
Aarhus Universitet May 31, 2005
Datalogisk Institut
Åbogade 34
8200Århus N

Types in Object-Oriented Languages
The Expression Problem in Scala

{esbenn, mcalster, sm, argo}@daimi.au.dk

Esben Toftdahl Nielsen 20001722
Kim Alster Larsen 20011709
Søren Markert 20010467
Kristian Ellebæk Kjær 20001960

This report contains 21 numbered pages.

Source code is available athttp://www.daimi.au.dk/∼esbenn/tool

All group members have contributed equally to the project.

http://www.daimi.au.dk/~esbenn/tool

TOOL The Expression Problem 1/21

Contents

1 Introduction 2

2 Knowledge Foundation 2
2.1 The expression problem . 2
2.2 Scala . 3
2.3 Concepts . 3

3 Analysis 5
3.1 Object-oriented and functional decomposition 5

3.1.1 Object-Oriented decomposition 5
3.1.2 Functional decomposition 7
3.1.3 Commonnalities . 9

3.2 A hybrid solution . 9
3.3 Higher-order Hierarchies . 12
3.4 Type groups . 13

4 Comparison 14
4.1 Level of extensibility . 14
4.2 Independent extensibility . 14
4.3 Binary methods . 16
4.4 Ease of application . 17

5 Related work 18

6 Conclusion 19

TOOL The Expression Problem 2/21

1 Introduction

In this report we analyze and compare a number of solution proposals to “The
Expression Problem”. We have chosen Scala [10] as a base language for analyzing
and comparing the solution proposals.

Our goal is to evaluate 4 different partial solutions to the expression problem
in terms of extensibility, independent extensibility, binary methods, and ease of
application. Extensibility refers to how easy it is to extend a language in both
dimensions. Independent extensibility is whether it is possible to combine inde-
pendently developed extensions, and how easy it is. Binary methods refers to the
possibility of adding binary methods to the language. Finally, ease of application
is a, subjective, evaluation of how easy the proposal is to use in practice.

To equal the playing field, all proposals have been implemented in Scala. Scala
was chosen because of its rich set of language constructs. Scala supports both vir-
tual types and parametric types, which are used in differentproposals. Besides,
Scala offers mixin-composition, which is necessary for theability to combine in-
dependent extensions.

The first two of the solutions are from [9], and focus on independent extensibil-
ity when using Scala to implement solutions to the expression problem. The first is
an object-oriented decomposition (OODC), and the second isa functional decom-
position (FDC) using a visitor pattern [7]. The third solution is from [12], which
covers 4 different proposals. We have only looked at the lastof these proposals,
which is a hybrid between an object-oriented and a functional decomposition (Hy-
brid). The last solution is from [3] and based on higher-order hierarchies (HoH)
[4].

In the following section we give a brief overview of the problem in focus, the
language in use and describe essential concepts used in the report. In Section 3
we analyze each proposal separately and subsequently compare these in Section 4.
Section 5 describes related work and finally Section 6 concludes.

2 Knowledge Foundation

In this section we present a formulation of the expression problem, describe the
implementation language, which we evaluate the solutions in, and describe some
essential concepts.

2.1 The expression problem

The expression problem, originally formulated by Wadler [14] and since reformu-
lated by numerous participants in the solution battle, is inherently controvert. We
take no particular stand in how exactly to describe the problem, rather we refer to
[3], [9] and [12] as a basis for this paper.

However we want to explicate the following simple formulation by Torgersen:
“Can your application be structured in such a way that both the data model and

TOOL The Expression Problem 3/21

the set of virtual operations over it can be extended withoutthe need to modify ex-
isting code, without the need for code repetition and without runtime type errors.”.
We stress “without runtime type errors” as an important statement because the ex-
pression problem really becomes interesting (read challenging) when exposed to a
type system that ensures safe execution of the code.

As the above formulation indicates, the expression problemis about two di-
mensional extensibility. If a data type is modeled in an object-oriented fashion it
is easy to add additional data types by simply by adding new classes, but adding
a new operation over the data types requires adding new methods to each existing
class (and thus altering existing source code). If the data type is modeled in a func-
tional fashion (SML style) it is easy to add a new operation over the data types, but
adding new data types requires rewriting each existing operator over these types.
Naturally, a valid solution to the expression problem must allow both data exten-
sions and operation extensions at the same time without modifying existing code.

2.2 Scala

Scala is an object-oriented (and to some extent also functional) statically typed
programming language. The reason for choosing Scala as a basis for analyzing
the solutions to the expression problem is that it contains most of the concepts that
have been used in the solutions that we look at. At the same time it maintains a
type system that ensures that entities are used in a type-safe fashion at runtime.
Scala’s type system supports parameterized classes, virtual types, explicitly typed
self references, mixin compositions and more, all are part of the different proposals
that we analyze.

