Aarhus Universitet May 31, 2005
Datalogisk Institut

Abogade 34

8200Arhus N

Types in Object-Oriented Languages
The Expression Problem in Scala

{esbenn, mcalster, sm, argo} @daimi.au.dk

Esben Toftdahl Nielsen 20001722
Kim Alster Larsen 20011709
Sgren Markert 20010467
Kristian Ellebaek Kjeer 20001960

This report containE21 numbered pages.
Source code is availableltt p: /7 www. dai m . au. dk/ ~esbenn/ t ool

All group members have contributed equally to the project.

http://www.daimi.au.dk/~esbenn/tool

TOOL The Expression Problem Ti21

Contents

B Analysid 5

B.1__Object-ariented and functional decompaosition 5
B.1.1 _Object-Oriented decomposifion 5
B.1.2 Functional decompositfon 7
B.1.3 Commonnalities 9

9

B2 Anvbridsolutioh

4 Comparisod 14
U1 levelofextensibility 14
KU.2__Independent extensibility 14
U3 Binarymethodls 16
b4 FEaseofapplicatibn 17

l5_Related wark 18

l6Condlusiod 19

TOOL The Expression Problem Zi21

1 Introduction

In this report we analyze and compare a number of solutiopgsals to “The
Expression Problem”. We have chosen Sdala [10] as a basadgedor analyzing
and comparing the solution proposals.

Our goal is to evaluate 4 different partial solutions to tkpression problem
in terms of extensibility, independent extensibility, &y methods, and ease of
application. Extensibility refers to how easy it is to exdeam language in both
dimensions. Independent extensibility is whether it issie to combine inde-
pendently developed extensions, and how easy it is. Binathods refers to the
possibility of adding binary methods to the language. Bnealase of application
is a, subjective, evaluation of how easy the proposal iseédamupractice.

To equal the playing field, all proposals have been implegtkint Scala. Scala
was chosen because of its rich set of language construcita Sqgoports both vir-
tual types and parametric types, which are used in diffepenposals. Besides,
Scala offers mixin-composition, which is necessary fordb#ity to combine in-
dependent extensions.

The first two of the solutions are froml[9], and focus on indegent extensibil-
ity when using Scala to implement solutions to the expresgioblem. The firstis
an object-oriented decomposition (OODC), and the secoaduactional decom-
position (FDC) using a visitor patterhl[7]. The third sotutiis from [12], which
covers 4 different proposals. We have only looked at thedagihese proposals,
which is a hybrid between an object-oriented and a functideaeomposition (Hy-
brid). The last solution is fron{]3] and based on higher-orderarchies (HoH)
[4].

In the following section we give a brief overview of the prefn in focus, the
language in use and describe essential concepts used iagbe.rIn Sectiof]3
we analyze each proposal separately and subsequently oethpae in Sectidd 4.
Sectiord describes related work and finally Sedfion 6 cateslu

2 Knowledge Foundation

In this section we present a formulation of the expressiablem, describe the
implementation language, which we evaluate the solutiopand describe some
essential concepts.

2.1 Theexpression problem

The expression problem, originally formulated by Wadlef][dnd since reformu-
lated by numerous participants in the solution battle, ierantly controvert. We
take no particular stand in how exactly to describe the groblrather we refer to
[3], [B] and [12] as a basis for this paper.

However we want to explicate the following simple formubatiby Torgersen:
“Can your application be structured in such a way that botk tfata model and

TOOL The Expression Problem 3121

the set of virtual operations over it can be extended witlloeitneed to modify ex-
isting code, without the need for code repetition and witlraatime type errors’”
We stress “without runtime type errors” as an importantestetnt because the ex-
pression problem really becomes interesting (read ctgitigh when exposed to a
type system that ensures safe execution of the code.

As the above formulation indicates, the expression probkeabout two di-
mensional extensibility. If a data type is modeled in an cb@iented fashion it
is easy to add additional data types by simply by adding nassels, but adding
a new operation over the data types requires adding new niethaach existing
class (and thus altering existing source code). If the ggiis modeled in a func-
tional fashion ML style) it is easy to add a new operation over the data typés, bu
adding new data types requires rewriting each existingatpeover these types.
Naturally, a valid solution to the expression problem miuistxaboth data exten-
sions and operation extensions at the same time withoutfyiogliexisting code.

2.2 Scala

Scala is an object-oriented (and to some extent also furad)istatically typed
programming language. The reason for choosing Scala asisfbasnalyzing
the solutions to the expression problem is that it contaiostrof the concepts that
have been used in the solutions that we look at. At the sameitimaintains a
type system that ensures that entities are used in a typefastiion at runtime.
Scala’s type system supports parameterized classesalviypes, explicitly typed
self references, mixin compositions and more, all are dahteodifferent proposals
that we analyze.

2.3 Concepts

Here we will explain some basic concepts and terminologateel to the expression
problem and the discussion of it.

