left-associative, the sequence is interpreted as \( \ldots (e_0 \ op_1 \ e_1) \ op_2 \ldots ) \ op_n \ e_n \). Otherwise, if all operators are right-associative, the sequence is interpreted as \( e_0 \ op_1 (e_1 \ op_2 \ldots ) \ op_n \ e_n \).
- Postfix operators always have lower precedence than infix operators. E.g. \( e_1 \ op_1 \ e_2 \ op_2 \) is always equivalent to \( (e_1 \ op_1 \ e_2) \ op_2 \).

A postfix operation \( e \ op \) is interpreted as \( e.\ op \). A left-associative binary operation \( e_1 \ op \ e_2 \) is interpreted as \( e_1.\ op(e_2) \). If \( op \) is right-associative, the same operation is interpreted as \( \text{val} \ x = e_1; \ e_2.\ op(x) \), where \( x \) is a fresh name.

## 21.10 Typed Expressions

**Syntax:**
21.11 Method closures

Syntax:

\[\text{MethodClosure} \ ::= \ '.' \text{Id} \{ '.' \text{Id} | \text{TypeArgs} | \text{ArgumentExprs}\}\]

A method closure \( .id \) starts with a period and an identifier, which may be followed by selections and type- and value-arguments. This expression is equivalent to an anonymous function \( x \mapsto x.id \) where \( x \) is a fresh parameter name. No type for \( x \) is given; hence this type needs to be inferable from the context of the expression.

Example 21.11.1 The following method returns the \( n \)'th column of a given list of row-lists \( xss \), using methods \( \text{map} \), \( \text{drop} \) and \( \text{head} \) defined in class \texttt{scala.List}.

\[
def \text{column}[T](xss: \text{List[\text{List}[T]]}, n: \text{int}): \text{List}[T] =
\text{xss.map(.drop(i)).map(.head)}
\]

21.12 Assignments

Syntax:

\[\text{Expr1} \ ::= \text{Designator} '=' \text{Expr}
\| \text{SimpleExpr ArgumentExprs} '=' \text{Expr}\]

The interpretation of an assignment to a simple variable \( x = e \) depends on the definition of \( x \). If \( x \) denotes a mutable variable, then the assignment changes the current value of \( x \) to be the result of evaluating the expression \( e \). The type of \( e \) is expected to conform to the type of \( x \). If \( x \) is a parameterless function defined in some template, and the same template contains a setter function \( x._= \) as member, then the assignment \( x = e \) is interpreted as the invocation \( x._=(e) \) of that setter function. Analogously, an assignment \( f.x = e \) to a parameterless function \( x \) is interpreted as the invocation \( f.x._=(e) \).
An assignment $f(args) = e$ with a function application to the left of the ‘=’ operator is interpreted as $f.update(args, e)$, i.e. the invocation of an update function defined by $f$.

**Example 21.12.1** Here is the usual imperative code for matrix multiplication.

```scala
def matmul(xss: Array[Array[double]], yss: Array[Array[double]]) = {
 val zss: Array[Array[double]] = new Array(xss.length, yss.length);
 var i = 0;
 while (i < xss.length) {
 var j = 0;
 while (j < yss(0).length) {
 var acc = 0.0;
 var k = 0;
 while (k < yss.length) {
 acc = acc + xss.apply(i).apply(k) * yss.apply(k).apply(j);
 k = k + 1
 }
 zss.apply(i).update(j, acc);
 j = j + 1
 }
 i = i + 1
 }
 zss
}
```

Desugaring the array accesses and assignments yields the following expanded version:

```scala
def matmul(xss: Array[Array[double]], yss: Array[Array[double]]) = {
 val zss: Array[Array[double]] = new Array(xss.length, yss.length);
 var i = 0;
 while (i < xss.length) {
 var j = 0;
 while (j < yss(0).length) {
 var acc = 0.0;
 var k = 0;
 while (k < yss.length) {
 acc = acc + xss.apply(i).apply(k) * yss.apply(k).apply(j);
 k = k + 1
 }
 zss.apply(i).update(j, acc);
 j = j + 1
 }
 i = i + 1
 }
 zss
}
```
21.13 Conditional Expressions

Syntax:

Expr1 ::= if (' Expr ') Expr [';'] else Expr

The conditional expression if (e₁) e₂ else e₃ chooses one of the values of e₂ and e₃, depending on the value of e₁. The condition e₁ is expected to conform to type boolean. The then-part e₂ and the else-part e₃ are both expected to conform to the expected type of the conditional expression. The type of the conditional expression is the least upper bound of the types of e₁ and e₂. A semicolon preceding the else symbol of a conditional expression is ignored.

The conditional expression is evaluated by evaluating first e₁. If this evaluates to true, the result of evaluating e₂ is returned, otherwise the result of evaluating e₃ is returned.

A short form of the conditional expression eliminates the else-part. The conditional expression if (e₁) e₂ is evaluated as if it was if (e₁) e₂ else (). The type of this expression is unit and the then-part e₂ is also expected to conform to type unit.

21.14 While Loop Expressions

Syntax:

Expr1 ::= while (' Expr ') Expr

The while loop expression while (e₁) e₂ is typed and evaluated as if it was an application of whileLoop (e₁) (e₂) where the hypothetical function whileLoop is defined as follows.

\[
\text{def whileLoop(def c: boolean)(def s: unit): unit =}
\]

\[
\quad \text{if (c) \{ s ; while(c)(s) \} else {}}
\]

Example 21.14.1 The loop

while (x != 0) \{ y = y + 1/x ; x = x - 1 \}

Is equivalent to the application

whileLoop (x != 0) \{ y = y + 1/x ; x = x - 1 \}
Note that this application will never produce a division-by-zero error at run-time, since the expression \( (y = 1/x) \) will be evaluated in the body of `while` only if the condition parameter is false.

### 21.15 Do Loop Expressions

**Syntax:**
\[
\text{Expr} ::\quad \text{do} \ \text{Expr} \ [';'] \ \text{while} \ '(' \ \text{Expr} ')' \\
\]

The do loop expression `do e1 while (e2)` is typed and evaluated as if it was the expression `(e1 ; while (e2) e1)`. A semicolon preceding the `while` symbol of a do loop expression is ignored.

### 21.16 Comprehensions

**Syntax:**
\[
\text{Expr} ::\quad \text{for} \ '(' \ \text{Enumerators} ']' [\text{yield}] \ \text{Expr} \\
\text{Enumerator} ::\quad \text{Generator} \ {';' \ } \text{Enumerator} \\
\text{Enumerator} ::\quad \text{Generator} \ | \ \text{Expr} \\
\text{Generator} ::\quad \text{val} \ \text{Pattern1} '\ '-' \ \text{Expr} \\
\]

A comprehension `for (enums) yield e` evaluates expression `e` for each binding generated by the enumerators `enums`. Enumerators start with a generator, which can be followed by further generators or filters. A generator `val p <- e` produces bindings from an expression `e` which is matched in some way against pattern `p`. A filter is an expressions which restricts enumerated bindings. The precise meaning of generators and filters is defined by translation to invocations of four methods: `map`, `filter`, `flatMap`, and `foreach`. These methods can be implemented in different ways for different carrier types.

The translation scheme is as follows. In a first step, every generator `val p <- e`, where `p` is not a pattern variable, is replaced by

```
val p <- e.filter { case p => true; case _ => false }
```

Then, the following rules are applied repeatedly until all comprehensions have been eliminated.

- A generator `val p <- e` followed by a filter `f` is translated to a single generator `val p <- e.filter(x_1, ..., x_n => f)` where `x_1, ..., x_n` are the free variables of `p`. 
A for-comprehension \( \text{for } (\text{val } p <- e) \text{ yield } e' \) is translated to
\[ e.\text{map } \{ \text{case } p => e' \} \].

A for-comprehension \( \text{for } (\text{val } p <- e) e' \) is translated to
\[ e.\text{foreach } \{ \text{case } p => e' \} \].

A for-comprehension
\[
\text{for } (\text{val } p <- e; \text{val } p' <- e' ...) \text{ yield } e'' ,
\]
where \( ... \) is a (possibly empty) sequence of generators or filters, is translated to
\[ e.\text{flatMap } \{ \text{case } p => \text{for } (\text{val } p' <- e' ...) \text{ yield } e'' \} \].

