Independently Extensible Solutions to the Expression Problem

Matthias Zenger, Martin Odersky

Ecole Polytechnique Fédérale de Lausanne
INR Ecublens
1015 Lausanne, Switzerland

Technical Report IC/2004/33 ‘

Abstract

The expression problem is fundamental for the develop-
ment of extensible software. Many (partial) solutions to
this important problem have been proposed in the past.
None of these approaches solves the problem of using
different, independent extensions jointly. This paper pro-
poses solutions to the expression problem that make it
possible to combine independent extensions in a flexible,
modular, and type-safe way. The solutions, formulated in
the programming language SCALA, are affected with only
a small implementation overhead and are easy to imple-
ment by hand.

1 The Expression Problem

Since software evolves over time, it is essential for soft-
ware systems to be extensible. But the development of
extensible software poses many design and implemen-
tation problems, especially, if extensions cannot be an-
ticipated. The expression problem is probably the most
fundamental one among these problems. It arises when
recursively defined datatypes and operations on these
types have to be extended simultaneously. The term ex-
pression problem was originally coined by Phil Wadler in
a post on the java-Genericity mailing list [25], in which he
also proposed a solution written in an extended version
of GENERIC JAVA [3]. Only later it appeared that Wadler’s
solution could not be typed.

For this paper, we paraphrase the problem in the fol-
lowing way: Suppose we have a datatype which is defined
by a set of cases and we have processors which operate
on this datatype. There are primarily two directions along
which we can extend such a system:

e The extension of the datatype with new data vari-
ants,

e The addition of new processors.

We require that processors handle only a finite number
of data variants and thus do not provide defaults which
could handle arbitrary cases of future extensions. The

challenge is now to find an implementation technique
which satisfies the following list of requirements:

e Extensibility in both dimensions: It should be possible
to add new data variants and adapt existing opera-
tions accordingly. Furthermore, it should be possible
to introduce new processors.

e Strong static type safety: It should be impossible to
apply a processor to a data variant which it cannot
handle.

e No modification or duplication: Existing code should
neither be modified nor duplicated.

e Separate compilation: Compiling datatype exten-
sions or adding new processors should not encom-
pass re-type-checking the original datatype or exist-
ing processors.

We add to this list the following criterion:

e Independent extensibility: It should be possible
to combine independently developed extensions so
that they can be used jointly [21].

Implementation techniques which meet the last criterion
allow systems to be extended in a non-linear fashion.
Such techniques typically allow programmers to consol-
idate independent extensions in a single compound ex-
tension as illustrated by Figure 1. By contrast, without
support for independent extensibility, parallel extensions
diverge, even if they are completely orthogonal [7]. This
makes a joint use of different extensions in a single sys-
tem impossible.

This paper presents two families of new solutions to
the expression problem. One family is based on object-
oriented decomposition while the other is based on func-
tional decomposition using the visitor pattern. In its orig-
inal form, each of these decomposition techniques allows
extensibility only in one direction (data or operations), yet
disallows extensibility in the other. The solutions pre-
sented here achieve independent extensibility of data and
operation extensions. They are sufficiently simple and
concise to be immediately usable by programmers.

Compound ,/'
Extension1+2 ,/
4

’
’
7

Figure 1: Combination of independent extensions.

Our solutions are expressed in the programming lan-
guage SCALA [16]. SCALA is a strongly statically typed
programming language which fuses object-oriented and
functional programming concepts. For instance, (SML-
style) module systems are expressed in a purely object-
oriented way by identifying modules with objects, func-
tors with classes, and signatures with interfaces. It fol-
lows from this identification that objects in SCALA can
contain types as members. Furthermore, these type
members can be either abstract or concrete. The path-
dependent types of the vObj calculus [17] give a type the-
oretic foundation for languages like SCALA where types
can be members of objects.

In module systems, abstract type members are pri-
marily used for information hiding — they allow one to
abstract from concrete implementations. In this paper
they are used as a means of composition. We will see
that each decomposition technique uses an abstract type
member to keep the system open for future extensions in
the “dual” dimension (i.e. the dimension in which exten-
sions are normally not possible).

Two other type-systematic constructs explored in
vObj and implemented in SCALA also play important roles
in our solutions. Mixin composition allows to merge in-
dependent extensions. Explicitly typed self references
overcome a problem in the visitor-based solutions which
made Wadler’s original proposals untypable.

ScALA has been designed to interact smoothly with
JAVA or .NET host environments. All solutions in this
paper compile as given with the current SCALA compiler
[16] and can be executed on a Java VM, version JDK 1.4 or
later.

The rest of the paper is organized as follows. Section 2
analyzes previous work on the expression problem based
on the criteria mentioned initially. Section 3 discusses an
independently extensible solution to the expression prob-
lem formulated in an object-oriented programming style.
An alternative approach based on a functional decompo-
sition is presented in Section 4. Section 5 discusses the
implemenation of binary methods. Section 6 concludes
with an analysis of the language features that are required
by the discussed approaches.

2 Partial Solutions

The expression problem has been intensively studied in
the literature. However, none of the proposed solutions
satisfies all the requirements stated in Section 1. This sec-
tion gives an overview over some of the most important
solutions proposed in the past.