Parameterized classes Some of the solutions we discuss depend on different
kinds of genericity. Parameterized classes is one suchdaqddt allows classes to
be parameterized by a data type as shown in the following pkam

VehicleList[E <: Vehicle] = {
get(): §
put(e: E);

HereE is the type parameter. A parameter canboeindedby a type, in this
caseVehi cl e, which means that has to be a subtype &Ehi cl e. Alternatively
E could beunboundedand thus any type would be accepted as parameter and in
this case thec: Vehi cl e would have been omitted from the above example. In
Java an unbounded type parameter is implicitly boundijyect . Essentially

TOOL The Expression Problem 4121

parameterized classes are function that take types as angsiand return a class,
and one of the solutions we shall see later is based on thgsidge mechanism.

Recursive classes can be written in a type safe way by Wsingunded poly-
morphism This allows a type parameter to appear in its own bound.

Virtual types Another way of handling genericity is virtual types. Virtugpes
were first introduced in BETA]8]. The general idea is simttathat of parameter-
ized classes, but instead of giving the types as parametetass contains a type
variable. The mechanism is best explained through an exampl
Vehi clelist = {
type E < Vehicle;

get(): §
put(e: E);

HereE is a virtual type variable, and is defined to be a subclas&hbifcl e.
The<: means that the type is virtual and that it can be further boling easiest
way to think of virtual types is as aliases of classes.H.@bove is an alias for the
class Vehicle, which all the elements of the list have to bebelass of. Théi st
can be further bound:

Bi keLi st = VehicleList {
E < Bike;

This is not statically type safe, the following example iflas:

ListPutter = {
put Stuff(I1: VehicleList, stuff: Vehicle){
| put(stuff);
}
}

Bi keLi st bl = new BikeList();
ListPutter I'p = new ListPutter();

I p(bl, new Bike()); //Ck

I'p(bl, new Car(); //Wong

If the arguments tput St uf f is of typeBi keLi st andBi ke the methodput -
Stuf f works fine, but it is not possible to check this staticallysdimething other
than aBi ke, e.g aCar is given as the second argument, a runtime error will occur.
BETA solves this by generating runtime checks. TorgerS&h dtgues that if the
Li st Putter problem gives rise to a type-check error instead of a runtihezk,
virtual types are statically type safe. He also shows thaltitlst Putt er example
can be rewritten to avoid the problem.

As mentioned previously Scala offers virtual types. In 8chbwever, the type
variable must be finally bound, in order to instantiate aslabhis is due to the
implementation of virtual types in Scala, depending onralestclasses in Java.

TOOL The Expression Problem Bi21

Shallow and deegp mixin composition When doing mixin compaosition in Scala
we refer to a composition where we only combine traits wittiba need to specif-
ically state the relations of the classes contained in titstasshallow mixin com-
position When it is necessary to combine each individual class aitdeixplicitly
inside the new trait (or class) we refer to it @sep mixin compositionWe have
borrowed both of these terms frofd [9]

3 Analysis

In this section we analyze four different proposed solgitmnthe expression prob-
lem. All proposals start with a base language consistinguafierals, and extends
them with additional functionality. We have implementetmbposals and per-
formed experiments on them. Amongst those, we have tried dhiemgs not dis-
cussed in the articles in which they were introduced.

3.1 Object-oriented and functional decomposition

Odersky & Zenger(]9] propose two partial solutions to theregpion problem in
the Scala language using virtual types. One proposal isdbas®bject-oriented
decomposition while the other is based on functional de@sitipn. The solutions
focus primarily on the support of virtual types, and one ukesvisitor-pattern for
functional decomposition.

3.1.1 Object-Oriented decomposition

This approach is similar to a standard decomposition of esgions in object-
oriented languages, using thaterpreter design pattern[]7], in that it introduces
an abstracExp type, with concrete expressions as subclassdxmpf Operators
are defined as methods on each class. To support independemsiens without
changes to existing code, virtual types and Scala’s mixgabdgities are usel.

trait Base {
type exp < Exp;
trait Exp {
def eval: int;
}
class Num(v: Int) extends Exp {
val value = v;
def eval = val ue;
}
}

Figure 1: The Base language of OODC

Limplementation is in fil&bj ect Ori ent edDeconposi ti on. scal a

TOOL The Expression Problem 6121

The approach is to use traits with a virtual typep. Each trait contains the
classes of the datatypes of a given language, each exteadiagicExp and con-
taining operators on these datatypes, see FIgure 1. Tockttterianguage, its traits
must be extended and then in the extending trait the virjyzd tust be further
bound to the extended versionExp.

An extension of the language with a new datatype amountstending the
trait, and adding a new class for the new datatype.