A for-comprehension
\[
\text{for } (\text{val } p <- e; \text{val } p' <- e' ...) e'' .
\]
where \( ... \) is a (possibly empty) sequence of generators or filters, is translated to
\[ e.\text{foreach } \{ \text{case } p => \text{for } (\text{val } p' <- e' ...) e'' \} \].

**Example 21.16.1** The following code produces all pairs of numbers between 1 and \( n - 1 \) whose sums are prime.

\[
\text{for } \{ \text{val } i <- \text{range}(1, n); \\
\text{val } j <- \text{range}(1, i); \\
isPrime(i+j) \} \text{ yield } \text{Pair } (i, j)
\]
The for-comprehension is translated to:
\[
\text{range}(1, n) \\
.\text{flatMap } \{ \\
\text{case } i => \text{range}(1, i) \\
.\text{filter } \{ j => \text{isPrime}(i+j) \} \\
.\text{map } \{ \text{case } j => \text{Pair}(i, j) \} \}
\]

**Example 21.16.2** For comprehensions can be used to express vector and matrix algorithms concisely. For instance, here is a function to compute the transpose of a given matrix:

\[
\text{def } \text{transpose}[a](xss: \text{Array}[\text{Array}[a]]) \{ \\
\text{for } (\text{val } i <- \text{Array}.\text{range}(0, \text{xss}(0).\text{length})) \text{ yield } \\
\text{Array}(\text{for } (\text{val } xs <- \text{xss}) \text{ yield } xs(i))
\]
Here is a function to compute the scalar product of two vectors:

```scala
def scalprod(xs: Array[double], ys: Array[double]) {
 var acc = 0.0;
 for (val Pair(x, y) <- xs zip ys) acc = acc + x * y;
 acc
}
```

Finally, here is a function to compute the product of two matrices. Compare with the imperative version of Example 21.12.1.

```scala
def matmul(xss: Array[Array[double]], yss: Array[Array[double]]) = {
 val ysst = transpose(yss);
 for (val xs <- xs) yield
 for (val yst <- ysst) yield
 scalprod(xs, yst)
}
```

The code above makes use of the fact that `map`, `flatMap`, `filter`, and `foreach` are defined for members of class `scala.Array`.

### 21.17 Return Expressions

**Syntax:**

```
Expr1 ::= return [Expr]
```

A return expression `return e` must occur inside the body of some enclosing named method or function `f`. This function must have an explicitly declared result type, and the type of `e` must conform to it. The return expression evaluates the expression `e` and returns its value as the result of `f`. The evaluation of any statements or expressions following the return expression is omitted. The type of a return expression is `scala.All`.

### 21.18 Throw Expressions

**Syntax:**

```
Expr1 ::= throw Expr
```

A throw expression `throw e` evaluates the expression `e`. The type of this expression must conform to `Throwable`. If `e` evaluates to an exception reference, evaluation is aborted with the thrown exception. If `e` evaluates to `null`, evaluation is instead aborted with a `NullPointerException`. If there is an active `try` expression (§21.19)
which handles the thrown exception, evaluation resumes with the handler; otherwise the thread executing the `throw` is aborted. The type of a throw expression is `scala.All`.

### 21.19 Try Expressions

**Syntax:**

\[
\text{Expr1} \quad ::= \quad \text{try} \{ \{\text{Block}\} \} \quad [\text{catch} \quad \text{Expr}] \quad [\text{finally} \quad \text{Expr}]
\]

A try expression `try { b } catch e` evaluates the block `b`. If evaluation of `b` does not cause an exception to be thrown, the result of `b` is returned. Otherwise the handler `e` is applied to the thrown exception. Let `pt` be the expected type of the try expression. The block `b` is expected to conform to `pt`. The handler `e` is expected conform to type `scala.PartialFunction[scala.Throwable, pt]`. The type of the try expression is the least upper bound of the type of `b` and the result type of `e`.

A try expression `try { b } finally e` evaluates the block `b`. If evaluation of `b` does not cause an exception to be thrown, the expression `e` is evaluated. If an exception is thrown during evaluation of `e`, the evaluation of the try expression is aborted with the thrown exception. If no exception is thrown during evaluation of `e`, the result of `b` is returned as the result of the try expression.

If an exception is thrown during evaluation of `b`, the finally block `e` is also evaluated. If another exception `e` is thrown during evaluation of `e`, evaluation of the try expression is aborted with the thrown exception. If no exception is thrown during evaluation of `e`, the original exception thrown in `b` is re-thrown once evaluation of `e` has completed. The block `b` is expected to conform to the expected type of the try expression. The finally expression `e` is expected to conform to type `unit`.

A try expression `try { b } catch e_1 finally e_2` is a shorthand for `try { try { b } catch e_1 } finally e_2`.

### 21.20 Anonymous Functions

**Syntax:**

\[
\begin{align*}
\text{Expr1} & \quad ::= \quad \text{Bindings} \quad \text{`=>'} \quad \text{Expr} \\
\text{ResultExpr} & \quad ::= \quad \text{Bindings} \quad \text{`=>'} \quad \text{Block} \\
\text{Bindings} & \quad ::= \quad (\text{`Binding`} \quad ,\quad \text{`Binding`} \quad ,\quad \text{`Binding`} \quad ) \quad | \quad \text{id} \quad [\text{`::'} \quad \text{Type}] \\
\text{Binding} & \quad ::= \quad \text{id} \quad [\text{`::'} \quad \text{Type}]
\end{align*}
\]

The anonymous function `(x_1: T_1, ..., x_n: T_n) => e` maps parameters `x_i` of types `T_i` to a result given by expression `e`. The scope of each formal parameter `x_i` is `e`. 
Formal parameters must have pairwise distinct names.

If the expected type of the anonymous function is of the form `scala.Function^n[S_1,...,S_n, R]`, the expected type of \( e \) is \( R \) and the type \( T_i \) of any of the parameters \( x_i \) can be omitted, in which case \( T_i = S_i \) is assumed. If the expected type of the anonymous function is some other type, all formal parameter types must be explicitly given, and the expected type of \( e \) is missing. The type of the anonymous function is `scala.Function^n[S_1,...,S_n, T]`, where \( T \) is the type of \( e \). \( T \) must be equivalent to a type which does not refer to any of the formal parameters \( x_i \).

The anonymous function is evaluated as the instance creation expression

```scala
scala.Function^n[T_1,...,T_n, T] {
 def apply(x_1: T_1,...,x_n: T_n): T = e
}
```

In the case of a single formal parameter, \((x: T) => e\) and \((x) => e\) can be abbreviated to \(x: T \Rightarrow e\), and \(x \Rightarrow e\), respectively.

**Example 21.20.1** Examples of anonymous functions:

- \(x \Rightarrow x\) // The identity function
- \(f \Rightarrow g \Rightarrow x \Rightarrow f(g(x))\) // Curried function composition
- \((x: Int,y: Int) \Rightarrow x + y\) // A summation function
- \((\) \Rightarrow \{ count = count + 1; count \}) // The function which takes an empty parameter list (), // increments a non-local variable // ‘count’ and returns the new value.

### 21.21 Statements

**Syntax:**

- `BlockStat ::= Import | Def | {LocalModifier} TmplDef | Expr`
- `TemplateStat ::= Import | {AttributeClause} {Modifier} Def | {AttributeClause} {Modifier} Dcl | Expr`
Statements occur as parts of blocks and templates. A statement can be an import, a definition or an expression, or it can be empty. Statements used in the template of a class definition can also be declarations. An expression that is used as a statement can have an arbitrary value type. An expression statement $e$ is evaluated by evaluating $e$ and discarding the result of the evaluation.

Block statements may be definitions which bind local names in the block. The only modifiers allowed in block-local definitions are modifiers `abstract`, `final`, or `sealed` preceding a class or object definition.