2.3 Concepts

Here we will explain some basic concepts and terminology related to the expression
problem and the discussion of it.

Parameterized classes Some of the solutions we discuss depend on different
kinds of genericity. Parameterized classes is one such kindand it allows classes to
be parameterized by a data type as shown in the following example.

VehicleList[E <: Vehicle] = {
get(): E;
put(e: E);

}

HereE is the type parameter. A parameter can beboundedby a type, in this
caseVehicle, which means thatE has to be a subtype ofVehicle. Alternatively
E could beunboundedand thus any type would be accepted as parameter and in
this case the<:Vehicle would have been omitted from the above example. In
Java an unbounded type parameter is implicitly bound byObject. Essentially

TOOL The Expression Problem 4/21

parameterized classes are function that take types as arguments and return a class,
and one of the solutions we shall see later is based on this language mechanism.

Recursive classes can be written in a type safe way by usingF-bounded poly-
morphism. This allows a type parameter to appear in its own bound.

Virtual types Another way of handling genericity is virtual types. Virtual types
were first introduced in BETA [8]. The general idea is similarto that of parameter-
ized classes, but instead of giving the types as parameters,a class contains a type
variable. The mechanism is best explained through an example:

VehicleList = {
type E <: Vehicle;
get(): E;
put(e: E);

}

HereE is a virtual type variable, and is defined to be a subclass ofVehicle.
The<: means that the type is virtual and that it can be further bound. The easiest
way to think of virtual types is as aliases of classes. I.e,E above is an alias for the
class Vehicle, which all the elements of the list have to be a subclass of. TheList
can be further bound:

BikeList = VehicleList {
E <: Bike;
...

}

This is not statically type safe, the following example clarifies:

ListPutter = {
putStuff(l: VehicleList, stuff: Vehicle){

l.put(stuff);
}

}

BikeList bl = new BikeList();
ListPutter lp = new ListPutter();

lp(bl,new Bike()); //Ok

lp(bl, new Car(); //Wrong

If the arguments toputStuff is of typeBikeList andBike the methodput-
Stuff works fine, but it is not possible to check this statically. Ifsomething other
than aBike, e.g aCar is given as the second argument, a runtime error will occur.
BETA solves this by generating runtime checks. Torgersen [13] argues that if the
ListPutter problem gives rise to a type-check error instead of a runtimecheck,
virtual types are statically type safe. He also shows that the ListPutter example
can be rewritten to avoid the problem.

As mentioned previously Scala offers virtual types. In Scala, however, the type
variable must be finally bound, in order to instantiate a class. This is due to the
implementation of virtual types in Scala, depending on abstract classes in Java.

TOOL The Expression Problem 5/21

Shallow and deep mixin composition When doing mixin composition in Scala
we refer to a composition where we only combine traits without the need to specif-
ically state the relations of the classes contained in the traits asshallow mixin com-
position. When it is necessary to combine each individual class and trait explicitly
inside the new trait (or class) we refer to it asdeep mixin composition. We have
borrowed both of these terms from [9]

3 Analysis

In this section we analyze four different proposed solutions to the expression prob-
lem. All proposals start with a base language consisting of numerals, and extends
them with additional functionality. We have implemented all proposals and per-
formed experiments on them. Amongst those, we have tried a few things not dis-
cussed in the articles in which they were introduced.

3.1 Object-oriented and functional decomposition

Odersky & Zenger [9] propose two partial solutions to the expression problem in
the Scala language using virtual types. One proposal is based on object-oriented
decomposition while the other is based on functional decomposition. The solutions
focus primarily on the support of virtual types, and one usesthe visitor-pattern for
functional decomposition.

3.1.1 Object-Oriented decomposition

This approach is similar to a standard decomposition of expressions in object-
oriented languages, using theInterpreter design pattern [7], in that it introduces
an abstractExp type, with concrete expressions as subclasses ofExp. Operators
are defined as methods on each class. To support independent extensions without
changes to existing code, virtual types and Scala’s mixin capabilities are used.1

trait Base {
type exp <: Exp;
trait Exp {
def eval: int;

}
class Num(v: Int) extends Exp {
val value = v;
def eval = value;

}
}

Figure 1: The Base language of OODC

1Implementation is in fileObjectOrientedDecomposition.scala

TOOL The Expression Problem 6/21

The approach is to use traits with a virtual typeExp. Each trait contains the
classes of the datatypes of a given language, each extendinga basicExp and con-
taining operators on these datatypes, see Figure 1. To extend the language, its traits
must be extended and then in the extending trait the virtual type must be further
bound to the extended version ofExp.