Extending with a new operator amounts to extending the bageand inside
that extending thé&xp class and each class in the trait with the new operator. Al-
though this is not quite as easy as extending with a new gsdatyis as easy as
would be expected when using object-oriented decompasifiince all operators
are defined in the classes of the individual datatypes, itdvbs added to each.

Traits are abstract in the sense that they cannot be irestieahti To use a lan-
guage a new class extending the trait of the language hascreaid. In this class
the virtual expression type is finally bound Ep, it will then correspond to the
last version oExp in all operators and classes.

Base

[\

|BasePIus| |BaseNeg| |Equals| |Show|

—D Extends
- = > with

_——— -

| [I

|ShowDbIePIusNeg| |EquaIsShowPIusNeg|

Figure 2: Extensions to the OODC based language.

Adding new datatypes and new operators is relatively eagydi much more
so, than it would be in other object-oriented languages. ifiteeesting part of this
approach is the combination of independent extensions.alitteors demonstrate
this several times. First by extending the basic languamesisting only of literals,
with Pl us andNeg data types, and then combining them to a new language. They
also show that it is possible to mix datatype extensions gedabor extensions by
adding ashow operator to the language, and combining it with the datansioes.
See Figur&l2 for an overview.

The approach is really the standard object-oriented deositipn translated to
Scala. Because of Scala’s expressiveness and use of modngey the possibility

TOOL The Expression Problem 7121

of combining independent extensions, but not always invaatrivay. When com-
bining operator extensions it is necessary taldep mixin compositignmeaning
that it is not enough to combine traits, you also have to cambiach class in the
trait.

When adding operators that transform the tree, it is alsessary to add fac-
tory methods that returexp, but this is true for all statically typed languages, since
it would otherwise be impossible to substitute e.gl as class with arAdd class,
when they have no subclass relation between them.

Binary methods are a problem in themselves, and in the ebjamted ap-
proach it is shown that this is relatively easy to add becafisértual types. For
example, an equals method can easily be made to only acdeptobf the same
type by finally binding its virtual type variable.

3.1.2 Functional decomposition

The functional decomposition uses the visitor-patternitoutate functional de-
composition of the given language, see Fiddre 4. This is tiedsrd approach
when using object-oriented Ianguﬁes

Extending the language with a new operator can be done withlitee work,
simply by writing a new visitor, which performs the new fuioct on the visited
expressions. Extending with a new datatype, however, istahére laborious.
TheVisitor trait has to be extended with a function handling the cash thi¢
new datatype.

/\ /\ /\

BasePlusTriple

Our extensions

BasePlusNeg
/\

DblePlusNeg ShowPlusNeg
/\ /\

_D Extends
- - > with

[showDblePlusNeg|

Figure 3: Extensions to the FDC language

As would be expected, in the functional decomposition caonnigi indepen-
dent function extensions is easy, but combining data extessequiredeep mixin

2Implementation is in fil&unct i onal Deconposi ti on. scal a

TOOL The Expression Problem 8i21

trait Base {
trait Exp {
def accept(v: visitor): unit;

class Num(val ue: int) extends Exp {
def accept(v: visitor): unit = v.visitNun{val ue);
}
type visitor < Visitor;
trait Visitor {
def visitNum(value: int): unit;

class Eval: visitor extends Visitor {
var result: int = _
def apply(t: Exp): int ={ t.accept(this); result };
def visitNun{value: int): unit = {

result = val ue;

}

}

}

Figure 4: FDC base language

compositionto combine the visitors from both extensions. Essentitdly,ombine
independent operators, you only have to mix their respedctaits:

trait ShowDbl ePl usNeg extends Dbl ePl usNeg with ShowPl usneg;

Unlike the object-oriented approach, it is not shown thé g&asy to combine in-
dependent data extensions with independent function sixtes in the functional
decomposition. Instead independent operations to the $amgeage are added
and those are combined (Figue 3). To show that it is possibehave added

an operatoiri pl e to the base language, and combined it with the language con-
taining aPl us datatype. Our addition is marked by a square in Fidlire 3. This
combination was shown to be quite easy (see Figure 5), ath[8] does not even
mention whether it is possible or not.

trait BasePlusTriple extends BaseTriple with BasePlus {
type visitor < Visitor;

class Triple: visitor extends super.Triple with super[BasePlus].Visitor{
def visitPlus(l: Exp, r: Exp) = {
result = new Plus(apply(l),apply(r));
}
}
}

Figure 5: combining data and operator extensions in FDC

In [9] the task of adding binary operators to the functiored@mposition is left
as an exercise to the reader. However, it is not immediatebr,cat least not to us,

TOOL The Expression Problem Q21

how to accomplish this. It seems that, although a solutionast likely possible,
it is not simple.

3.1.3 Commonnalities

[9] is not concerned with much else than the expression proliself. Specifically
it does not address important aspects of partial solutikasé¢use of creation code
and level of extensibility (see Sectibn#4.1).