With the exception of overloaded definitions (§19.6), a statement sequence making up a block or template may not contain two definitions or declarations that bind the same name in the same namespace. Evaluation of a statement sequence entails evaluation of the statements in the order they are written.
Chapter 22

Pattern Matching

22.1 Patterns

Syntax:

Pattern ::= SimplePattern {Id SimplePattern}
| varid ':' Type
| '_' ':' Type

SimplePattern ::= varid
| '_'
| literal
| StableId {'(' [Patterns] ')'}
| XmlPattern

Patterns ::= Pattern {',' Pattern}

For clarity, this section deals with a subset of the Scala pattern language. The extended Scala pattern language, which is described below, adds more flexible variable binding and regular hedge expressions.

A pattern is built from constants, constructors, and variables. Pattern matching tests whether a given value has the shape defined by a pattern, and, if it does, binds the variables in the pattern to the corresponding components of the value. The same variable name may not be bound more than once in a pattern.

A pattern is built from constants, constructors, variables and regular operators. Pattern matching tests whether a given value (or sequence of values) has the shape defined by a pattern, and, if it does, binds the variables in the pattern to the corresponding components of the value (or sequence of values). The same variable name may not be bound more than once in a pattern.

Pattern matching is always done in a context which supplies an expected type of the pattern. We distinguish the following kinds of patterns.
A variable pattern $x$ is a simple identifier which starts with a lower case letter. It matches any value, and binds the variable name to that value. The type of $x$ is the expected type of the pattern as given from outside. A special case is the wild-card pattern _ which is treated as if it was a fresh variable.

A typed pattern $x : T$ consists of a pattern variable $x$ and a simple type $T$. The type $T$ may be a class type or a compound type; it may not contain a refinement (§18.2.5). This pattern matches any value of type $T$ and binds the variable name to that value. $T$ must conform to the pattern's expected type. The type of $x$ is $T$.

A pattern literal $l$ matches any value that is equal (in terms of $==$) to it. It's type must conform to the expected type of the pattern.

A named pattern constant $r$ is a stable identifier (§18.1). To resolve the syntactic overlap with a variable pattern, a named pattern constant may not be a simple name starting with a lower-case letter. The type of $r$ must conform to the expected type of the pattern. The pattern matches any value $v$ such that $r == v$ (§27.1).

A constructor pattern $c(p_1) \ldots (p_n)$ where $n \geq 0$ consists of an identifier $c$, followed by component patterns $p_1, \ldots, p_n$. The constructor $c$ is either a simple name or a qualified name $r.id$ where $r$ is a stable identifier. It refers to a (possibly overloaded) function which has one alternative of result type $\text{class C}$, and which may not have other overloaded alternatives with a class constructor type as result type. Furthermore, the respective type parameters and value parameters of (said alternative of) $c$ and of the primary constructor function of class $C$ must be the same, after renaming corresponding type parameter names. If $C$ is monomorphic, then $C$ must conform to the expected type of the pattern, and the formal parameter types of $C$'s primary constructor are taken as the expected types of the component patterns $p_1, \ldots, p_n$. If $C$ is polymorphic, then there must be a unique type application instance of it such that the instantiation of $C$ conforms to the expected type of the pattern. The instantiated formal parameter types of $C$'s primary constructor are then taken as the expected types of the component patterns $p_1, \ldots, p_n$. The pattern matches all objects created from constructor invocations $c(v_1) \ldots (v_n)$ where each component pattern $p_i$ matches the corresponding value $v_i$.

An infix operation pattern $p \ id \ p'$ is a shorthand for the constructor pattern $\text{id_class}(p)(p')$. The precedence and associativity of operators in patterns is the same as in expressions (§21.9).

Example 22.1.1 Some examples of patterns are:

1. The pattern ex: IOException matches all instances of class IOException, binding variable ex to the instance.
2. The pattern $(x, _) \ldots$ matches pairs of values, binding $x$ to the first component of the pair. The second component is matched with a wildcard pattern.
3. The pattern $x : : y : : xs$ matches lists of length $\geq 2$, binding $x$ to the list's first element, $y$ to the list's second element, and $xs$ to the remainder.
22.1 Patterns

22.1.1 Regular Pattern Matching

Syntax:

```
Pattern ::= Pattern1 { '|' Pattern1 }
Pattern1 ::= varid ':' Type
| '._' ':' Type
| Pattern2
Pattern2 ::= [varid '@'] Pattern3
Pattern3 ::= SimplePattern ['*' | '?' | '+']
| SimplePattern { id' SimplePattern }
SimplePattern ::= '_'
| varid
| Literal
| StableId ['(' [Patterns] ')']
| '(' [Patterns] ')'
Patterns ::= Pattern {',' Pattern}
id' ::= id but not '*' | '?' | '+' | '@' | '|'
```

We distinguish between tree patterns and hedge patterns (hedges are ordered sequences of trees). A tree pattern describes a set of matching trees (like above). A hedge pattern describes a set of matching hedges. Both kinds of patterns may contain variable bindings which serve to extract constituents of a tree or hedge.

The type of a patterns and the expected types of variables within patterns are determined by the context and the structure of the patterns. The last case ensures that a variable bound to a hedge pattern will have a sequence type.

The following patterns are added:

A hedge pattern \( p_1, \ldots, p_n \) where \( n \geq 0 \) is a sequence of patterns separated by commas and matching the hedge described by the components. Hedge patterns may appear as arguments to constructor applications, or nested within another hedge pattern if grouped with parentheses. Note that empty hedge patterns are allowed. The type of tree patterns that appear in a hedge pattern is the expected type as determined from the enclosing constructor. A fixed-length argument pattern is a special hedge pattern where where all \( p_i \) are tree patterns.

A choice pattern \( p_1 | \ldots | p_n \) is a choice among several alternatives, which may not contain variable-binding patterns. It matches every tree and every hedge matched by at least one of its alternatives. Note that the empty sequence may appear as an alternative. An option pattern \( p? \) is an abbreviation for \( (p|) \). A choice is a tree pattern if all its branches are tree patterns. In this case, all branches must conform to the expected type and the type of the choice is the least upper bound of the branches. Otherwise, its type is determined by the enclosing hedge pattern it is part of.

An iterated pattern \( p^* \) matches zero, one or more occurrences of items matched by \( p \), where \( p \) may be either a tree pattern or a hedge pattern. \( p \) may not contain a variable-binding. A non-empty iterated pattern \( p^+ \) is an abbreviation for \( (p, p^*) \).
The treatment of the following patterns changes with to the previous section:

A constructor pattern $c(p)$ consists of a simple type $c$ followed by a pattern $p$. If $c$ designates a monomorphic case class, then it must conform to the expected type of the pattern, the pattern must be a fixed length argument pattern $p_1, \ldots, p_n$ whose length corresponds to the number of arguments of $c$'s primary constructor. The expected types of the component patterns are then taken from the formal parameter types of (said) constructor. If $c$ designates a polymorphic case class, then there must be a unique type application instance of it such that the instantiation of $c$ conforms to the expected type of the pattern. The instantiated formal parameter types of $c$'s primary constructor are then taken as the expected types of the component patterns $p_1, \ldots, p_n$. In both cases, the pattern matches all objects created from constructor invocations $c(v_1, \ldots, v_n)$ where each component pattern $p_i$ matches the corresponding value $v_i$. If $c$ does not designate a case class, it must be a subclass of $\text{Seq}[T]$. In that case $p$ may be an arbitrary sequence pattern. Value patterns in $p$ are expected to conform to type $T$, and the pattern matches all objects whose `elements()` method returns a sequence that matches $p$.

The pattern (p) is regarded as equivalent to the pattern p, if p is a nonempty sequence pattern. The empty tuple () is a shorthand for the constructor pattern `Unit`.

A variable-binding $x@p$ is a simple identifier $x$ which starts with a lower case letter, together with a pattern $p$. It matches every item (tree or hedge) matched by $p$, and in addition binds it to the variable name. If $p$ is a tree pattern of type $T$, the type of $x$ is also $T$. If $p$ is a hedge pattern enclosed by constructor $c <: \text{Seq}[T]$, then the type of $x$ is $\text{List}[T]$ where $T$ is the expected type as dictated by the constructor.