An extension of the language with a new datatype amounts to extending the
trait, and adding a new class for the new datatype.

Extending with a new operator amounts to extending the base trait and inside
that extending theExp class and each class in the trait with the new operator. Al-
though this is not quite as easy as extending with a new datatype, it is as easy as
would be expected when using object-oriented decomposition. Since all operators
are defined in the classes of the individual datatypes, it hasto be added to each.

Traits are abstract in the sense that they cannot be instantiated. To use a lan-
guage a new class extending the trait of the language has to becreated. In this class
the virtual expression type is finally bound toExp, it will then correspond to the
last version ofExp in all operators and classes.

Figure 2: Extensions to the OODC based language.

Adding new datatypes and new operators is relatively easy, but not much more
so, than it would be in other object-oriented languages. Theinteresting part of this
approach is the combination of independent extensions. Theauthors demonstrate
this several times. First by extending the basic language, consisting only of literals,
with Plus andNeg data types, and then combining them to a new language. They
also show that it is possible to mix datatype extensions and operator extensions by
adding ashow operator to the language, and combining it with the data extensions.
See Figure 2 for an overview.

The approach is really the standard object-oriented decomposition translated to
Scala. Because of Scala’s expressiveness and use of mixins you get the possibility

TOOL The Expression Problem 7/21

of combining independent extensions, but not always in a trivial way. When com-
bining operator extensions it is necessary to dodeep mixin composition, meaning
that it is not enough to combine traits, you also have to combine each class in the
trait.

When adding operators that transform the tree, it is also necessary to add fac-
tory methods that returnexp, but this is true for all statically typed languages, since
it would otherwise be impossible to substitute e.g. aPlus class with anAdd class,
when they have no subclass relation between them.

Binary methods are a problem in themselves, and in the object-oriented ap-
proach it is shown that this is relatively easy to add becauseof virtual types. For
example, an equals method can easily be made to only accept objects of the same
type by finally binding its virtual type variable.

3.1.2 Functional decomposition

The functional decomposition uses the visitor-pattern to simulate functional de-
composition of the given language, see Figure 4. This is the standard approach
when using object-oriented languages2.

Extending the language with a new operator can be done with very little work,
simply by writing a new visitor, which performs the new function on the visited
expressions. Extending with a new datatype, however, is at bit more laborious.
TheVisitor trait has to be extended with a function handling the case with the
new datatype.

Figure 3: Extensions to the FDC language

As would be expected, in the functional decomposition combining indepen-
dent function extensions is easy, but combining data extensions requiredeep mixin

2Implementation is in fileFunctionalDecomposition.scala

TOOL The Expression Problem 8/21

trait Base {
trait Exp {
def accept(v: visitor): unit;

}
class Num(value: int) extends Exp {
def accept(v: visitor): unit = v.visitNum(value);

}
type visitor <: Visitor;
trait Visitor {
def visitNum(value: int): unit;

}
class Eval: visitor extends Visitor {
var result: int = _;
def apply(t: Exp): int = { t.accept(this); result };
def visitNum(value: int): unit = {

result = value;
}

}
}

Figure 4: FDC base language

compositionto combine the visitors from both extensions. Essentially,to combine
independent operators, you only have to mix their respective traits:

trait ShowDblePlusNeg extends DblePlusNeg with ShowPlusneg;

Unlike the object-oriented approach, it is not shown that itis easy to combine in-
dependent data extensions with independent function extensions in the functional
decomposition. Instead independent operations to the samelanguage are added
and those are combined (Figure 3). To show that it is possible, we have added
an operatorTriple to the base language, and combined it with the language con-
taining aPlus datatype. Our addition is marked by a square in Figure 3. This
combination was shown to be quite easy (see Figure 5), although [9] does not even
mention whether it is possible or not.

trait BasePlusTriple extends BaseTriple with BasePlus {
type visitor <: Visitor;

class Triple: visitor extends super.Triple with super[BasePlus].Visitor{
def visitPlus(l: Exp, r: Exp) = {

result = new Plus(apply(l),apply(r));
}

}
}

Figure 5: combining data and operator extensions in FDC

In [9] the task of adding binary operators to the functional decomposition is left
as an exercise to the reader. However, it is not immediately clear, at least not to us,

TOOL The Expression Problem 9/21

how to accomplish this. It seems that, although a solution ismost likely possible,
it is not simple.

3.1.3 Commonnalities

[9] is not concerned with much else than the expression problem itself. Specifically
it does not address important aspects of partial solutions like reuse of creation code
and level of extensibility (see Section 4.1).