Another important aspect that is overlooked is how to stmécthe extensions
to facilitate combination of independent extensions of enitvan one level. Be-
cause of Scala’s requirement that a mixed-in class’ dirapeclass must be a
superclass of the class it is mixed with, Scala imposes sonigtions as to how
extensions can be further extended. This can be overcoragtlihby making sure
that all extensions have tliase language as a direct superclass, and we will show
how to do this in sectiof4.2. So althoudh [9] does not meritiis) the proposals
can easily be refactored to allow it. It will however, giveaito slightly more com-
plex code, since it has to be specified that new languageadcexte expressions
from the mixed-in class(es) and not from the superclass.

3.2 A hybrid solution

In [12] Torgersen presents four new solutions to the expragsoblem using Java
generics. We will only treat the last of the four solutionspsed in the paper,
the hybrid, since it is the most advanced solution of the tmd serves as a good
source of comparison to the other solutions we corBider

The hybrid solution in FigurEEcombines the data-centered approach with
the operation-centered approach. The solution uses tliteMigttern for keeping
operation extensibility and an abstract parameterizessolade to keep the data
type extensibility. Torgersen’s objective is to createamfework that is extensible
in both dimensions without needing to modify existing codd &eeping all three
levels of extensibility, see Figule 8.

The solution uses parameterized classes to be able to leafraimework open
for later extension. Take the following example:

abstract class Node[V <: Visitor] extends Expression { ... }

TheNode class is a common super class of all language datatypegdtasn-
eterized with a typ& whose type is open, except that it has to be a subclass of the
trait Vi si t or . This will let future extensions create their owinsi t or implemen-
tations and thereby create subclasselsode using this particulavi si t or .

SImplementation is in file4ybri d. scal a

4This is the Scala version of Torgersens original Java-bmsplmentation. Note that this exam-
ple will not work as intended in the current implementatiéi$oala. This is becausel nst ancef
is not properly implemented yet. In the example source cdariotests we overcame this with a
cast and a catch as can be seeHyibr i d. scal a.

TOOL The Expression Problem [021

trait Base {
trait Expression {
def handle(v: Visitor): unit;

}

trait Visitor {
def apply(l: Expression): unit;
def defaul t(l: Expression): unit;
}

abstract class Node[V <: Visitor] extends Expression {
def handle(v: Visitor): unit = {
if (v.islnstanceO[V]) {
accept (v.aslnstanceCf[V]);
} else {
v.defaul t(this);
1
}
def accept(v: V): unit;
}

abstract class Op[E <: Expression] extends Visitor {
def apply(exp: Expression): unit = {
if (exp.islnstanceCf[E]) {
cal I (exp. aslnstanceCf[E]);
} else {
exp. handl e(this);
}

def call(e: E): unit;
def default(e: Expression): unit = {
throw new I |1 egal Argument Excepti on("Expressi on probl emoccurred!");
}
}
}

Figure 6: The Base language of Hybrid

In our implementation of Torgersen’s framework in the cahtef Scala we
have introduced a grouping of language hierarchies, songethat is possible in
Scala by use ofraits to create mixin compositions. As mentioned above this is
the same way Odersky & Zenger have structured their propasabrder to be
able to create independent extensions that can later beimedhbLater we will
explain how exactly to combine independent extension stingi of several levels
of extensions, something not clarified in any of the solupooposals.

As illustrated in Figurél6 every language extension is geolipto atrait that
can be extended further. Then later the framework is usedtiis:

trait LanguageWthEval extends Base {
/1 new | anguage constructs go here

}

Apart from this grouping mechanism we have implemented ytheith solution
as proposed and in the following we will analyze what acyuaidbkes it work. The

TOOL The Expression Problem 121

hybrid solution uses Java-style parameterized classealke mgeneric framework
for creating expressions belonging to a certain language.

TheNode class in Figur&l6 is parameterized with a type paramétssunded
by Vi sitor. The reason for this is that then it is possible for later esiens of
Node to handle extensions of th&si t or class. As can be seen from Figlite 7 class

trait Ale extends Base {
trait PrintExp with Expression {
def print(print: Print): unit;
}

class Print() extends Op[PrintExp] {
override def call(e: PrintExp): unit = {
e.print(this);
}
}

trait AleVisitor with Visitor {
def visitLit(lit: Lit): unit;
def visitAdd(add: Add): unit;
}

class Lit(v: int) extends Node[AleVisitor] with PrintExp {
var value: int =v;
def print(print: Print): unit = {
Systemout. print(v);

def accept(v: AleVisitor): unit = {
v.visitLit(this);
}
}

class Add(l: Expression, r: Expression) extends
Node[AleVisitor] with PrintExp { ... }

Figure 7: The ALE language

Li t is an extension ofode with the parameterized type boundAbeVi sitor -
the type system now knows that it is safe to call the methadt Li t (thi s) on
anAl eVisi tor instance.