Regular expressions that contain variable bindings may be ambiguous, i.e. there might be several ways to match a sequence against the pattern. In these cases, the right-longest policy applies: patterns that appear more to the right than others in a sequence take precedence in case of overlaps.

**Example 22.1.2** Some examples of patterns are:

1. The pattern `ex: IOException` matches all instances of class `IOException`, binding variable `ex` to the instance.

2. The pattern `Pair(x, _)` matches pairs of values, binding $x$ to the first component of the pair. The second component is matched with a wildcard pattern.

3. The pattern `List(x, y, xs @ _ * )` matches lists of length \( \geq 2 \), binding $x$ to the list’s first element, $y$ to the list’s second element, and $xs$ to the remainder, which may be empty.

4. The pattern `List( 1, x@(( 'a' | 'b' )+),y,_ )` matches a list that contains 1 as its first element, continues with a non-empty sequence of ‘a’ s and ‘b’ s, followed by two more elements. The sequence ‘a’s and ‘b’s is bound to $x$, and the next to last element is bound to $y$. 


5. The pattern `List( x@( 'a'* ), 'a'+ )` matches a non-empty list of 'a's. Because of the shortest match policy, `x` will always be bound to the empty sequence.

6. The pattern `List( x@( 'a'+ ), 'a'* )` also matches a non-empty list of 'a's. Here, `x` will always be bound to the sequence containing one 'a'.

### 22.2 Pattern Matching Expressions

**Syntax:**

\[
\begin{align*}
\text{BlockExpr} & \ ::= \ \{ \ \text{CaseClause} \ \{ \ \text{CaseClause} \ \} \ \}\ \\
\text{CaseClause} & \ ::= \ \text{case} \ \text{Pattern} \ [ \ \text{if} \ \text{PostfixExpr} \ ] \ \text{`}=>` \ \text{Block}
\end{align*}
\]

A pattern matching expression `case p_1 => b_1 \ldots case p_n => b_n` consists of a number \( n \geq 1 \) of cases. Each case consists of a (possibly guarded) pattern \( p_i \) and a block \( b_i \). The scope of the pattern variables in \( p_i \) is the corresponding block \( b_i \).

The expected type of a pattern matching expression must in part be defined. It must be either `scala.Function1[T_p, T_r]` or `scala.PartialFunction[T_p, T_r]`, where the argument type \( T_p \) must be fully determined, but the result type \( T_r \) may be undetermined. All patterns are typed relative to the expected type \( T_p \) (§22.1). The expected type of every block \( b_i \) is \( T_r \). Let \( T_b \) be the least upper bound of the types of all blocks \( b_i \). The type of the pattern matching expression is then the required type with \( T_r \) replaced by \( T_b \) (i.e. the type is either `scala.Function[T_p, T_b]` or `scala.PartialFunction[T_p, T_b]`).

When applying a pattern matching expression to a selector value, patterns are tried in sequence until one is found which matches the selector value (§22.1). Say this case is `case p_i \Rightarrow b_i`. The result of the whole expression is then the result of evaluating \( b_i \), where all pattern variables of \( p_i \) are bound to the corresponding parts of the selector value. If no matching pattern is found, a `scala.MatchError` exception is thrown.

The pattern in a case may also be followed by a guard suffix `if` e with a boolean expression e. The guard expression is evaluated if the preceding pattern in the case matches. If the guard expression evaluates to `true`, the pattern match succeeds as normal. If the guard expression evaluates to `false`, the pattern in the case is considered not to match and the search for a matching pattern continues.

In the interest of efficiency the evaluation of a pattern matching expression may try patterns in some other order than textual sequence. This might affect evaluation through side effects in guards. However, it is guaranteed that a guard expression is evaluated only if the pattern it guards matches.

**Example 22.2.1** Often, pattern matching expressions are used as arguments of the `match` method, which is predefined in class `Any` (§27.1) and is implemented there by
postfix function application. Here is an example:

```python
def length [a] (xs: List[a]) = xs match {
 case Nil => 0
 case x :: xs1 => 1 + length (xs1)
}
```

In an application of `match` such as the one above, the expected type of all patterns is the type of the qualifier of `match`. In the example above, the expected type of the patterns `Nil` and `x :: xs1` would be `List[a]`, the type of `xs`. 
Views are user-defined, implicit coercions that are automatically inserted by the compiler.

23.1 View Definition

A view definition is a normal function definition with one value parameter where the name of the defined function is `view`.

**Example 23.1.1** The following defines an implicit coercion function from strings to lists of characters.

```scala
def view(xs: String): List[Char] =
 if (xs.length() == 0) List()
 else xs.charAt(0) :: xs.substring(1);
```

23.2 View Application

View applications are inserted implicitly in two situations.

1. Around an expression $e$ of type $T$, if $T$ does not conform to the expression's expected type $PT$.
2. In a selection $e.m$ with $e$ of type $T$, if the selector $m$ does not denote a member of $T$.

In the first case, a view method `view` is searched which is applicable to $e$ and whose result type conforms to $PT$. If such a method is found, the expression $e$ is converted to `view(e)`.
In the second case, a view method `view` is searched which is applicable to `e` and whose result contains a member named `m`. If such a method is found, the selection `e.m` is converted to `view(e).m`.

### 23.3 Finding Views

Searching a view which is applicable to an expression `e` of type `T` is a three-step process.

1. First, the set $\mathcal{A}$ of available views is determined. $\mathcal{A}$ is the smallest set such that:
   
   (a) If a unary method called `view` is accessible without qualifier anywhere on the path of the program tree that leads from `e` to the root of the tree (describing the whole compilation unit), then that method is in the set $\mathcal{A}$. Methods are accessible without qualifier because they are locally defined in an enclosing scope, or imported into an enclosing scope, or inherited by an enclosing class.
   
   (b) If a unary method called `view` is a member of an object `C` such that there is a base class `C` of `T` with the same name as the object and defined in the same scope, then that method is in the set $\mathcal{A}$.

2. Then, among all the methods in $\mathcal{A}$ the set of all applicable views $\mathcal{B}$ is determined. A view method is applicable if it can be applied to values of type `T`, and another condition is satisfied which depends on the context of the view application:
   
   (a) If the view is a conversion to a given prototype `PT`, then the view's result type must conform to `PT`.
   
   (b) If the view is a conversion in a selection with member `m`, then the view's result type must contain a member named `m`.

Note that in the determining of view applicability, we do not permit further views to be inserted. I.e. a view is applicable to an expression `e` of type `T` if it can be applied to `e`, without a further view conversion of `e` to the view's formal parameter type. Likewise, a view's result type must conform to a given prototype directly, no second view conversion is allowed.

3. It is an error if the set of applicable views $\mathcal{B}$ is empty. For non-empty $\mathcal{B}$, the view method which is most specific (§21.6) in $\mathcal{B}$ is selected. It is an error if no most specific view exists, or if it is not unique.

**Example 23.3.1** Consider the following situation.
class A;
class B extends A;
class C;
object B {
    def view(x: B): C = ...
}
object Test with Application {
    def view(x: A): C = ...
    val x: C = new B;
}

For the expression `new B` there are two available views. The view defined in object `B` is available since its associated class is (a superclass of) the expression's type `B`. The view defined in object `Test` is available since it is accessible without qualification at the point of the expression `new B`. Both views are also applicable since they map values of type `B` to results of type `C`. However, the view defined in object `B` is more specific than the view defined in object `Test`. Hence, the last statement in the example above is implicitly augmented to

```java
val x: C = B.view(new B)
```

### 23.4 View-Bounds

**Syntax:**

```
TypeParam ::= id [>: Type] [<% Type]
```

A type parameter `a` may have a view bound `a <% T` instead of a regular upper bound `a <: T`. In that case the type parameter may be instantiated to any type `S` which is convertible by application of a view method to the view bound `T`. Here, we assume there exists an always available identity view method

```java
def view[a](x: a): a = x .
```

Hence, the type parameter `a` can always be instantiated to subtypes of the view bound `T`, just as if `T` was a regular upper bound.

View bounds for type parameters behave analogously to upper bounds wrt to type conformance (§18.5.2), variance checking (§19.4), and overriding (§20.1.5).