Another important aspect that is overlooked is how to structure the extensions
to facilitate combination of independent extensions of more than one level. Be-
cause of Scala’s requirement that a mixed-in class’ direct superclass must be a
superclass of the class it is mixed with, Scala imposes some limitations as to how
extensions can be further extended. This can be overcome though, by making sure
that all extensions have theBase language as a direct superclass, and we will show
how to do this in section 4.2. So although [9] does not mentionthis, the proposals
can easily be refactored to allow it. It will however, give rise to slightly more com-
plex code, since it has to be specified that new languages extend the expressions
from the mixed-in class(es) and not from the superclass.

3.2 A hybrid solution

In [12] Torgersen presents four new solutions to the expression problem using Java
generics. We will only treat the last of the four solutions proposed in the paper,
the hybrid, since it is the most advanced solution of the fourand serves as a good
source of comparison to the other solutions we consider3.

The hybrid solution in Figure 64 combines the data-centered approach with
the operation-centered approach. The solution uses the Visitor pattern for keeping
operation extensibility and an abstract parameterized classNode to keep the data
type extensibility. Torgersen’s objective is to create a framework that is extensible
in both dimensions without needing to modify existing code and keeping all three
levels of extensibility, see Figure 8.

The solution uses parameterized classes to be able to leave the framework open
for later extension. Take the following example:

abstract class Node[V <: Visitor] extends Expression { ... }

TheNode class is a common super class of all language datatypes, it isparam-
eterized with a typeV whose type is open, except that it has to be a subclass of the
trait Visitor. This will let future extensions create their ownVisitor implemen-
tations and thereby create subclasses ofNode using this particularvisitor.

3Implementation is in fileHybrid.scala
4This is the Scala version of Torgersens original Java-basedimplementation. Note that this exam-

ple will not work as intended in the current implementation of Scala. This is becauseisInstanceOf
is not properly implemented yet. In the example source code of our tests we overcame this with a
cast and a catch as can be seen inHybrid.scala.

TOOL The Expression Problem 10/21

trait Base {
trait Expression {
def handle(v: Visitor): unit;

}

trait Visitor {
def apply(l: Expression): unit;
def default(l: Expression): unit;

}

abstract class Node[V <: Visitor] extends Expression {
def handle(v: Visitor): unit = {

if (v.isInstanceOf[V]) {
accept(v.asInstanceOf[V]);

} else {
v.default(this);

}
}
def accept(v: V): unit;

}

abstract class Op[E <: Expression] extends Visitor {
def apply(exp: Expression): unit = {

if (exp.isInstanceOf[E]) {
call(exp.asInstanceOf[E]);

} else {
exp.handle(this);

}
}
def call(e: E): unit;
def default(e: Expression): unit = {

throw new IllegalArgumentException("Expression problem occurred!");
}

}
}

Figure 6: The Base language of Hybrid

In our implementation of Torgersen’s framework in the context of Scala we
have introduced a grouping of language hierarchies, something that is possible in
Scala by use oftraits to create mixin compositions. As mentioned above this is
the same way Odersky & Zenger have structured their proposals in order to be
able to create independent extensions that can later be combined. Later we will
explain how exactly to combine independent extension consisting of several levels
of extensions, something not clarified in any of the solutionproposals.

As illustrated in Figure 6 every language extension is grouped into atrait that
can be extended further. Then later the framework is used like this:

trait LanguageWithEval extends Base {
// new language constructs go here

}

Apart from this grouping mechanism we have implemented the hybrid solution
as proposed and in the following we will analyze what actually makes it work. The

TOOL The Expression Problem 11/21

hybrid solution uses Java-style parameterized classes to make a generic framework
for creating expressions belonging to a certain language.

TheNode class in Figure 6 is parameterized with a type parameterV bounded
by Visitor. The reason for this is that then it is possible for later extensions of
Node to handle extensions of theVisitor class. As can be seen from Figure 7 class

trait Ale extends Base {
trait PrintExp with Expression {
def print(print: Print): unit;

}

class Print() extends Op[PrintExp] {
override def call(e: PrintExp): unit = {

e.print(this);
}

}

trait AleVisitor with Visitor {
def visitLit(lit: Lit): unit;
def visitAdd(add: Add): unit;

}

class Lit(v: int) extends Node[AleVisitor] with PrintExp {
var value: int = v;
def print(print: Print): unit = {

System.out.print(v);
}
def accept(v: AleVisitor): unit = {

v.visitLit(this);
}

}

class Add(l: Expression, r: Expression) extends
Node[AleVisitor] with PrintExp { ... }

}

Figure 7: The ALE language

Lit is an extension ofNode with the parameterized type bound toAleVisitor -
the type system now knows that it is safe to call the methodvisitLit(this) on
anAleVisitor instance.