Object-oriented decomposition In object-oriented lan-
guages, the Interpreter design pattern [11] can be used
to implement datatypes in an extensible fashion. Here,
a datatype would be implemented by an abstract super-
class which specifies the signature of methods that imple-
ment the various processors. Concrete subclasses rep-
resent the data variants and implement the processors.
This approach makes it easy to add new data variants
simply by defining new subclasses, but adding new pro-
cessors involves modifications of the abstract superclass
as well as all concrete subclasses.

Functional decomposition With the Visitor design pat-
tern [11] it is possible to address the problem in a more
functional fashion. This pattern allows one to separate
the representation of data from functionality operating
on such data. Processors are encapsulated in Visitor
objects which provide for every data variant a method
that handles the particular case. This approach makes
it straightforward to write new processors, but adding
new data variants requires that all existing processors are
modified to include methods that handle the new cases.

Extensible visitors Krishnamurti, Felleisen, and Fried-
man propose the Extensible Visitor pattern [13], a slightly
modified variant of the Visitor design pattern which
makes it possible to add both new data variants and new
processors. Unfortunately, this approach is based on type
casts which circumvent the type system and therefore
make extensions unsafe. In this pattern, all existing visi-
tor classes have to be subclassed whenever a new variant
class is added. Otherwise a runtime error will appear as
soon as an old visitor is applied to a new variant.

Extensible visitors with defaults Zenger and Odersky
refine the Extensible Visitor pattern into a programming
protocol in which datatype extensions do not automati-
cally entail adaptations of all existing processors and vice
versa [26, 27]. Technically, extensibility of data and func-
tionality is achieved by adding default cases to type and
visitor definitions; these default cases handle all possi-
ble future extensions. While this approach allows pro-
grammers to reuse existing visitors for new data variants
and therefore does not suffer from the runtime errors
described above, it is still not fully satisfactory, since it
allows to apply visitors to data variants for which the vis-
itor was not designed for originally.

Multi-methods Programming languages supporting
multiple dispatch via multi-methods provide good sup-
port for extensibility with default cases. MultiJava [8]
is a JAvA-based programming language that allows
programmers to add new methods to existing classes
without modifying existing code and without breaking
encapsulation properties. While new, externally specified
methods require default cases, internal methods (i.e.
methods that are defined inside of the corresponding
class) are not subject to this restriction. A precise analy-
sis of the constraints that are required to enable modular
typechecking for such internal and external methods
is given by Millstein, Bleckner, and Chambers, in their
work on EML [15]. Opposed to all the approaches men-
tioned before, EML makes it possible to use independent
extensions jointly.

Generic visitors Palsberg and Jay’s Generic Visitors, also
called Walkabouts, offer a way to completely decou-
ple data representations from function definitions [19].
Therefore, walkabouts are very flexible to use and to ex-
tend. But since they rely on reflective capabilities of
the underlying system, this approach lacks static type-
safety and is subject to substantial runtime penalties.
Grothoff recently showed that the performance decrease
can be avoided by using runtime code generation tech-
niques [12].

Self types Recently, Bruce presented a way to make the
Interpreter design pattern extensible [4]. His approach
is based on the existence of a new ThisType type con-
struct, referring to the public interface of the self ref-
erence this inside of a class. Like this, the meaning
of ThisType changes when a method whose signature
refers to ThisType is inherited in a subclass. This feature
makes it possible to keep the type of the data variants
open for future extensions. A severe limitation of this ap-
proach is that for type-safety reasons, the exact runtime
type of the receiver of a method referring to ThisType
has to be known at compile-time. A further limitation is
that ThisType cannot be used to make the visitor design
pattern extensible.

Generic classes Solutions to the expression problem
which rely on generic classes and F-bounds have recently
been proposed by Torgersen [23]. Similar to our ap-
proach, Torgersen proposes two kinds of solutions: one
data-centered solution based on an object-oriented de-
composition, and a operation-centered solution based on
a functional decomposition using the visitor design pat-
tern. Torgersen’s solutions satisfy our first four require-
ments stated in Section 1, but do not address the problem
of independent extensibility. Another drawback is the
relatively extensive and complex programming protocol
the programmer has to observe. For instance, his data-
centered solution requires a fixed point operation for all
classes at each instantiation, which makes it cumbersome

to use the schema in practice. His operation-centered so-
lution relies on a clever trick to pass a visitor object as
argument to itself in order to overcome the typing prob-
lems encountered by Wadler. However, this is not exactly
an obvious technique for most programmers and it be-
comes progressively more expensive in the case of several
mutually recursive visitor classes. An interesting varia-
tion of Torgersen’s solution uses JAVA’s wildcards [24] to
achieve object-level extensibility, i.e. reusability of actual
expression objects across extensions.

3 Object-Oriented Decomposition

This section presents a solution of the expression prob-
lem in SCALA using an object-oriented approach. Fol-
lowing Wadler’s original problem statement, we evolve a
simple datatype for representing arithmetic expressions
together with operations on this type by incrementally
adding new datatype variants and new operations.

3.1 Framework

We start with a single data variant Num for representing
integer numbers and an operation eval for evaluating ex-
pressions. An object-oriented implementation is given in
the following program:

trait Base {
type exp <: Exp;
trait Exp {
def eval: int
}
class Num(v: int) extends Exp {
val value = v;
def eval = value
}
}

The trait Exp lists the signature of all available operations
and thus defines an interface for all data variants. Traits
in SCALA are very similar to interfaces in JAvA; the main
difference is that traits may contain concrete implemen-
tations for some methods.