For the hybrid solution to be able to handle all datatypemfprevious ver-
sions of the language it makes a runtime type-check of thenaegt expression.
If it is not of a known type (i.e. E) then we invoke the methaahdl e(t hi s) to
handle older versions of abstract syntax trees. Qass Figure[® implements an
appl y(...) method for applying this operation on an expression. If tige@ent
expression is of an older version (it does not know how to leitdthe operation
surrenders the responsibility to the expression withfi{séli s) as call-back (dou-
ble dispatch), which then invokescept (v). This will result in the correct visit
method (thisaccept method forwards its calls to the sit method of the visitor
with itself as an argument) to be invoked. If the visitor arste passed taccept

TOOL The Expression Problem Z121

is not recognized (e.g. it is not subtype \9f the methoddef aul t is called to
stop the dispatch process (in hybrid it throws an excepti@xample: When two
independent extensions A and B of the same language whers A hnctional
extension which is applied to datatype from language B, litvait be possible for
the datatype to handle the visitor, and the exception isshrdn Scala this limi-
tation can be overcome by combining the two extensions haradéng the types
match. In Sectiob’ 212 we will provide an example of such a doatlon in Scala.

Torgersen takes a slightly different approach to the prolilean the other pro-
posals in that he allows casts for the benefit of other thihgshe Hybrid frame-
work casts have been allowed in order to be able to achieverblgvel extensi-
bility, which from a reuse perspective could be very impatitdurthermore if we
look at the hybrid solution in FigurE 6 it circumvents the éygystem in a safe
manner, in that it usasst anceof to ensure that it won't result in a runtime error.
If the framework cannot ensure safe runtime-executionviegiup, resulting in an
exception from the framework. We don't consider this exicepa runtime type
error, but a flaw in the use of the hybrid framework. During suplementation
and experimentation with the hybrid solution in Scala weehewsme across this
exception a couple of times as a result of incomplete contibimaof languages as
the only cause.

3.3 Higher-order Hierarchies

During our selection of solutions to the expression prolslemecent solution by
Ernst [3] puzzled us because of its immediate simplicity andthe same time
being statically typed. The problem is implementedybetal6] a generalization
of the BETA, but we found it relevant to look at his solutiolrr the context of
Scala and therefor we analyze our findings Bere

One significant difference between our solution and the oesgmted in([3] is
that all inheritance combinations of member classes habe tdeclared explicit.
This means that we have to repeat the relation between gatatijke for example:

class Lit(value: int) extends Exp with super.Lit(value)

It can also be seen from the above example that the relatiovebalit and
Exp has to be reestablished explicitly. dgfnetathere would actually be a relation
between these classes other than that they just happen wwhiasses with the
same name in different scopes. This means that it is a cuntbersask to slide
a new class in between two already defined classes in Scatagasingbetait
would require nothing more that creating a new group andnglid in between -
the member classes of the group does not have to alteredh venit the case in
Scala.

Scala does not have higher-order hierarchies and familynpaiphism [5],
which makes the semantics of our Scala implementation stiatesifferent hence

SImplementation is in fil¢di gher Or der Hi erar chi es. scal a

TOOL The Expression Problem 3121

it difficult to make a valid comparison of the HoH solution teetother three solu-
tion proposals.

3.4 Typegroups

In all the implementations of the proposals we have made we bsedype groups

to group together families of mutually dependent types &/ges belonging to a
specific language in the expression problem. Type groupsarfirst class entities

in Scala, but thdrait construct can be used to make the same grouping (mixin
composition). Take the following example from the impletagion of the hybrid
approach:

trait Base {
trait Exp {
def handle(v: Visitor): unit;

}

Base is a group of classes/types that is open for later refinentemtan im-
portant difference between the grouping mechanism prapasean extension to
LOOJ and Java in[]i1] and the way we use it in Scala is that the reldi@ween
members of type groups has to be declared explicitly as ibestin the previous
section. Consider the following example.

trait Base {
class Exp {
def foo: unit = {Console.printin("foo")};
1
}

trait Full extends Base {
class Exp {
def bar: unit = {Console.printin("bar")};
}
}

Scala’s type system will not complain at all if exposed to éheve example,
furthermore it willnot relate the typeBase. Exp andFul | . Exp, because members
of groupsBase andFul | are completely independent of each other when not stated
otherwise. What we really wanted wag | . Exp to be a refinement dase. Exp,
but this can be done by telling this to Scala’s type systentiatty:

trait Base {
class Exp {
def foo: unit = {Console.printin("foo")};
}
}

trait Full extends Base {
class Exp extends super.Exp {
def bar: unit = {Console.printin("bar")};
}
}

TOOL The Expression Problem 721

We think that the approach of having to explicitly state def@ncies as in Scala
is a both good and bad, on one side it prevents the progranromardccidentally
relating classes from different groups that should not Hasen related, on the
other hand it is cumbersome task to make changes to previoupgy(as discussed
in Sectior:3.B), because this will invalidate the whole grstructure.