Methods or classes with view-bounded type parameters implicitly take view functions as parameters. For every view-bounded type parameter `a <% T` one adds an implicit value parameter `view: a => T`. When instantiating the type parameter `a` to some type `S`, the most specific applicable view method from type `S` to type `T` is selected, according to the rules of §23.3. This method is then passed as actual argument to the corresponding view parameter.
Implicit view parameters of a method or class are then taken as available view methods in its body.

Example 23.4.1 Consider the following definition of a trait Comparable and a view from strings to that trait.

```scala
trait Comparable[a] {
 def less(x: a): boolean
}

object StringsAreComparable {
 def view(x: String): Comparable[String] = new Comparable[String] {
 def less(y: String) = x.compareTo(y) < 0
 }
}
```

Now, define a binary tree with a method `insert` which inserts an element in the tree and a method `elements` which returns a sorted list of all elements of the tree. The tree is defined for all types of elements `a` that are viewable as `Comparable[a].`

```scala
trait Tree[a <% Comparable[a]] {
 def insert(x: a): Tree[a] = this match {
 case Empty() => new Node(x, Empty(), Empty())
 case Node(elem, l, r) =>
 if (x == elem) this
 else if (x less elem) Node(elem, l insert x, r)
 else Node(elem, l, r insert x);
 }
 def elements: List[a] = this match {
 case Empty() => List()
 case Node(elem, l, r) =>
 l.elements ::: List(elem) ::: r.elements
 }
}
```

```scala
case class Empty[a <% Comparable[a]]()
 extends Tree[a];
case class Node[a <% Comparable[a]](elem: a, l: Tree[a], r: Tree[a])
 extends Tree[a];
```

Finally, define a test program which builds a tree from all command line argument strings and then prints out the elements as a sorted sequence.

```scala
object Test {
 import StringsAreComparable.view;

 def main(args: Array[String]) = {
 var t: Tree[String] = Empty();
```
for (val s <- args) { t = t insert s }
System.out.println(t.elements)
}
}

Note that the definition var t: Tree[String] = Empty(); is legal because at that point a view method from String to Comparable[String] has been imported and is therefore accessible without a prefix. The imported view method is passed as an implicit argument to the Empty constructor.

Here is the Test program again, this time with implicit views made visible:

object Test {
  import StringsAreComparable.view;

  def main(args: Array[String]) = {
    var t: Tree[String] = Empty(StringsAreComparable.view);
    for (val s <- args) { t = t insert s }
    System.out.println(t.elements)
  }
}

And here are the tree classes with implicit views added:

trait Tree[a <% Comparable[a]][view: a => Comparable[a]] {
  def insert(x: a): Tree[a] = this match {
    case Empty(_) => new Node(x, Empty(view), Empty(view))
    case Node(_, elem, l, r) =>
      if (x == elem) this
      else if (view(x) less elem) Node(view, elem, l insert x, r)
      else Node(view, elem, l, r insert x);
  }
  def elements: List[a] = this match {
    case Empty(_) => List()
    case Node(_, elem, l, r) =>
      l.elements ::: List(elem) ::: r.elements
  }
}

case class Empty[a <% Comparable[a]][view: a => Comparable[a]]
  extends Tree[a];

case class Node[a <% Comparable[a]][view: a => Comparable[a],
  elem: a, l: Tree[a], r: Tree[a]]
  extends Tree[a];

Note that views entail a certain run-time overhead because they need to be passed as additional arguments to view-bounded methods and classes. Furthermore, every application of a view entails the construction of an object which is often immedi-
ately discarded afterwards – see for instance with the translation of \((x \ less \ elem)\) in the implementation of method \texttt{insert} above. It is expected that the latter cost can be absorbed largely or completely by compiler optimizations (which are, however, not yet implemented at the present stage).

### 23.5 Conditional Views

View methods might themselves have view-bounded type parameters; this allows the definition of conditional views.

**Example 23.5.1** The following view makes lists comparable, \textit{provided} the list element type is also comparable.

```scala
def view[a <% Comparable[a]](xs: List[a]): Comparable[List[a]] =
 new Comparable[List[a]] {
 def less (ys: List[a]): boolean =
 !ys.isEmpty &&
 (xs.isEmpty ||
 (xs.head less ys.head) ||
 (xs.head == ys.head) && (xs.tail less ys.tail))
 }
```

Note that the condition \((xs.head \ less \ ys.head)\) invokes the \texttt{less} method of the list element type, which is unknown at the point of the definition of the view method. As usual, view-bounded type parameters are translated to implicit \texttt{view} arguments. In this case, the \texttt{view} method over lists would receive the \texttt{view} method over list elements as implicit parameter.
Chapter 24
Top-Level Definitions

Syntax:

CompilatIonUnit := [package QualId ';'] {TopStat ';'} TopStat
TopStat := {AttributeClause} {Modifier} TmplDef
| Import
| Packaging
| QualId := id {'.'} id

A compilation unit consists of a sequence of packagings, import clauses, and class and object definitions, which may be preceded by a package clause.

A compilation unit package p; stats starting with a package clause is equivalent to a compilation unit consisting of a single packaging package p { stats }.

Implicitly imported into every compilation unit are, in that order: the package java.lang, the package scala, and the object scala.Predef (§27.4). Members of a later import in that order hide members of an earlier import.

24.1 Packagings

Syntax:

Packaging := package QualId '{' {TopStat ';'} TopStat '}'

A package is a special object which defines a set of member classes, objects and packages. Unlike other objects, packages are not introduced by a definition. Instead, the set of members of a package is determined by packagings.

A packaging package p ds injects all definitions in ds as members into the package whose qualified name is p. If a definition in ds is labeled private, it is visible
only for other members in the package.

Selections \( p.m \) from \( p \) as well as imports from \( p \) work as for objects. However, unlike other objects, packages may not be used as values. It is illegal to have a package with the same fully qualified name as a module or a class.

Top-level definitions outside a packaging are assumed to be injected into a special empty package. That package cannot be named and therefore cannot be imported. However, members of the empty package are visible to each other without qualification.

Example 24.1.1 The following example will create a hello world program as function \texttt{main} of module \texttt{test.HelloWorld}.

```plaintext
package test;

object HelloWorld {
 def main(args: Array[String]) = System.out.println("hello world")
}
```
Chapter 25

Local Type Inference

To be completed.
Chapter 26

XML expressions and patterns

This chapter describes the syntactic structure of XML expressions and patterns. It follows as close as possible the XML 1.0 specification [W3Cb], changes being mandated by the possibility of embedding Scala code fragments.

26.1 XML expressions

XML expressions are expressions generated by the following production, where the opening bracket ‘<’ of the first element must be in a position to start the lexical XML mode (see 16.5).

Syntax:

$$\text{XmlExpr ::= Element \{Element\}}$$

Well-formedness constraints of the XML specification apply, which means for instance that start tags and end tags must match, and attributes may only be defined once, with the exception of constraints related to entity resolution.

The following productions describe Scala’s extensible markup language, designed as close as possible to the W3C extensible markup language standard. Only the productions for attribute values and character data are changed. Scala does not support neither declarations, CDATA sections nor processing instructions. Entity references are not resolved at runtime.

Syntax:

$$\text{Element ::= EmptyElemTag}$$

<table>
<thead>
<tr>
<th></th>
<th>EmptyElemTag</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>STag Content ETag</td>
</tr>
</tbody>
</table>

$$\text{EmptyElemTag ::= ‘‘ Name \{S Attribute\} [S] ‘/’}$$
If an XML expression is a single element, its value is a runtime representation of an XML node (an instance of a subclass of scala.xml.Node). If the XML expression consists of more than one element, then its value is a runtime representation of a sequence of XML nodes (an instance of a subclass of scala.Seq[scala.xml.Node]).

If an XML expression is an entity reference, CDATA section, processing instructions or a comments, it is represented by an instance of the corresponding Scala runtime class.