The only data variant is implemented by class Num.
This class extends Exp with a method value which re-
turns the corresponding integer value. It also defines a
concrete implementation for operation eval.

To keep the set of operations on expressions open for
future extensions, we abstract over the expression type
and use an abstract type exp whenever we want to refer
to expression objects. An abstract type definition intro-
duces a new named type whose concrete identity is un-
known; type bounds may be used to narrow possible con-
crete incarnations of this type. This mechanism is used
in the program above to declare that exp is a subtype of
our preliminary expression interface Exp.

Since we want to be able to refer to our three abstrac-
tions exp, Exp, and Num as a whole, we wrap them into a
top-level trait Base. Base has to be subclassed in order

to either extend it, or to use it for a concrete application.
The latter is illustrated in the following program:

object BaseTest extends Base with Application {
type exp = Exp;
val e: exp = new Num(7);
Console.printin(e.eval);

}

This program defines a top-level singleton object whose
class is an extension of trait Base. The type alias defi-
nition type exp = Exp overrides the corresponding ab-
stract type definition in the superclass Base, turning the
abstract type exp into a concrete one (whose identity is
Exp). The last two lines in the code above instantiate
the Num class and invoke the eval method. The clause
with Application in the header of the object definition
is a mixin class composition [2] which, in this case, adds a
main method to BaseTest to make it executable. We will
explain mixin class compositions in the next subsection.

3.2 Data Extensions

Linear Extensions The object-oriented decomposition
scheme makes it easy to create new data variants. In
the following program we present two extensions of trait
Base. BasePlus extends our system by adding a new
Plus variant, BaseNeg defines a new Neg variant. Note
that in general, we type expressions using the abstract
type exp instead of the type defined by the concrete class
Exp.

trait BasePlus extends Base {
class Plus(1: exp, r: exp) extends Exp {
val left = 1; val right = r;
def eval = Teft.eval + right.eval
}
3
trait BaseNeg extends Base {
class Neg(t: exp) extends Exp {
val term = t;
def eval = - term.eval;
}
}

Combining Independent Extensions We can now de-
ploy the two extensions independently of each other; but
SCALA also allows us to merge the two independent exten-
sions into a single compound extension. This is done us-
ing a mixin class composition mechanism which includes
the member definitions of one class into another class.
The following line will create a system with both PTus
and Neg data variants:

trait BasePlusNeg extends BasePlus with BaseNeg;

Trait BasePTusNeg extends BasePlus and incorpo-
rates all the member definitions of trait BaseNeg. Thus, it
inherits all members from trait BasePTus and all the new
members defined in trait BaseNeg. Note that the mem-
bers defined in trait Base are not inherited twice. The

mixin class composition with trait BaseNeg only incorpo-
rates the new class members and omits the ones that get
inherited from BaseNeg’s superclass Base.

Mixin class composition in SCALA is similar to both
the mixin construct of Bracha [2] and to the trait com-
position mechanism of Schérli, Ducasse, Nierstrasz, and
Black [20]. As opposed to multiple inheritance, base
classes are inherited only once. In a mixin composition
A with B with C class A acts as actual superclass of
mixins B and C, replacing the declared superclasses of B
and C. To maintain type soundness, A must be a subclass
of the declared superclasses of B and C. A super refer-
ence in either B or C will refer to a member of class A. As
is the case for trait composition, SCALA’s mixin composi-
tion is commutative in the mixins — A with B with Cis
equivalent to A with C with B.

A class inheriting from A with B with C inherits
members from all three base classes. Concrete members
in either base class replace abstract members with the
same name in other base classes. Concrete members of
the mixin classes B and C always replace members with
the same name in the superclass A. If some concrete
member mis implemented in both B and C, then the inher-
iting class has to resolve the conflict by giving an explicit
overriding definition of m.

Unlike the original mixin and trait proposals, SCALA
does not have different syntactic constructs for classes
on the one hand and mixins or traits on the other hand.
Every class can be inherited as either superclass or mixin
base class. Traits in SCALA are simply special classes
without state or constructors. This distinction is nec-
essary because of the principle that base classes are in-
herited only once. If both B and C have a base class
T, then the two instances are unified in the composition
A with B with C. This presents no problem as long as
T is a trait, i.e. it is stateless and does not have an explicit
constructor. For non-trait base classes T, the above mixin
composition is statically illegal. The idea to have a com-
mon syntactic construct for classes and mixins/traits is
due to Bracha [1].

3.3 Operation Extensions

Adding new operations requires more work than adding
new data variants. For instance, here is how we can add a
show method to expressions of our base language.

trait Show extends Base {
type exp <: Exp;
trait Exp extends super.Exp {
def show: String;
}
class Num(v: int) extends super.Num(v) with Exp {
def show = value.toString(Q);
}
}

In this example, we first have to create an extended trait
Exp which specifies the new signature of all operations
(the old ones get inherited from the old Exp trait, the new

ones are specified explicitly), then we have to subclass all
data variants and include implementations of the new op-
erations in the subclasses. Furthermore, we have to nar-
row the bound of our abstract type exp to our newly de-
fined Exp trait. Only this step makes the new operations
accessible to clients since they type expressions with the
abstract type exp.

Note that the newly defined Exp and Num classes
shadow the former definitions of these classes in super-
class Base. The former definitions are still accessible in
the context of trait Show via the super keyword.