4 Comparison

In this section we will compare the different approache®teing “The Expression
Problem”. The main focus will be on how the solutions diffgiate from each
other, and what kind of trade offs have been made. This sediadlivided into
smaller topics and for each topic, there will be an analybib® relevant parts of
the four solutions. When applicable we will give referenoegomments on our
experiences in implementing the different solutions.

Most importantly we will compare the four analyzed solutidnom four dif-
ferent perspectives. These dgel of extensibilityindendent extensibilifybinary
methodsandease of application

4.1 Leve of extensibility

Of the four approaches]l12], and thereby the Hybrid solyti®the only one which

considers the perspective of extensibility at differerele the most. From a code
reuse perspective this dimension is very important becidasée is not extensible

at an appropriate level it might render itself useless totami@l user. As previ-

ously described Hybrid achieves object-level extensibilivhich is necessary in
the context of object persistence.

compile run

Source Binary Object

Figure 8: Levels of extensibility

Odersky and Zenger do not concern themselves with levelgtehsibility. Is
is clear that their code is source level extensible, but ttepot discuss the other
levels. Currently it is not possible to do mixin compositiarScala without having
the source code of the mixed-in class, but this is only a &itiah to the current
implementation. When this is addressed appropriatelycait bf the addressed
solutions become binary level extensible.

4.2 Independent extensibility

The criterion of independent extensibility is added to thénition of the expres-
sion problem in[[B]. In this section we will look at how wellgHour proposed

TOOL The Expression Problem [A121

solutions combine independent extensions. Fiflire 9 shbevsimplest way a
(base) language can be extended with two independent @uiliti they are both
unaware of each other. At the bottom they are combined inddamguage that has
the functionality of both extensions.

_D Extends
- - > with

Figure 9: Combining independent extensions

Object-Oriented decomposition The OODC solution is shown to be able to
combine independent extensions, both when the extensambined are data ex-
tension and when they are operation extensions. They atso thiat a data exten-
sion can be combined with an operator extension.

However, they do not address the problem of combining indeéget linear
extensions of more than one level. Although we have not theg] it is quite easy
to re-factor the code to allow combinations of linear exitems of more than one
level, but it will require specifying exactly which langumags extended in each
extension, and thus gives slightly more complicated code.

Functional decomposition The FDC solution is shown also to have the same
ability to combine independent extensions, but it has nentshown that it can
combine an operation extension with a data extension. We tread this, and
showed it to be quite simple (see Figlite 5). To combine a da&nsion with an
operator extension, it is only necessary to extend eachatgpewith handling of
the new datatype.

The problem of combining independent extensions of mone dim& level is not
handled here either, but as with OODC it is also possible slitiht modification
of the code.

Hybrid solution In [9] Odersky & Zenger claim that Torgersen omits consid-
ering how his solution would be able to combine independatensions. It is
true for as far as Java implementation goes that indepematégmsibility would be
complicated maybe even impossible, but when the hybridisolis implemented
in Scala, it achieves full capability to combine indepertdmhensiorﬁ. See Figure

3.

SImplementation is in filedybri dI ndependent . scal a

TOOL The Expression Problem @121

_D Extends
A - - > witn

/\ /\
1 1

| NALPEl | SALPT|

| NALPE & SALPT|

Figure 10: The “SNALPE" hierarchy

The base language has been extended by two levels with immeeatd data
extensions, and finally those have been combined into ogeideye containing all
data variants and operations over them. That is the langaiahe bottom of the
graph. Furthermore member clas$esle and Vi si t or have to be mixed in as
well, previously described ateep mixin compositiornThis mean that the member
classes need to have the same structure as the language trait

Higher-order Hierarchy based The HoH solution is also shown to have full
capability to combine independent extensions. We have aokenextensions to a
language based on the HoH solution to the same extent as tuylthiel solution,
but there is no indication that this solution should be legsable of doing so.

A note on Scala as implementation language As mentioned above, the step
from Java to Scala as implementation language for the hymligtion enabled it
to combine independent extensions. As can be seen fromdEIflueach extension
extendghe base language and only inherits the added functionalibe extension
languages. This has to be this way, because mixin in Scalérescthat the direct
super class of the mixed-in class is also a super class okterded class.

4.3 Binary methods

The four solutions proposed all involve simple methods andhta objects i.e.
methods taking no arguments or methods taking simple angtensach as a pretty-
printers indentation level. In this subsection we will laakeach of the solutions’
abilities to handle binary methods i.e. methods on the dbjacts that take the

TOOL The Expression Problem [7121

same kind of data objects as an argument. We will use the mettio comparing
two expressions for equality, as a reference example.