By default, beginning and trailing whitespace in element content is removed, and consecutive occurrences of whitespace are replaced by a single space character \u0020. This behaviour can be changed to preserve all whitespace with a compiler option. **Syntax:**

```
Attribute ::= Name Eq AttValue
AttValue ::= "" {CharQ | CharRef} ""
 | ''' {CharA | CharRef} '''
 | ScalaExpr
ScalaExpr ::= '{' expr '}'
CharData ::= { CharNoRef } without {CharNoRef}{'CharB {CharNoRef} and without {CharNoRef}'}> {CharNoRef}
```

XML expressions may contain Scala expressions as attribute values or within nodes. In the latter case, these are embedded using a single opening brace "" and ended by a closing brace ". To express a single opening braces within XML text as generated by CharData, it must be doubled. Thus, "" represents the XML text "" and does not introduce an embedded Scala expression.

**Syntax:**

```
BaseChar, Char, Comment, CombiningChar, Ideographic, NameChar, S, Reference ::= "as in W3C XML"
Char1 ::= Char without '<' | '&'
CharQ ::= Char1 without '"'
```
XML patterns are patterns generated by the following production, where the opening bracket '<' of the element patterns must be in a position to start the lexical XML mode (see 16.5).

Syntax:

```
XmlPattern ::= ElementPattern {ElementPattern}
```

Well-formedness constraints of the XML specification apply.

If an XML pattern is a single element pattern, it expects the type of runtime representation of an XML tree, and matches exactly one instance of this type that has the same structure as described by the pattern. If an XML pattern consists of more than one element, then it expects the type of sequences of runtime representations of XML trees, and matches every sequence whose elements match the sequence described by the pattern.

XML patterns may contain Scala patterns (22.2).

Whitespace is treated the same way as in XML expressions. Patterns that are entity references, CDATA sections, processing instructions and comments match runtime representations which are the same.

By default, beginning and trailing whitespace in element content is removed, and consecutive occurrences of whitespace are replaced by a single space character \u0020. This behaviour can be changed to preserve all whitespace with a compiler option.

Syntax:

```
ElemPattern ::= EmptyElemTagP
 | STagP ContentP ETagP
EmptyElemTagP ::= '<' Name [S] '/>'
STagP ::= '<' Name [S] '>'
ETagP ::= '</' Name [S] '>
ContentP ::= [CharData] {(ElemPattern|ScalaPatterns) [CharData]}
ContentP1 ::= ElemPattern
```
Reference | CDSet | PI | Comment | ScalaPatterns

ScalaPatterns ::= '{' patterns '}'
The Scala standard library consists of the package scala with a number of classes and modules. Some of these classes are described in the following.

27.1 Root Classes

The root of the Scala class hierarchy is formed by class Any. Every class in a Scala execution environment inherits directly or indirectly from this class. Class Any has two direct subclasses: AnyRef and AnyVal.

The subclass AnyRef represents all values which are represented as objects in the underlying host system. Every user-defined Scala class inherits directly or indirectly from this class. Furthermore, every user-defined Scala class also inherits the trait scala.ScalaObject. Classes written in other languages still inherit from scala.AnyRef, but not from scala.ScalaObject.

The class AnyVal has a fixed number subclasses, which describe values which are not implemented as objects in the underlying host system.

Classes AnyRef and AnyVal are required to provide only the members declared in class Any, but implementations may add host-specific methods to these classes (for instance, an implementation may identify class AnyRef with its own root class for objects).

The standard interfaces of these root classes is described by the following definitions.

```scala
package scala;
abstract class Any {

 /** Defined equality; abstract here */
 def equals(that: Any): boolean;
```
/** Semantic equality between values of same type */
final def ==(that: Any): boolean = this equals that

/** Semantic inequality between values of same type */
final def !=(that: Any): boolean = !(this == that)

/** Hash code */
def hashCode(): Int = ...

/** Textual representation */
def toString(): String = ...

/** Type test */
def isInstanceOf[a]: Boolean = match {
  case x: a => true
  case _ => false
}

/** Type cast */
def asInstanceOf[a]: a = match {
  case x: a => x
  case _ => if (this eq null) this
    else throw new ClassCastException()
}

/** Pattern match */
def match[a, b](cases: a => b): b = cases(this);

final class AnyVal extends Any;
class AnyRef extends Any {
  def equals(that: Any): boolean = this eq that;
  final def eq(that: Any): boolean = ...; // reference equality
}

trait ScalaObject extends AnyRef;

The type cast operation asInstanceOf has a special meaning (not expressed in the code above) when its type parameter is a numeric type. For any type T <: Double, and any numeric value v v.asInstanceOf[T] converts v to type T using the rules of Java's numeric type cast operation. The conversion might truncate the numeric value (as when going from Long to Int or from Int to Byte) or it might lose precision (as when going from Double to Float or when converting between Long and Float).
27.2 Value Classes

Value classes are classes whose instances are not represented as objects by the underlying host system. All value classes inherit from class `AnyVal`. Scala implementations need to provide the value classes `Unit`, `Boolean`, `Double`, `Float`, `Long`, `Int`, `Char`, `Short`, and `Byte` (but are free to provide others as well). The signatures of these classes are defined in the following.

27.2.1 Class Double

```scala
package scala;
abstract sealed class Double extends AnyVal {
 def + (that: Double): Double // double addition
 def - (that: Double): Double // double subtraction
 def * (that: Double): Double // double multiplication
 def / (that: Double): Double // double division
 def % (that: Double): Double // double remainder

 def == (that: Double): Boolean // double equality
 def != (that: Double): Boolean // double inequality
 def < (that: Double): Boolean // double less
 def > (that: Double): Boolean // double greater
 def <= (that: Double): Boolean // double less or equals
 def >= (that: Double): Boolean // double greater or equals

 def - : Double = 0.0 - this // double negation
 def + : Double = this
}
```

27.2.2 Class Float

```scala
package scala;
abstract sealed class Float extends AnyVal {
 def coerce: Double // convert to Double

 def + (that: Double): Double; // double addition
 def + (that: Float): Double // float addition
 /* analogous for -, *, /, % */

 def == (that: Double): Boolean; // double equality
 def == (that: Float): Boolean; // float equality
 /* analogous for !=, <, >, <=, >= */

 def - : Float; // float negation
 def + : Float
```
27.2.3 Class Long

```scala
package scala;
abstract sealed class Long extends AnyVal {
 def coerce: Double // convert to Double
 def coerce: Float // convert to Float

 def + (that: Double): Double; // double addition
 def + (that: Float): Double; // float addition
 def + (that: Long): Long = // long addition
 /* analogous for -, *, /, % */

 def << (cnt: Int): Long // long left shift
 def >> (cnt: Int): Long // long signed right shift
 def >>> (cnt: Int): Long // long unsigned right shift
 def & (that: Long): Long // long bitwise and
 def | (that: Long): Long // long bitwise or
 def ^ (that: Long): Long // long bitwise exclusive or

 def == (that: Double): Boolean; // double equality
 def == (that: Float): Boolean; // float equality
 def == (that: Long): Boolean // long equality
 /* analogous for !=, <, >, <=, >= */

 def - : Long; // long negation
 def + : Long; // long identity
 def ~ : Long // long bitwise negation
}
```

27.2.4 Class Int

```scala
package scala;
abstract sealed class Int extends AnyVal {
 def coerce: Double // convert to Double
 def coerce: Float // convert to Float
 def coerce: Long // convert to Long

 def + (that: Double): Double; // double addition
 def + (that: Float): Double; // float addition
 def + (that: Long): Long; // long addition
 def + (that: Int): Int; // int addition
 /* analogous for -, *, /, % */

 def << (cnt: Int): Int; // int left shift
```
/* analogous for >>, >>> */

def \& (that: Long): Long;  // long bitwise and

def \& (that: Int): Int;    // int bitwise and

/* analogous for |, ^ */

def == (that: Double): Boolean;  // double equality

def == (that: Float): Boolean;   // float equality

def == (that: Long): Boolean;   // long equality

def == (that: Int): Boolean;    // int equality

/* analogous for !=, <, >, <=, >= */

def -: Int;                    // int negation

def +: Int;                     // int identity

def -: Int;                     // int bitwise negation

27.2.5 Class Short

package scala;
abstract sealed class Short extends AnyVal {

def coerce: Double  // convert to Double

def coerce: Float   // convert to Float

def coerce: Long    // convert to Long

def coerce: Int     // convert to Int

isDigit: Boolean;      // is this character a digit?