Shadowing vs. overriding constitutes one of the key
differences between classes in SCALA and virtual classes
[14]. With virtual classes, class members override equally
named class members of a base class, whereas in SCALA
the two class members exist side by side (similar to what
happens to object fields in JAvVA or C#). The overriding
behavior of virtual classes is potentially quite powerful,
but poses type safety problems due to covariant over-
riding. There exist proposals to address the type safety
problems of virtual classes [22, 10], but the resulting type
systems tend to be complicated and have not yet been ex-
plored fully.

Linear extensions We can adapt our previously defined
systems so that even data variants defined in extensions
of Base support the show method. Again, this is done
with a mixin class composition. This time we mix the
new Show trait into extensions of existing traits such as
BasePlusNeg of Section 3.2. Since all our data variants
have to support the new show method, we have to create
subclasses of the inherited data variants which support
the new Exp trait.

trait ShowPlusNeg extends BasePlusNeg with Show {
class Plus(1: exp, r: exp) extends super.Plus(l, r)
with Exp {
def show = left.show + "+" + right.show;

}

class Neg(t: exp) extends super.Neg(t) with Exp {

def show = "-(" + term.show + ")";
}
3
object ShowPTlusNegTest extends ShowPlusNeg
with Application {
type exp = Exp;
val e: exp = new Neg(
new Plus(new Num(7), new Num(6)))

Console.printin(e.show + " =" + e.eval);
}

The previous program also illustrates how to use the
new system. The singleton object ShowPTusNegTest first
closes the (still open) definition of type exp, then it in-
stantiates an expression involving all different kinds of
data variants. Finally, both the eval and the show method
are invoked.

Tree transformer extensions So far, all our operations
took elements of the tree only as their receiver argu-

ments. We now show what is involved when writing tree
transformer operations, which also return tree elements
as results. As an example, let’s add a method dbTe to the
expression type defined in trait BasePlusNeg. Method
dbTe is supposed to return a new expression which eval-
uates to a number which is twice the value of the original
expression.

Instead of first introducing the new operation in the
base system (which would also be possible), we choose to
specify it directly in an extension. The following program
illustrates the steps required to add method dbTe to the
expression type defined in trait BasePTusNeg.

trait DblePlusNeg extends BasePlusNeg {

type exp <: Exp;

trait Exp extends super.Exp {
def dble: exp;

}

def Num(v: int): exp;

def Plus(1: exp, r: exp): exp;

def Neg(t: exp): exp;

class Num(v: int) extends super.Num(v) with Exp {
def dble = Num(v * 2);

}

class Plus(1: exp, r: exp)

extends super.Plus(1, r) with Exp {

def dble = Plus(left.dble, right.dble);

}
class Neg(t: exp) extends super.Neg(t) with Exp {

def dble = Neg(t.dble);
}
}

Note that we cannot simply invoke the constructors of
the various expression classes in the bodies of the dble
methods. This is because method db1e returns a value of
type exp, the type representing extensible expressions,
but all data variant types like P1us and Num extend only
trait Exp which is a supertype of exp. We can establish the
necessary relationship between exp and Exp only at the
stage when we turn the abstract type into a concrete one
(with the type alias definition type exp = Exp). Only
then, Num is also a subtype of exp. Since the implementa-
tion of dbTe requires the creation of new expressions of
type exp, we make use of abstract factory methods, one
for each data variant. The concrete factory methods are
implemented at the point where the abstract type exp is
resolved. For instance, they can be implemented at the
point where we use the new db1e method:

object DblePlusNegTest extends DblePlusNeg

with Application {

type exp = Exp;

def Num(v: int): exp = new Num(v);

def Plus(1: exp, r: exp): exp = new Plus(l, r);

def Neg(t: exp): exp = new Neg(t);

val e: exp = Plus(Neg(PTus(Num(1), Num(2))),
Num(3));

Console.printin(e.dble.eval);

All examples presented here are type-safe, in the sense

that it is impossible to mix data from different languages,
nor to invoke an operation on a data object which does
not understand it. For instance, here is what happens
when we try to compile a program which violates both
requirements.

object erroneous {
val tl = new ShowPlusNegTest.Num(1l);
val t2 = new DblePlusNegTest.Neg(tl);

/7 A
// type mismatch;
// found : ShowPTusNegTest.Num

// required: DblePlusNegTest.Exp

val t3 = tl.dble;
/7 A
// value dble is not a member of
// ShowPlusNegTest.Num
}

Combining independent extensions Finally we show
how to combine the two traits ShowPlusNeg and
Db1ePTusNeg to obtain a system which provides expres-
sions with both a doub1e and a show method. In order to
do this, we have to perform a deep mixin composition of
the two traits; i.e. we have to combine the two top-level
traits ShowPTusNeg and Db1ePTusNeg as well as the traits
and classes defined inside of these two top-level traits.
Since SCALA does not provide a language mechanism for
performing such a deep mixin composition operation, we
have to do this by hand, as the following program demon-
strates:

trait ShowDblePlusNeg extends ShowPlusNeg
with DblePlusNeg {
type exp <: Exp;
trait Exp extends super[ShowPlusNeg] .Exp
with super[DblePlusNeg] .Exp;
class Num(v: int)
extends super[ShowPTusNeg] .Num(v)
with super[DblePTusNeg] .Num(v)
with Exp;
class Plus(1: exp, r: exp)
extends super[ShowPlusNeg] .Plus(1, r)
with super[DblePlusNeg].Plus(1, r)
with Exp;
class Neg(t: exp)
extends super[ShowPlusNeg] .Neg(t)
with super[DblePTusNeg] .Neg(t)
with Exp;
3

For merging the two Exp traits defined in ShowPTusNeg
and Db1ePTusNeg, we extend one of the two traits and
mix the other trait definition in. We use the syntactic
form super[...] to specify to which concrete Exp trait
we are actually referring. The same technique is used for
the other three classes Num, Plus, and Neg.