Object-Oriented decomposition The OODC solution was extended witheqi
method and then both data and operation extensions werel.adde language
containing the binary method is not extended independeanily the extensions
combined, however, so it is not known to be possible. It isydar, mixed with
BasePl usNeg trait and the resulting trait is mixed with ttfgaowPl usNeg trait, so
at least it is shown that it can be combined with a languag¢agtng datatype
extensions and with a language containing operator exies.si

Functional decomposition The above mentioned implementation azfi was
not made for the FDC solution. We attempted to use a similarageh, but it
turned out that we needed the type variable that the OODGQimolhas. This
was not desirable, since it would turn the FDC into a hybrigecboriented and
functional decomposition solution, and the solution wamtdlonger be the same.
So far it has not been shown to be possible, although it mkediylis. Attempts
of using a double dispatch approach have also failed, beazfibke need to define
two different kinds of visitors.

Hybrid solution We implementedql in the hybrid solution of using the same
basic idea from OODC i][9] by adding a running update of thehod-owning
object to the visitor. It turned that this approach would kvjrst fine when we
tested it, but it is a non-trivial implementatltn

Higher-order Hierarchy based We did not look into how well the solution of
[B] handles binary methods, but it would be an interestinglst

It would also be interesting to look at how binary methodsldde generalized
to methods taking any number of arguments of any type woulitpeled in each
of these solutions.

4.4 Easeof application

The amount of work involved in using each of these four sohgiand the com-
plexity of applying the solution are as important as the jonev perspectives.

Object-Oriented and Functional decomposition The OODC and FDC solu-
tions are quite simple to extend languages with. In OODCaeldension amounts
to simply adding the new expression classes implementingxadting methods,
and an operation extension requires a binding of the typahlarand extending

"Implementation is in file4ybr i dBi nar yQper ati ons. scal a

TOOL The Expression Problem 8121

the data type classes with the new method. In FDC a data éxterexjuires ex-
tending the base expression implementing visitor funetiioyy but much less so
than in the hybrid solution. An operation extension recgiegtending the visi-
tor to a new kind, defining methods to handle each existing tigie. When it
comes to implementing binary methods, the OODC solutioeasonably simple
to work with, but the FDC solution caused quite a lot of traubAll in all these

two solutions are simpler than the hybrid solution and taé&ss work.

Hybrid solution Working with the hybrid solution is not trivial. It is comple
in its mechanics and extending languages based on it requiithe programmer
to either have a good understanding of how the solution worki® follow the
examples in[[12] closely. In order to create a base langudgeexpression in-
terface must be extended, the visitor interface must bendgt: data types must
extendNode with visitor handling functionality and finally operationsust extend
Op. Then in order to extend the language with an operation, Xipeession in-
terface must be extended to another level @nanust be extended implementing
visitor functionality. A data extension has to extetude with visitor functionality
and extend the visitor interface to another level. Impletingna binary operation
in the hybrid solution is even more complex. It requires tisitar to update its
own reference to one if its sub-expressions each time it$sqmhon to the next
sub-expression of the argument expression. All in all aeqaamplicated and
cumbersome approach to work with.

Higher-order Hierarchy based In the HoH solution extending a language with
either an operation or a data type amounts to simply extgnttia class of the
language and then either adding a new component class imtaskata extension
or extending all the component classes with a new method dacdmnnot possibly
be any simpler than this. Binary methods were not implenteintehis solution,
so we have no indication of the simplicity of and work invahi@ such additions.

Also, Scala does not implement family polymorphism and éigbrder hierar-
chies which makes it difficult to make a valid comparison @& groblem imple-
mented ingbetaand the one we have implemented in Scala.

5 Reated work

Aspect Oriented Programming (AOP) The goal of Aspect Oriented Program-
ming is typically considered improving separation of canseand most AOP ap-
proaches provide possibility for this by means of instruteé¢n modify existing
code without actually editing the code. As pointed outlindAfl [12] a solution
to the expression problem can be made readily by use of AORukecof this
possibility to inject new code into old code. Unfortunatéys approach is only
source-level extensible because injecting new code ita@ode requires recom-
pilation and hence is not re-usable at binary level. We tilik this approach is

TOOL The Expression Problem @121

interesting because it introduces a new dimension to theesgiwn problem that
the above considered proposals have not favored; namedyaggm of concerns.
In contrast, and also underlined in Sectiod 4.4, they verghmangle concerns in

the two dimensions that they try to solve the problem in. WA@P it would be

possible to completely separate extending new datatypesdxtending with new
operations over them, which from a reuse perspective migliportant.

This illustrates the core dilemma of the expression probldéims all about
compromise. As described above it is possible to solve tipeesgion problem
using AOP with static type safety and the ability to extentath dimensions, but
with the compromise of only having source-level extengibil

Structural Virtual Types Structural Virtual Types are presented Inl[11] as a
merger of parameterized classes and virtual types, whimVige the same expres-
siveness as both F-bound polymorphism and virtual typesttiree dimensions of
subtyping) and are statically typed. It is an open questibatter structural virtual
types could give rise to an improved solution to the expogsproblem.