For the hybrid solution to be able to handle all datatypes from previous ver-
sions of the language it makes a runtime type-check of the argument expression.
If it is not of a known type (i.e. E) then we invoke the methodhandle(this) to
handle older versions of abstract syntax trees. ClassOp in Figure 6 implements an
apply(...) method for applying this operation on an expression. If the argument
expression is of an older version (it does not know how to handle it) the operation
surrenders the responsibility to the expression with itself (this) as call-back (dou-
ble dispatch), which then invokesaccept(v). This will result in the correct visit
method (thisaccept method forwards its calls to thevisit method of the visitor
with itself as an argument) to be invoked. If the visitor instance passed toaccept

TOOL The Expression Problem 12/21

is not recognized (e.g. it is not subtype ofV) the methoddefault is called to
stop the dispatch process (in hybrid it throws an exception). Example: When two
independent extensions A and B of the same language where A has a functional
extension which is applied to datatype from language B, it will not be possible for
the datatype to handle the visitor, and the exception is thrown. In Scala this limi-
tation can be overcome by combining the two extensions hencemaking the types
match. In Section 4.2 we will provide an example of such a combination in Scala.

Torgersen takes a slightly different approach to the problem than the other pro-
posals in that he allows casts for the benefit of other things.In the Hybrid frame-
work casts have been allowed in order to be able to achieve object-level extensi-
bility, which from a reuse perspective could be very important. Furthermore if we
look at the hybrid solution in Figure 6 it circumvents the type-system in a safe
manner, in that it usesinstanceof to ensure that it won’t result in a runtime error.
If the framework cannot ensure safe runtime-execution it gives up, resulting in an
exception from the framework. We don’t consider this exception a runtime type
error, but a flaw in the use of the hybrid framework. During ourimplementation
and experimentation with the hybrid solution in Scala we have come across this
exception a couple of times as a result of incomplete combinations of languages as
the only cause.

3.3 Higher-order Hierarchies

During our selection of solutions to the expression problems a recent solution by
Ernst [3] puzzled us because of its immediate simplicity andon the same time
being statically typed. The problem is implemented ingbeta[6] a generalization
of the BETA, but we found it relevant to look at his solution from the context of
Scala and therefor we analyze our findings here5.

One significant difference between our solution and the one presented in [3] is
that all inheritance combinations of member classes have tobe declared explicit.
This means that we have to repeat the relation between datatypes, like for example:

class Lit(value: int) extends Exp with super.Lit(value)

It can also be seen from the above example that the relation betweenLit and
Exp has to be reestablished explicitly. Ingbetathere would actually be a relation
between these classes other than that they just happen to be two classes with the
same name in different scopes. This means that it is a cumbersome task to slide
a new class in between two already defined classes in Scala, whereas ingbetait
would require nothing more that creating a new group and sliding it in between -
the member classes of the group does not have to altered, which isn’t the case in
Scala.

Scala does not have higher-order hierarchies and family polymorphism [5],
which makes the semantics of our Scala implementation somewhat different hence

5Implementation is in fileHigherOrderHierarchies.scala

TOOL The Expression Problem 13/21

it difficult to make a valid comparison of the HoH solution to the other three solu-
tion proposals.

3.4 Type groups

In all the implementations of the proposals we have made we have usedtype groups
to group together families of mutually dependent types e.g.types belonging to a
specific language in the expression problem. Type groups arenot first class entities
in Scala, but thetrait construct can be used to make the same grouping (mixin
composition). Take the following example from the implementation of the hybrid
approach:

trait Base {
trait Exp {

def handle(v: Visitor): unit;
}
...

}

Base is a group of classes/types that is open for later refinement,but an im-
portant difference between the grouping mechanism proposed as an extension to
LOOJ and Java in [1] and the way we use it in Scala is that the relation between
members of type groups has to be declared explicitly as described in the previous
section. Consider the following example.

trait Base {
class Exp {

def foo: unit = {Console.println("foo")};
}

}

trait Full extends Base {
class Exp {

def bar: unit = {Console.println("bar")};
}

}

Scala’s type system will not complain at all if exposed to theabove example,
furthermore it willnot relate the typesBase.Exp andFull.Exp, because members
of groupsBase andFull are completely independent of each other when not stated
otherwise. What we really wanted wasFull.Exp to be a refinement ofBase.Exp,
but this can be done by telling this to Scala’s type system explicitly:

trait Base {
class Exp {

def foo: unit = {Console.println("foo")};
}

}

trait Full extends Base {
class Exp extends super.Exp {

def bar: unit = {Console.println("bar")};
}

}

TOOL The Expression Problem 14/21

We think that the approach of having to explicitly state dependencies as in Scala
is a both good and bad, on one side it prevents the programmer from accidentally
relating classes from different groups that should not havebeen related, on the
other hand it is cumbersome task to make changes to previous groups (as discussed
in Section 3.3), because this will invalidate the whole group structure.