The previous examples show that the object-oriented
approach described in this section supports both data
and operation extensions and provides good support for

combining independent extensions on demand. While
combining extensions with new data variants is relatively
simple to implement, combining extensions with differ-
ent new operations is technically more difficult.

4 Functional Decomposition

For applications where the data type implementations are
fixed and new operations are added frequently, it is of-
ten recommended to use the Visitor design pattern. This
pattern physically decouples operations from data repre-
sentations. It provides a double dispatch mechanism to
apply externally defined operations to data objects. In
this section we will show how to use a techniques similar
to the ones presented in the previous section to imple-
ment this pattern in an extensible fashion, allowing both
data and operation extensions and combinations thereof.

4.1 Framework

The following program presents a framework for a
visitor-based implementation of expressions supporting
an eval operation. In this framework, we use the type
defined by trait Exp directly for representing expressions.
Concrete expression classes like Num implement the Exp
trait which defines a single method accept. This method
allows programmers to apply a visitor object to the ex-
pression. A visitor object is an encoding for an operation.
It provides methods of the form visit... for the vari-
ous expression classes. The accept method of a concrete
expression class simply selects its corresponding visit
method of the given visitor object and applies it to its
encapsulated data.

trait Base {
trait Exp {
def accept(v: visitor): unit;
}
class Num(value: int) extends Exp {
def accept(v: visitor): unit = v.visitNum(value);
}
type visitor <: Visitor;
trait Visitor {
def visitNum(value: int): unit;
}
class Eval: visitor extends Visitor {
var result: int = _;
def apply(t: Exp): int = { t.accept(this); result }
def visitNum(value: int): unit = {
result = value;
}
}
}

To keep the set of expression classes open, we have to ab-
stract over the concrete visitor type. We do this with the
abstract type visitor. Concrete implementations of the
visitor interface such as class Eval typically implement
its bound Visitor.

Class Eval uses a variable result for returning val-
ues. This is necessary since the visitNum method has
as result type unit, and therefore cannot return a non-
trivial result. It would seem more natural to return a re-
sult directly from the visit methods. Then the Visitor
class would have to be parameterized with the type of
the results. However, in that case the abstract type
name visitor would be bounded by the type construc-
tor Visitor. Such abstract type constructors have not
yet been studied in detail in the context of vObj and con-
sequently have not been implemented in SCALA.

To facilitate the processing of result values in clients,
the Eval class provides instead an apply method which
returns the most recent result value. The body of this
method exhibits a technical problem. We have to call
t.accept(this), but the type Eval is not a subtype of
the abstract visitor type visitor required by the accept
method of expressions. In SCALA we can overcome this
problem by declaring the type of this explicitly. Such
an explicitly typed self reference is expressed in the pro-
gram above with the statement :visitor directly follow-
ing the name of class Eval. The type assigned to this is
arbitrary; however, classes with explicitly typed self ref-
erences can only be instantiated if the type defined by
the class is a subtype of the type assigned to this. Since
Eval is not a subtype of visitor we cannot create in-
stances of Eval in the context of the top-level trait Base.
For creating new instances of Eval we would have to re-
sort to factory methods.

Note that explicitly typed self references are different
from Bruce’s mytype construct [6], even though the two
techniques address some of the same problems. Unlike
mytype, explicitly typed self references do not change co-
variantly with inheritance. Therefore, they are a good fit
with standard subtyping, whereas mytype is a good fit
with matching [5].

4.2 Data Extensions

Linear extensions New data variants are added to the
system by including new visit methods into the Visitor
trait and by overriding the abstract type visitor with the
extended Visitor trait. The next program extends Base
by adding a new Plus expression class.

trait BasePlus extends Base {
type visitor <: Visitor;
trait Visitor extends super.Visitor {
def visitPlus(left: Exp, right: Exp): unit;
}
class Plus(left: Exp, right: Exp) extends Exp {
def accept(v: visitor): unit =
v.visitPlus(left, right);
}
class Eval: visitor extends super.Eval with Visitor {
def visitPlus(1: Exp, r: Exp): unit = {
result = apply(1) + apply(r);
}
}
}

The top-level trait BasePTus also defines anew Eval class
implementing the refined Visitor trait which can also
handle Plus objects. Note that we have to annotate the
new Eval class again with an explicit type for its self ref-
erence. This is required because for type-safety reasons
class extensions have to redefine self types covariantly.