isLetter: Boolean;     // is this character a letter?

isLetterOrDigit: Boolean;  // is this character a letter or digit?

isWhiteSpace: Boolean; // is this a whitespace character?
}

27.2.7 Class Short

package scala;
abstract sealed class Short extends AnyVal {

def coerce: Double  // convert to Double
def coerce: Float   // convert to Float
def coerce: Long    // convert to Long
def coerce: Int     // convert to Int
def coerce: Short   // convert to Short
}

27.2.8 Class Boolean

package scala;
abstract sealed class Boolean extends AnyVal {
  def && (def x: Boolean): Boolean; // boolean and
  def || (def x: Boolean): Boolean; // boolean or
  def & (x: Boolean): Boolean;     // boolean strict and
  def | (x: Boolean): Boolean      // boolean strict or
  def == (x: Boolean): Boolean;    // boolean equality
  def != (x: Boolean): Boolean;    // boolean inequality
  def ! (x: Boolean): Boolean;     // boolean negation
}

27.2.9 Class Unit

package scala;
abstract sealed class Unit extends AnyVal;

27.3 Standard Reference Classes

This section presents some standard Scala reference classes which are treated in a special way in Scala compiler – either Scala provides syntactic sugar for them, or the Scala compiler generates special code for their operations. Other classes in the standard Scala library are documented by HTML pages elsewhere.

27.3.1 Class String

The String class is usually derived from the standard String class of the underlying host system (and may be identified with it). For Scala clients the class is taken to support in each case a method

def + (that: Any): String

which concatenates its left operand with the textual representation of its right operand.
### 27.3.2 The Tuple classes

Scala defines tuple classes Tuple\(n\) for \(n = 2, \ldots, 9\). These are defined as follows.

```scala
package scala;
case class Tuple\(n\)(+a\(_1\), \ldots, +a\(_{n}\))(_1: a\(_1\), \ldots, _\(n\): a\(_n\)) {
 def toString = "(" ++ _\(1\) ++ "," ++ _\(\ldots\) ++ "," ++ _\(n\) ++ ")"
}
```

The implicitly imported Predef object (§27.4) defines the names Pair as an alias of Tuple2 and Triple as an alias for Tuple3.

### 27.3.3 The Function Classes

Scala defines function classes Function\(n\) for \(n = 1, \ldots, 9\). These are defined as follows.

```scala
package scala;
class Function\(n\)(-a\(_1\), \ldots, -a\(_{n}\), +b) {
 def apply(x\(_1\): a\(_1\), \ldots, x\(_n\): a\(_n\)) : b;
 def toString = "<function>";
}
```

A subclass of Function1 represents partial functions, which are undefined on some points in their domain. In addition to the apply method of functions, partial functions also have a isDefined method, which tells whether the function is defined at the given argument:

```scala
class PartialFunction[-a,+b] extends Function1[a, b] {
 def isDefinedAt(x: a): Boolean
}
```

The implicitly imported Predef object (§27.4) defines the name Function as an alias of Function1.

### 27.3.4 Class Array

The class of generic arrays is given as follows.

```scala
package scala;
class Array[a](length: int) with Function[Int, a] {
 def length: int;
 def apply(i: Int): a;
 def update(i: Int)(x: a): Unit;
}
```
27.4 The Predef Object

The Predef module defines standard functions and type aliases for Scala programs. It is always implicitly imported, so that all its defined members are available without qualification. Here is its definition for the JVM environment.

```scala
package scala;
object Predef {
 type byte = scala.Byte;
 type short = scala.Short;
 type char = scala.Char;
 type int = scala.Int;
 type long = scala.Long;
 type float = scala.Float;
 type double = scala.Double;
 type boolean = scala.Boolean;
 type unit = scala.Unit;

 type String = java.lang.String;
 type NullPointerException = java.lang.NullPointerException;
 type Throwable = java.lang.Throwable;
 // other aliases to be identified

 /** Abort with error message */
 def error(message: String): All = throw new Error(message);

 /** Throw an error if given assertion does not hold. */
 def assert(assertion: Boolean): Unit =
 if (!assertion) throw new Error("assertion failed");

 /** Throw an error with given message if given assertion does not hold */
 def assert(assertion: Boolean, message: Any): Unit =
 if (!assertion) throw new Error("assertion failed: " + message);

 /** Create an array with given elements */
 def Array[A](xs: A*): Array[A] = {
 val array: Array[A] = new Array[A](xs.length);
 var i = 0;
 for (val x <- xs.elements) { array(i) = x; i = i + 1; }
 array;
 }

 /** Aliases for pairs and triples */
 type Pair[+p, +q] = Tuple2[p, q];
 def Pair[a, b](x: a, y: b) = Tuple2(x, y);
 type Triple[+a, +b, +c] = Tuple3[a, b, c];
```
27.5 Class Node

```scala
package scala.xml;

trait Node {

/** the label of this node */
def label: String;

/** attribute axis */
def attribute: Map[String, String];

/** child axis (all children of this node) */
def child: Seq[Node];

/** descendant axis (all descendants of this node) */
def descendant: Seq[Node] = child.toList.flatMap {
 x => x :: x.descendant.asInstanceOf[List[Node]]
};

/** descendant axis (all descendants of this node) */
def descendant_or_self: Seq[Node] = this :: child.toList.flatMap {
 x => x :: x.descendant.asInstanceOf[List[Node]]
};

override def equals(x: Any): Boolean = x match {
 case that: Node =>
 that.label == this.label &&
 that.attribute.sameElements(this.attribute) &&
 that.child.sameElements(this.child)
 case _ => false
}
}
```
/** XPath style projection function. Returns all children of this node that are labelled with 'that. The document order is preserved. */

```scala
def \(that:Symbol): NodeSeq = {
 new NodeSeq({
 that.name match {
 case "_" => child.toList;
 case _ =>
 var res:List[Node] = Nil;
 for (val x <- child.elements; x.label == that.name) {
 res = x::res;
 }
 res.reverse
 }
 });
 });
}
```

/** XPath style projection function. Returns all nodes labelled with the name 'that from the descendant_or_self axis. Document order is preserved. */

```scala
def \\(that:Symbol): NodeSeq = {
 new NodeSeq(
 that.name match {
 case "_" => this.descendant_or_self;
 case _ => this.descendant_or_self.asInstanceOf[List[Node]].filter(x => x.label == that.name);
 })
);
}
```

/** hashcode for this XML node */
override def hashCode() = Utility.hashCode( label, attribute.toList.hashCode(), child);

/** string representation of this node */
override def toString() = Utility.toXML(this);
Bibliography


Chapter A

Scala Syntax Summary

The lexical syntax of Scala is given by the following grammar in EBNF form.

- **upper** ::= ‘A’ | ... | ‘Z’ | ‘$’ | ‘_’ and Unicode Lu
- **lower** ::= ‘a’ | ... | ‘z’ and Unicode Ll
- **letter** ::= upper | lower and Unicode categories Lo, Lt, Nl
- **digit** ::= ‘0’ | ... | ‘9’
- **special** ::= “all other characters in \u0020-007F and Unicode categories Sm, So except parentheses ([]) and periods”
- **op** ::= special {special}
- **varid** ::= lower {letter | digit} ['_' {digit} [id]]
- **id** ::= upper {letter | digit} ['_' {digit} [id]]
  | varid
  | op
  | '\stringLit

- **intLit** ::= “as in Java”
- **floatLit** ::= “as in Java”
- **charLit** ::= “as in Java”
- **stringLit** ::= “as in Java”
- **symbolLit** ::= ‘\’ id

- **comment** ::= ‘/\*’ ‘any sequence of characters’ ‘\*/’
  | ‘/\*/’ ‘any sequence of characters up to end of line’

The context-free syntax of Scala is given by the following EBNF grammar.