6 Conclusion

Four solutions to the expression problem have been treadadthe point of view
of the Scala programming language. Scala’s abilities ofesgion has helped us
implement a version of each solution and extend the solsitwith further addi-
tions that were not considered in their original settingsal® has proven to be a
good base for solving the expression problem. Working wities made it easy
to implement and experiment with the problem at hand anddhgisns we have
analyzed.

We have looked at three categories of solutions, namelethased owirtual
types parameterized typesndhigher order hierarchies

We have shown that the Hybrid solution originally writtenJava, that was
unable to perform combinations of independent extensigrable to do so when
implemented in Scala. Thus the chosen implementation kgeand its expres-
siveness is a major factor in deciding how well programmelide able to perform
two dimensional extensions in their applications.

Regarding level of extensibility, all of the approachespgarpsource level ex-
tensibility. This can be seen as the minimum requirementafgplution to the
expression problem. They also, in theory, support binargllextensibility, when
Scala is fully implemented. The Hybrid solution is the onheaupporting object
level extensibility, but without statical type safety dibtigh it does so in a safe
manner as explained earlier.

All of the solutions are independently extensible with bo#w operators and
new datatypes, and they can all combine independent eatensf multiple lev-
elfl. However, all of the solutions requideep mixin compositioto combine at

800DC and FDC would have to be slightly refactored to allovs thi

TOOL The Expression Problem pOI21

least some extensions, except for HoHgiveta but only becausgbetaprovides
direct language support for deep mixin compaosition.

We have looked at binary methods in three proposals. In OOmCHybrid
adding binary methods is possible, but non-trivial. Impdetation-wise, binary
methods in OODC is trivial, but the idea used|ih [9] does nqteap simple. We
tried adding binary methods to FDC, first using the same amiras in OODC,
and later using a double-dispatch approach, but we couldayet of them to work
without changing existing code. Of course, this might justbecause we could
not get the right idea. As mentioned we managed to extendigiyith a binary
operatoreql by piggy-bagging the visitor down the expression tree, butds
rather complicated. We have not looked into binary methodsdH.

OODC, FDC and HoH are all relatively easy to use and extena: chiue is
not too complicated, perhaps except for the visitor base@ Bpproach, which
has a control flow that is not immediately clear, but this isetfor most visitor
based programs. The Hybrid solution requires a lot of coraptd code which
reduces readability drastically. Independent combinatedd to the complexity of
all solutions. None of them are straight forward to impleimeith support for this.

Of the four different solutions, Hybrid is the most geneitihas extensibility
on all levels, and it also considers reuse of client code. fgriee is that Hybrid
has increased complexity and that it is not completely csllyi type safe. The
complexity alone limits the use of the framework. If the i@sed flexibility is
not imperative, it is probably easier to use another, manpka approach, such as
OODC or FDC.

TOOL The Expression Problem PTI21

References

[1] Bruce K.: Some Challeging Typing Issues in Obejct-Oriented Langs)dgje
sevier Science B.V, 2003.

[2] Bruce K.et al. On Binary MethodsTheory and Practice of Object systems 1
®3)

[3] Ernst E.:The expression problem, Scandinavian stgl€ OOP’04.
[4] Ernst E.:Higher-Order hierarchiesProceedings ECOOP’'03.
[5] Ernst E.:Family PolymorphismProceedings ECOOP’01

[6] Ernst E.: gbeta — a Language with Virtual Attributes, Block Structuaed
Propagating, Dynamic Inheritanc&h.D. thesis. Department of Computer Sci-
ence, University of Aarhus, Denmark, 1999.

[7] Gamma, Eet al.(1995) Design Patterns: Elements of reusable Object-@den
Software. Addison-Wesley

[8] Madsenet al.: Object-Oriented Programming in the BETA Programming Lan-
guage Addison-Wesley, 1993.

[9] Oderskyet al.: Independently Extensible Solutions to the Expression|nob
[10] Oderskyet al.: An Overview of the Scala Programming Language

[11] Thorup K. K., Torgersen M.Unifying Genericity - Combining the Benefit of
Virtual Types and Parameterized Classes

[12] Torgersen M.:The expression problem revisited - four new solutions using
generics

[13] Torgersen M.Virtual Types are Statically Safe

[14] Wadler P.:The Expression ProblenPosted on the Java Genericity mailing
list, 1998.

	Introduction
	Knowledge Foundation
	The expression problem
	Scala
	Concepts

	Analysis
	Object-oriented and functional decomposition
	Object-Oriented decomposition
	Functional decomposition
	Commonnalities

	A hybrid solution
	Higher-order Hierarchies
	Type groups

	Comparison
	Level of extensibility
	Independent extensibility
	Binary methods
	Ease of application

	Related work
	Conclusion