In the same way, we can now create another extension
BaseNeg which adds support for negations.

trait BaseNeg extends Base {
type visitor <: Visitor;
trait Visitor extends super.Visitor {
def visitNeg(term: Exp): unit;
}
class Neg(term: Exp) extends Exp {
def accept(visitor: v): unit =
visitor.visitNeg(term);
}
class Eval: visitor extends super.Eval with Visitor {
def visitNeg(term: Exp): unit = {
result = -apply(term);
}
}
}

Combining independent extensions We now compose
the two independent extensions BasePlus and BaseNeg
such that we have a system providing both, addition and
negation expressions. In the previous object-oriented de-
composition scheme such a combination was achieved
using a simple mixin composition. In the functional ap-
proach, a deep mixin composition is required to achieve
the same effect:

trait BasePlusNeg extends BasePlus with BaseNeg {
type visitor <: Visitor;
trait Visitor extends super.Visitor
with super[BaseNeg].Visitor;
class Eval: visitor extends super.Eval
with super[BaseNeg] .Eval
with Visitor;

}

The program extends the previous extensions BasePlus
and mixes in the other extension BaseNeg. All concrete
visitor implementations such as Eval are also merged
by mixin composing their implementations in the two
base classes. The SCALA type system [17] requires that
abstract types such as visitor are refined covariantly.
Since the bounds of visitor in the two previous exten-
sions are not compatible, we have to explicitly override
the abstract type definition of visitor such that the new
bound is a subtype of both old bounds. Above, this is
done by creating a new Visitor trait that merges the two
previous implementations.

The following implementation shows how to use a lan-
guage. As usual, the scheme is the same for base language
and extensions. In every case, we close the operations un-
der consideration by fixing the visitor type with a type
alias.

object BasePlusNegTest extends BasePlusNeg {
type visitor = Visitor;
val op: visitor = new Eval;
Console.printin(op.apply(
new Plus(new Num(1), new Neg(new Num(2)))));

4.3 Operation Extensions

Adding new operations to a visitor-based system is
straightforward, since new operations are implemented
simply with new classes implementing the visitor inter-
face. The following code shows how to add a new oper-
ation Db1le to the BasePTusNeg system. The Dble opera-
tion returns an expression representing the double value
of a given expression.

trait DblePlusNeg extends BasePlusNeg {
class Dble: visitor extends Visitor {
var result: Exp = _;
def apply(t: Exp): Exp = {
t.accept(this); result
}
def visitNum(value: int): unit = {
result = new Num(2 * value)
}
def visitPlus(1: Exp, r: Exp): unit = {
result = new Plus(apply(1), apply(r))
}
def visitNeg(term: Exp): unit = {
result = new Neg(apply(term))
}
}
}

In a similar fashion we can create a second, independent
extension ShowPlusNeg which adds an operation for dis-
playing expressions in textual form.

trait ShowPlusNeg extends BasePTusNeg {
class Show: visitor extends Visitor {
var result: String = _;
def apply(t: Exp): String = {
t.accept(this); result
}
def visitNum(value: int): unit = {
result = value.toString()
}
def visitPlus(1: Exp, r: Exp): unit = {

result = apply(left) + "+" + apply(right)

}
def visitNeg(term: Exp): unit = {
result = "-(" + apply(term) + ")"
}
}

}

Combining Independent Extensions We can now imple-
ment a system which supports both operations Db1e and
Show by using a simple shallow mixin class composi-
tion involving the two orthogonal independent extensions
DblePlusNeg and ShowPTusNeg:

trait ShowDblePlusNeg extends DblePlusNeg
with ShowPlusNeg;

This example illustrates a duality between functional and
object-oriented approaches when it comes to combining
independent extensions. The functional decomposition
approach requires a deep mixin composition for merging
data extensions but only a shallow mixin composition for
merging operation extensions. For the object-oriented ap-
proach, the situation is reversed; data extensions can be
merged using shallow mixin composition whereas opera-
tion extensions require deep mixin composition.

Hence, the fundamental strengths and weaknesses of
both decomposition approaches still show up in our set-
ting, albeit in a milder form. A merge of extensions in
a given dimension which was impossible before now be-
comes possible, but at a higher cost than a merge in the
other dimension.

5 Binary Methods

The previous examples discussed operations where the
tree appeared as receiver or as method result. We now
study binary methods, where trees also appear as a non-
receiver arguments of methods. As an example, consider
adding a structural equality test eql to the expression
language. x eql y should evaluate to true if x and y are
structurally equal trees. The implementation given here
is based on object-oriented decomposition; the dual im-
plementation based on functional decomposition is left
as an exercise for the reader. We start with an implemen-
tation of the eq1 operation in the base language.

trait Equals extends Base {
type exp <: Exp;
trait Exp extends super.Exp {
def eql(other: exp): boolean;
def isNum(v: int) = false;
}
class Num(v: int) extends super.Num(v) with Exp {
def eql(other: exp): boolean = other.isNum(v);
override def isNum(v: int) = v == value;
}
}

The idea is to implement eql using double dispatch. A
call to eq1 is forwarded to a test method which is specific
to the receiver type. For the Num class this test method
is isNum(v: int). A default implementation of isNum
which always returns false is given in class Exp. This
implementation is overridden in class Num.

5.1 Data Extensions

An extension with additional data types requires addi-
tional test methods which are analogous to isNum. Hence,
we need to use a combination of our schemes for data
and operation extensions. Here is an extension of class
Equals with Plus and Neg types.

trait EqualsPlusNeg extends BasePlusNeg with Equals {
type exp <: Exp;
trait Exp extends super[BasePlusNeg].Exp
with super[Equals].Exp {
def isPTus(1: exp, r: exp): boolean = false;
def isNeg(t: exp): boolean = false;
}
class Num(v: int) extends super[Equals].Num(v)
with Exp;
class Plus(1: exp, r: exp) extends Exp
with super.Plus(1, r) {
def eql(other: exp): boolean = other.isPlus(1, r);
override def isPlus(1: exp, r: exp) =
(left eql 1) & (right eql r)
}
class Neg(t: exp) extends Exp
with super.Neg(t) {
def eql(other: exp): boolean = other.isNeg(t);
override def isNeg(t: exp) = term eql t
}
}

This extension adds test methods of the form
isPlus(1: exp, r: exp) and isNeg(t: exp) to class
Exp. Since the addition of these test methods constitutes
an operation extension, we need to refine the abstract
type exp, similar to what was done in Section 3.3.