4 Comparison

In this section we will compare the different approaches to solving “The Expression
Problem”. The main focus will be on how the solutions differentiate from each
other, and what kind of trade offs have been made. This section is divided into
smaller topics and for each topic, there will be an analysis of the relevant parts of
the four solutions. When applicable we will give referencesor comments on our
experiences in implementing the different solutions.

Most importantly we will compare the four analyzed solutions from four dif-
ferent perspectives. These arelevel of extensibility, indendent extensibility, binary
methodsandease of application.

4.1 Level of extensibility

Of the four approaches [12], and thereby the Hybrid solution, is the only one which
considers the perspective of extensibility at different levels the most. From a code
reuse perspective this dimension is very important becauseif code is not extensible
at an appropriate level it might render itself useless to a potential user. As previ-
ously described Hybrid achieves object-level extensibility, which is necessary in
the context of object persistence.

Figure 8: Levels of extensibility

Odersky and Zenger do not concern themselves with levels of extensibility. Is
is clear that their code is source level extensible, but theydo not discuss the other
levels. Currently it is not possible to do mixin compositionin Scala without having
the source code of the mixed-in class, but this is only a limitation to the current
implementation. When this is addressed appropriately all four of the addressed
solutions become binary level extensible.

4.2 Independent extensibility

The criterion of independent extensibility is added to the definition of the expres-
sion problem in [9]. In this section we will look at how well the four proposed

TOOL The Expression Problem 15/21

solutions combine independent extensions. Figure 9 shows the simplest way a
(base) language can be extended with two independent additions – they are both
unaware of each other. At the bottom they are combined into one language that has
the functionality of both extensions.

Figure 9: Combining independent extensions

Object-Oriented decomposition The OODC solution is shown to be able to
combine independent extensions, both when the extensions combined are data ex-
tension and when they are operation extensions. They also show that a data exten-
sion can be combined with an operator extension.

However, they do not address the problem of combining independent linear
extensions of more than one level. Although we have not triedthis, it is quite easy
to re-factor the code to allow combinations of linear extensions of more than one
level, but it will require specifying exactly which language is extended in each
extension, and thus gives slightly more complicated code.

Functional decomposition The FDC solution is shown also to have the same
ability to combine independent extensions, but it has not been shown that it can
combine an operation extension with a data extension. We have tried this, and
showed it to be quite simple (see Figure 5). To combine a data extension with an
operator extension, it is only necessary to extend each operator with handling of
the new datatype.

The problem of combining independent extensions of more than one level is not
handled here either, but as with OODC it is also possible withslight modification
of the code.

Hybrid solution In [9] Odersky & Zenger claim that Torgersen omits consid-
ering how his solution would be able to combine independent extensions. It is
true for as far as Java implementation goes that independentextensibility would be
complicated maybe even impossible, but when the hybrid solution is implemented
in Scala, it achieves full capability to combine independent extensions6. See Figure
10.

6Implementation is in fileHybridIndependent.scala

TOOL The Expression Problem 16/21

Figure 10: The “SNALPE” hierarchy

The base language has been extended by two levels with operation and data
extensions, and finally those have been combined into one language containing all
data variants and operations over them. That is the languageat the bottom of the
graph. Furthermore member classesNode andVisitor have to be mixed in as
well, previously described asdeep mixin composition. This mean that the member
classes need to have the same structure as the language traits.

Higher-order Hierarchy based The HoH solution is also shown to have full
capability to combine independent extensions. We have not made extensions to a
language based on the HoH solution to the same extent as to thehybrid solution,
but there is no indication that this solution should be less capable of doing so.

A note on Scala as implementation language As mentioned above, the step
from Java to Scala as implementation language for the hybridsolution enabled it
to combine independent extensions. As can be seen from Figure 10 each extension
extendsthe base language and only inherits the added functionalityin the extension
languages. This has to be this way, because mixin in Scala requires that the direct
super class of the mixed-in class is also a super class of the extended class.

4.3 Binary methods

The four solutions proposed all involve simple methods on the data objects i.e.
methods taking no arguments or methods taking simple arguments such as a pretty-
printers indentation level. In this subsection we will lookat each of the solutions’
abilities to handle binary methods i.e. methods on the data objects that take the

TOOL The Expression Problem 17/21

same kind of data objects as an argument. We will use the method eql, comparing
two expressions for equality, as a reference example.

Object-Oriented decomposition The OODC solution was extended with aneql
method and then both data and operation extensions were added. The language
containing the binary method is not extended independentlyand the extensions
combined, however, so it is not known to be possible. It is, however, mixed with
BasePlusNeg trait and the resulting trait is mixed with theShowPlusNeg trait, so
at least it is shown that it can be combined with a language containing datatype
extensions and with a language containing operator extensions.