- **Literal** ::= intLit
  | floatLit
  | charLit
  | stringLit
symbolLit
| true
| false
| null

StableId ::= id
| Path '.' id

Path ::= StableId
| [id '.'] this
| [id '.'] super ['[' id ']']' '.' id

Type ::= Typel '=>' Type
| '(' [Types] ')' '=>' Type
| Typel

Typel ::= SimpleType {with SimpleType} [Refinement]

SimpleType ::= SimpleType TypeArgs
| SimpleType '#' id
| StableId
| Path '.' type
| '(' Type ')

TypeArgs ::= '[' Types ']

Types ::= Type {',' Type}

Refinement ::= '{' [RefineStat {';' RefineStat}] '}

RefineStat ::= Dcl
| typeTypeDef

Exprs ::= Expr {',' Expr}

Expr ::= Bindings '=>' Expr
| Expr1

Expr1 ::= if '(' Expr1 ' )' Expr [';' else Expr]
| try '{' Block '}' [catch Expr] [finally Expr]
| do Expr [';' while '(' Expr ' )'
| for '(' Enumerators ')' (do | yield) Expr
| return [Expr]
| throw Expr
| [SimpleExpr '.'] id ' = ' Expr
| SimpleExpr ArgumentExprs ' = ' Expr
| PostfixExpr ['.' Type]
| MethodClosure

PostfixExpr ::= InfixExpr [id]

InfixExpr ::= PrefixExpr
| InfixExpr id PrefixExpr

PrefixExpr ::= ['-' | '+' | '~' | '!'] SimpleExpr

SimpleExpr ::= Literal
| Path
ArgumentExprs ::= ‘(’ [Exprs] ‘)’
| BlockExpr
| new Template
| SimpleExpr ‘.’ id
| SimpleExpr TypeArgs
| SimpleExpr ArgumentExprs
| XmlExpr

MethodClosure ::= ‘.’ Id {‘.’ Id | TypeArgs | ArgumentExprs}

BlockExpr ::= ‘{’ CaseClause {CaseClause} ‘}’
| ‘{’ Block ‘}’

Block ::= {BlockStat ‘;’} [ResultExpr]

BlockStat ::= Import
| Def
| {LocalModifier} TmplDef
| Expr1

ResultExpr ::= Expr1
| Bindings ‘=>’ Block

Enumerators ::= Generator {‘;’ Enumerator}

Enumerator ::= Generator
| Expr

Generator ::= val Pattern1 ‘<-’ Expr

CaseClause ::= case Pattern [‘if’ PostfixExpr] ‘=>’ Block

Constr ::= StableId [TypeArgs] [‘(’ [Exprs] ‘)’]
SimpleConstr ::= Id [TypeArgs] [‘(’ [Exprs] ‘)’]

Pattern ::= Pattern1 { ‘|’ Pattern1 }
Pattern1 ::= varid ‘:’ Type
| ‘_’ ‘:’ Type
| Pattern2

Pattern2 ::= [varid ‘@’] Pattern3
Pattern3 ::= SimplePattern [ ‘*’ | ‘?’ | ‘+’ ]
| SimplePattern { id SimplePattern }

SimplePattern ::= ‘_’
| varid
| Literal
| StableId [ ‘(’ [Patterns] ‘)’ ]
| ‘(’ [Patterns] ‘)’
| XmlPattern

Patterns ::= Pattern {‘,’ Pattern}
TypeParamClause ::= ‘[‘ VarTypeParam {‘,’ VarTypeParam} ‘]’
FunTypeParamClause ::= ‘[‘ TypeParam {‘,’ TypeParam} ‘]’
VarTypeParam ::= ‘[‘ TypeParam {‘,’ VarTypeParam} ‘]’
TypeParam ::= id [>: Type] [<: Type | <% Type]
ParamClause ::= ‘(‘ [Param {‘,’ Param}] ‘)’
ClassParamClause ::= ‘(‘ [ClassParam {‘,’ ClassParam}] ‘)’
Param ::= id ‘:’ Type [‘:*’]
ClassParam ::= [{Modifier} ‘val’] Param
Bindings ::= id ‘:’ Type1
| ‘(‘ Binding {‘,’ Binding ‘)’
Binding ::= id ‘:’ Type

Modifier ::= LocalModifier
| private
| protected
| override
LocalModifier ::= abstract
| final
| sealed

AttributeClause ::= ‘[‘ Attribute {‘,’ Attribute} ‘]’
Attribute ::= Constr

Template ::= Constr {‘with’ Constr} [TemplateBody]
TemplateBody ::= ‘{‘ [TemplateStat {‘,’ TemplateStat}] ‘}’
TemplateStat ::= Import
| {AttributeClause} {Modifier} Def
| {AttributeClause} {Modifier} Dcl
| Expr

Import ::= import ImportExpr {‘,’ ImportExpr}
ImportExpr ::= StableId ‘.’ (id | ‘_’ | ImportSelectors)
ImportSelectors ::= ‘{‘ {ImportSelector ‘,’}
| ImportSelector | ‘_’) ‘}’
ImportSelector ::= id [‘=>’ id | ‘=>’ ‘_’]

Dcl ::= val ValDcl
| var VarDcl
| def FunDcl
| type TypeDcl

ValDcl ::= id {‘,’ id} ‘:’ Type
VarDcl ::= id {‘,’ id} ‘:’ Type
FunDcl ::= FunSig {‘,’ FunSig} ‘:’ Type
FunSig ::= id [FunTypeParamClause] {ParamClause}
TypeDef ::=
  id [>: Type] [<: Type]

Def ::= val PatDef
  | var VarDef
  | def FunDef
  | type TypeDef
  | TmplDef

PatDef ::= Pattern2 {',', Pattern2} [':': Type] '==' Expr
VarDef ::= id {',', id} [':': Type] '==' Expr
  | id {',', id} '::' Type '==' '_'
FunDef ::= FunSig {',', FunSig} '::' Type '==' Expr
  | this ParamClause '==' ConstrExpr
TypeDef ::= id [TypeParamClause] '==' Type

TmplDef ::= ([case class | trait] ClassDef
  | [case object] ObjectDef
ClassDef ::= ClassSig {',', ClassSig} [':': SimpleType] ClassTemplate
ClassSig ::= id [TypeParamClause] [ClassParamClause]
ObjectDef ::= id {',', id} [':': SimpleType] ClassTemplate

ClassTemplate ::= extends Template
  | TemplateBody

ConstrExpr ::= this ArgumentExprs
  | '{' this ArgumentExprs {';' BlockStat} '}'

CompilationUnit ::= [package QualId ';'] {TopStat ' ';'} TopStat
TopStat ::= {AttributeClause} {Modifier} TmplDef
  | Import
  | Packaging

Packaging ::= package QualId '{' {TopStat ' ';'} TopStat '}'
QualId ::= id {'.' id}
Chapter B

Implementation Status

The present Scala compiler does not yet implement all of the Scala specification. Its currently existing omissions and deviations are listed below. We are working on a refined implementation that addresses these issues.

1. Unicode support is still limited. At present we only permit Unicode encodings \uXXXX in strings and backquote-enclosed identifiers. To define or access a Unicode identifier, you need to put it in backquotes and use the \uXXXX encoding.

2. The unicode operator "⇒" (§16.1) is not yet recognized; you need to use the two character ASCII equivalent "=>" instead.

3. The current implementation does not yet support run-time types. All types are erased (§18.6) during compilation. This means that the following operations give potentially wrong results.
   - Type tests and type casts to parameterized types. Here it is only tested that a value is an instance of the given top-level type constructor.
   - Type tests and type casts to type parameters and abstract types. Here it is only tested that a value is an instance of the type parameter's upper bound.
   - Polymorphic array creation. If \texttt{t} is a type variable or abstract type, then \texttt{new Array[t]} will yield an array of the upper bound of \texttt{t}.

4. Return expressions are not yet permitted inside an anonymous function or inside a call-by-name argument (i.e. a function argument corresponding to a \texttt{def} parameter).

5. Members of the empty package (§24.1) cannot yet be accessed from other source files. Hence, all library classes and objects have to be in some package.
6. At present, auxiliary constructors (§20.2.1) are only permitted for monomorphic classes.

7. The Array class supports as yet only a restricted set of operations as given in §27.3.4. It is planned to extend that interface. In particular, arrays will implement the scala.Seq trait as well as the methods needed to support for-comprehensions.

8. At present, all classes used as mixins must be accessible to the Scala compiler in source form.