Note that SCALA allows any binary method to be used
as an infix operator. An expression such as left eql 1
is syntactic sugar for left.eql(1).

Note also that the order of inheritance is reversed in
classes PTus and Neg when compared to class Num. This
is due to the restriction that the superclass A in a mixin
composition A with B must be a subclass of the declared
superclass of the mixin B. In our example, Num’s super-
class is Num as given in Equals, which is a subclass of
class Exp as given in Equals. On the other hand, the su-
perclass of Plus is the current definition of Exp, which
is a subclass of Exp as given in BasePTusNeg. The differ-
ence in the inheritance order is due to the fact that classes
Num and PTus/Neg themselves come from different base
classes of EqualsPTusNeg. Num comes from class Equals
whereas PTus and Neg come from class BaseP1usNeg.

5.2 Operation Extensions

A desirable property of binary methods is that they adapt
automatically to (operation) extensions. This property
holds in our setting, as is demonstrated by the following
example, which adds the show method to the classes in
trait EqualsPlusNeg by mixin-composing them with the
contents of class ShowPTusNeg from Section 3.3.

trait EqualsShowPTusNeg extends EqualsPlusNeg
with ShowPlusNeg {
type exp <: Exp;
trait Exp extends super[EqualsPlusNeg].Exp
with super[ShowPlusNeg] .Exp;
class Num(v: int)
extends super[EqualsPlusNeg] .Num(v)
with super[ShowPTusNeg] .Num(v)
with Exp;

class Plus(1: exp, r: exp)
extends super[EqualsPlusNeg].Plus(1, r)
with super[ShowPTusNeg] .Plus(1, r)
with Exp;
class Neg(term: exp)
extends super[EqualsPlusNeg].Neg(term)
with super[ShowPTusNeg] .Neg(term)
with Exp;
}

As can be seen from this example, we apply precisely
the deep mixin composition scheme for merging opera-
tion extensions — compare with trait ShowDbTePlusNeg
in Section 3.3. This shows that no special techniques are
needed to adapt binary methods to operation extensions.

We conclude with a main program which uses the
eqgl and show methods. Again, no special provisions are
needed for binary methods.

object EqualsShowPTusNegTest extends EqualsPTusNeg
with Application {

type exp = Exp;
val terml = new Plus(new Num(1l), new Num(2));
val term2 = new Plus(new Num(1), new Num(2));
val term3 = new Neg(new Num(2));
Console.print(terml.show + "=" + term2.show + "?_");
Console.printin(terml eql term2);
Console.print(terml.show + "=" + term3.show + "?_");
Console.printin(terml eql term3);

6 Discussion

We have presented two families of type-safe solutions to
the expression problem, which are dual to each other.
One family is based on object-oriented decomposition,
the other on functional decomposition using the visitor
pattern. Either family makes it easy to extend a system
in one dimension — data extensions for object-oriented
decomposition and operation extensions for functional
composition. Extensions in the dual dimension are made
possible by abstracting over a type — the tree type in
the case of object-oriented decomposition and the visi-
tor type in the case of functional decomposition. Exten-
sions in the dual dimension require a bit more overhead
than extensions in the primary dimension. In particular,
the merge of independent extensions in the dual dimen-
sion requires a deep mixin composition as compared to
a shallow mixin composition for a merge in the primary
dimension.

This principle applies to several variants of opera-
tions: simple operations that access the tree only as the
receiver of operation methods, tree transformers that re-
turn trees as results, and binary methods that take trees
as additional arguments.

All implementation schemes discussed in this paper
are sufficiently simple to be directly usable by program-
mers without special support for program generation. We
conclude that they constitute a satisfactory solution to
the expression problem in its full generality.

The examples in this paper also demonstrate that
SCALA’s abstract type members, mixin composition and
explicitly typed self references provide a good basis for
type-safe extensions of software systems. Other ap-
proaches to this problem have also been investigated;
in particular family polymorphism [9] based on virtual
classes [14] or delegation layers [18]. Compared with
these approaches, SCALA’s constructs expose the under-
lying mechanisms to a higher degree. On the other hand,
they have a clearer type-theoretic foundation, and their
type soundness has been established in the vObj core cal-
culus.

Acknowledgments Philippe Altherr, Vincent Cremet,
Burak Emir, Stéphane Micheloud, Nikolay Mihaylov,
Michel Schinz, and Erik Stenman have contributed to the
ScALA design and implementation, which was partially
supported by grants from the Swiss National Fund un-
der project NFS 21-61825, the Swiss National Competence
Center for Research MICS, Microsoft Research, and the
Hasler Foundation. We also thank Philip Wadler, Shriram
Krishnamurti, and Kim Bruce for useful discussions on
the expression problem.

References

[1] G. Bracha. Personal communication, July 2002.

[2] G. Bracha and W. Cook. Mixin-based inheritance.
In N. Meyrowitz, editor, Proceedings of the Confer-
ence on Object-Oriented Programming: Systems, Lan-
guages, and Applications, pages 303-311, Ottawa,
Canada, 1990. ACM Press.