Functional decomposition The above mentioned implementation ofeql was
not made for the FDC solution. We attempted to use a similar approach, but it
turned out that we needed the type variable that the OODC solution has. This
was not desirable, since it would turn the FDC into a hybrid object-oriented and
functional decomposition solution, and the solution wouldno longer be the same.
So far it has not been shown to be possible, although it most likely is. Attempts
of using a double dispatch approach have also failed, because of the need to define
two different kinds of visitors.

Hybrid solution We implementedeql in the hybrid solution of using the same
basic idea from OODC in [9] by adding a running update of the method-owning
object to the visitor. It turned that this approach would work just fine when we
tested it, but it is a non-trivial implementation7.

Higher-order Hierarchy based We did not look into how well the solution of
[3] handles binary methods, but it would be an interesting study.

It would also be interesting to look at how binary methods could be generalized
to methods taking any number of arguments of any type would behandled in each
of these solutions.

4.4 Ease of application

The amount of work involved in using each of these four solutions and the com-
plexity of applying the solution are as important as the previous perspectives.

Object-Oriented and Functional decomposition The OODC and FDC solu-
tions are quite simple to extend languages with. In OODC a data extension amounts
to simply adding the new expression classes implementing all existing methods,
and an operation extension requires a binding of the type variable and extending

7Implementation is in fileHybridBinaryOperations.scala

TOOL The Expression Problem 18/21

the data type classes with the new method. In FDC a data extension requires ex-
tending the base expression implementing visitor functionality, but much less so
than in the hybrid solution. An operation extension requires extending the visi-
tor to a new kind, defining methods to handle each existing data type. When it
comes to implementing binary methods, the OODC solution is reasonably simple
to work with, but the FDC solution caused quite a lot of trouble. All in all these
two solutions are simpler than the hybrid solution and takesless work.

Hybrid solution Working with the hybrid solution is not trivial. It is complex
in its mechanics and extending languages based on it requires of the programmer
to either have a good understanding of how the solution worksor to follow the
examples in [12] closely. In order to create a base language,the expression in-
terface must be extended, the visitor interface must be extended, data types must
extendNode with visitor handling functionality and finally operationsmust extend
Op. Then in order to extend the language with an operation, the expression in-
terface must be extended to another level andOp must be extended implementing
visitor functionality. A data extension has to extendNode with visitor functionality
and extend the visitor interface to another level. Implementing a binary operation
in the hybrid solution is even more complex. It requires the visitor to update its
own reference to one if its sub-expressions each time it is passed on to the next
sub-expression of the argument expression. All in all a quite complicated and
cumbersome approach to work with.

Higher-order Hierarchy based In the HoH solution extending a language with
either an operation or a data type amounts to simply extending the class of the
language and then either adding a new component class in caseof a data extension
or extending all the component classes with a new method each. It cannot possibly
be any simpler than this. Binary methods were not implemented in this solution,
so we have no indication of the simplicity of and work involved in such additions.

Also, Scala does not implement family polymorphism and higher-order hierar-
chies which makes it difficult to make a valid comparison of the problem imple-
mented ingbetaand the one we have implemented in Scala.

5 Related work

Aspect Oriented Programming (AOP) The goal of Aspect Oriented Program-
ming is typically considered improving separation of concerns and most AOP ap-
proaches provide possibility for this by means of instruments to modify existing
code without actually editing the code. As pointed out in [4]and [12] a solution
to the expression problem can be made readily by use of AOP because of this
possibility to inject new code into old code. Unfortunatelythis approach is only
source-level extensible because injecting new code into old code requires recom-
pilation and hence is not re-usable at binary level. We stillthink this approach is

TOOL The Expression Problem 19/21

interesting because it introduces a new dimension to the expression problem that
the above considered proposals have not favored; namely separation of concerns.
In contrast, and also underlined in Section 4.4, they very much tangle concerns in
the two dimensions that they try to solve the problem in. WithAOP it would be
possible to completely separate extending new datatypes from extending with new
operations over them, which from a reuse perspective might be important.

This illustrates the core dilemma of the expression problem: It is all about
compromise. As described above it is possible to solve the expression problem
using AOP with static type safety and the ability to extend inboth dimensions, but
with the compromise of only having source-level extensibility.

Structural Virtual Types Structural Virtual Types are presented in [11] as a
merger of parameterized classes and virtual types, which provide the same expres-
siveness as both F-bound polymorphism and virtual types (i.e. three dimensions of
subtyping) and are statically typed. It is an open question whether structural virtual
types could give rise to an improved solution to the expression problem.

6 Conclusion

Four solutions to the expression problem have been treated from the point of view
of the Scala programming language. Scala’s abilities of expression has helped us
implement a version of each solution and extend the solutions with further addi-
tions that were not considered in their original settings. Scala has proven to be a
good base for solving the expression problem. Working with it has made it easy
to implement and experiment with the problem at hand and the solutions we have
analyzed.

We have looked at three categories of solutions, namely those based onvirtual
types, parameterized typesandhigher order hierarchies.

We have shown that the Hybrid solution originally written inJava, that was
unable to perform combinations of independent extensions,is able to do so when
implemented in Scala. Thus the chosen implementation language and its expres-
siveness is a major factor in deciding how well programmers will be able to perform
two dimensional extensions in their applications.

Regarding level of extensibility, all of the approaches support source level ex-
tensibility. This can be seen as the minimum requirement fora solution to the
expression problem. They also, in theory, support binary level extensibility, when
Scala is fully implemented. The Hybrid solution is the only one supporting object
level extensibility, but without statical type safety all though it does so in a safe
manner as explained earlier.

All of the solutions are independently extensible with bothnew operators and
new datatypes, and they can all combine independent extensions of multiple lev-
els8. However, all of the solutions requiredeep mixin compositionto combine at

8OODC and FDC would have to be slightly refactored to allow this.

TOOL The Expression Problem 20/21

least some extensions, except for HoH ingbeta, but only becausegbetaprovides
direct language support for deep mixin composition.

We have looked at binary methods in three proposals. In OODC and Hybrid
adding binary methods is possible, but non-trivial. Implementation-wise, binary
methods in OODC is trivial, but the idea used in [9] does not appear simple. We
tried adding binary methods to FDC, first using the same approach as in OODC,
and later using a double-dispatch approach, but we could getnone of them to work
without changing existing code. Of course, this might just be because we could
not get the right idea. As mentioned we managed to extend Hybrid with a binary
operatoreql by piggy-bagging the visitor down the expression tree, but it was
rather complicated. We have not looked into binary methods in HoH.

OODC, FDC and HoH are all relatively easy to use and extend. The code is
not too complicated, perhaps except for the visitor based FDC approach, which
has a control flow that is not immediately clear, but this is true for most visitor
based programs. The Hybrid solution requires a lot of complicated code which
reduces readability drastically. Independent combinations add to the complexity of
all solutions. None of them are straight forward to implement with support for this.

Of the four different solutions, Hybrid is the most general.It has extensibility
on all levels, and it also considers reuse of client code. Theprice is that Hybrid
has increased complexity and that it is not completely statically type safe. The
complexity alone limits the use of the framework. If the increased flexibility is
not imperative, it is probably easier to use another, more simple approach, such as
OODC or FDC.

TOOL The Expression Problem 21/21

References

[1] Bruce K.: Some Challeging Typing Issues in Obejct-Oriented Languages, El-
sevier Science B.V, 2003.

[2] Bruce K.et al.: On Binary Methods, Theory and Practice of Object systems 1
(3)

[3] Ernst E.:The expression problem, Scandinavian style, ECOOP’04.

[4] Ernst E.:Higher-Order hierarchies, Proceedings ECOOP’03.

[5] Ernst E.:Family Polymorphism, Proceedings ECOOP’01

[6] Ernst E.: gbeta – a Language with Virtual Attributes, Block Structure, and
Propagating, Dynamic Inheritance. Ph.D. thesis. Department of Computer Sci-
ence, University of Aarhus, Denmark, 1999.

[7] Gamma, Eet al.(1995) Design Patterns: Elements of reusable Object-Oriented
Software. Addison-Wesley

[8] Madsenet al.: Object-Oriented Programming in the BETA Programming Lan-
guage, Addison-Wesley, 1993.

[9] Oderskyet al.: Independently Extensible Solutions to the Expression Problem.

[10] Oderskyet al.: An Overview of the Scala Programming Language.

[11] Thorup K. K., Torgersen M.:Unifying Genericity - Combining the Benefit of
Virtual Types and Parameterized Classes.

[12] Torgersen M.:The expression problem revisited - four new solutions using
generics.

[13] Torgersen M.:Virtual Types are Statically Safe.

[14] Wadler P.:The Expression Problem. Posted on the Java Genericity mailing
list, 1998.

	Introduction
	Knowledge Foundation
	The expression problem
	Scala
	Concepts

	Analysis
	Object-oriented and functional decomposition
	Object-Oriented decomposition
	Functional decomposition
	Commonnalities

	A hybrid solution
	Higher-order Hierarchies
	Type groups

	Comparison
	Level of extensibility
	Independent extensibility
	Binary methods
	Ease of application

	Related work
	Conclusion