[3] G.Bracha, M. Odersky, D. Stoutamire, and P. Wadler.
Making the future safe for the past: Adding gener-
icity to the Java programming language. In Proceed-

ings of OOPSLA "98, October 1998.

[4] K.B.Bruce. Some challenging typing issues in object-
oriented languages. Electronic Notes in Theoretical

Computer Science, 82(8), 2003.

[5] K. B. Bruce, A. Fiech, and L. Petersen. Subtyping is
not a good “Match” for object-oriented languages. In
Proceedings of the European Conference on Object-

Oriented Programming, pages 104-127, 1997.

[6] K. B. Bruce, A. Schuett, and R. van Gent. PolyTOIL: A
type-safe polymorphic object-oriented language. In
Proceedings of the European Conference on Object-

Oriented Programming, pages 27-51, 1995.

[7] J. Buckley, T. Mens, M. Zenger, A. Rashid, and
G. Kniesel. Towards a taxonomy of software change.
To appear in journal of Software Maintenance and
Evolution: Research and Practice (Special Issue on
USE), 2004.

10

[8] C. Clifton, G. T. Leavens, C. Chambers, and T. Mill-
stein. MultiJava: Modular open classes and symmet-
ric multiple dispatch for Java. In Proceedings of the
Conference on Object-Oriented Programming: Sys-
tems, Languages, and Applications, pages 130-145.
ACM Press, October 2000.

[9] E.Ernst. Family polymorphism. In Proceedings of the
European Conference on Object-Oriented Program-

ming, pages 303-326, Budapest, Hungary, 2001.

[10] E. Ernst. Higher-order hierarchies. In Proceedings
of the European Conference on Object-Oriented Pro-
gramming, LNCS 2743, pages 303-329, Heidelberg,

Germany, July 2003. Springer-Verlag.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. De-
sign Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1994.

[12] C. Grothoff. Walkabout revisited: The Runabout.
In Proceedings of the 17th European Conference on
Object-Oriented Programming, Darmstadt, Germany,

June 2003.

[13] S.Krishnamurthi, M. Felleisen, and D. Friedman. Syn-
thesizing object-oriented and functional design to
promote re-use. In Furopean Conference on Object-

Oriented Programming, pages 91-113, 1998.

[14] O.L.Madsen and B. Mgller-Pedersen. Virtual Classes:
A powerful mechanism for object-oriented program-
ming. In Proceedings OOPSLA’89, pages 397-406,

October 1989.

[15] T. Millstein, C. Bleckner, and C. Chambers. Modular
typechecking for hierarchically extensible datatypes
and functions. In Proceedings of the International
Conference on Functional Programming, Pittsburg,

PA, October 2002.

[16] M. Odersky, P. Altherr, V. Cremet, B. Emir, S. Mich-
eloud, N. Mihaylov, M. Schinz, E. Stenman, and
M. Zenger. Scala distribution. Ecole Polytechnique
Fédérale de Lausanne, Switzerland, January 2004.

http://scala.epfl.ch

[17] M. Odersky, V. Cremet, C. Rockl, and M. Zenger. A
nominal theory of objects with dependent types. In
Proceedings of the European Conference on Object-
Oriented Programming, Darmstadt, Germany, July

2003.

[18] K. Ostermann. Dynamically composable collabora-
tions with delegation layers. In Proceedings of the
16th European Conference on Object-Oriented Pro-

gramming, Malaga, Spain, 2002.

[19] J. Palsberg and C. B. Jay. The essence of the visitor
pattern. Technical Report 5, University of Technol-

ogy, Sydney, 1997.

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black.
Traits: Composable units of behavior. In Proceedings
of the 17th European Conference on Object-Oriented
Programming, Darmstadt, Germany, June 2003.

C. Szyperski. Independently extensible systems -
software engineering potential and challenges. In
Proceedings of the 19th Australian Computer Science
Conference, Melbourne, Australia, 1996.

M. Torgersen. Virtual types are statically safe. In 5th
Workshop on Foundations of Object-Oriented Lan-
guages, San Diego, CA, USA, January 1998.

M. Torgersen. The expression problem revisited —
Four new solutions using generics. In Proceedings
of the 18th European Conference on Object-Oriented
Programming, Oslo, Norway, June 2004.

M. Torgersen, C. P. Hansen, E. Ernst, P. vod der Ahé,
G. Bracha, and N. Gafter. Adding wildcards to the
Java programming language. In Proceedings SAC
2004, Nicosia, Cyprus, March 2004.

P. Wadler and et al. The expression problem. Discus-
sion on the Java-Genericity mailing list, December
1998.

M. Zenger and M. Odersky. Extensible algebraic
datatypes with defaults. In Proceedings of the In-
ternational Conference on Functional Programming,
Firenze, Italy, September 2001.

M. Zenger and M. Odersky. Implementing extensible
compilers. In ECOOP Workshop on Multiparadigm
Programming with Object-Oriented Languages, Bu-
dapest, Hungary, June 2001.

11

	Title
	The Expression Problem
	Partial Solutions
	Object-Oriented Decomposition
	Framework
	Data Extensions
	Operation Extensions

	Functional Decomposition
	Framework
	Data Extensions
	Operation Extensions

	Binary Methods
	Data Extensions
	Operation Extensions

	Discussion
	References

