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Chapter 1

Introduction

Scala smoothly integrates object-oriented and functional programming. It is de-
signed to express common programming patterns in a consise, elegant, and type-
safe way. Scala introduces several innovative language constructs. For instance:

• Abstract types and mixin composition unify concepts from object and module
systems.

• Pattern matching over class hierarchies unifies functional and object-
oriented data access. It greatly simplifies the processing of XML trees.

• A flexible syntax and type system enables the construction of advanced li-
braries and new domain specific languages.

At the same time, Scala is compatible with Java. Java libraries and frameworks can
be used without glue code or additional declarations.

This document introduces Scala in an informal way, through a sequence of exam-
ples.

Chapters 2 and 3 highlight some of the features that make Scala interesting. The fol-
lowing chapters introduce the language constructs of Scala in a more thorough way,
starting with simple expressions and functions, and working up through objects and
classes, lists and streams, mutable state, pattern matching to more complete exam-
ples that show interesting programming techniques. The present informal exposi-
tion is meant to be complemented by the Scala Language Reference Manual which
specifies Scala in a more detailed and precise way.

Acknowledgment. We owe a great debt to Abelson’s and Sussman’s wonderful
book “Structure and Interpretation of Computer Programs”[ASS96]. Many of their
examples and exercises are also present here. Of course, the working language has
in each case been changed from Scheme to Scala. Furthermore, the examples make
use of Scala’s object-oriented constructs where appropriate.





Chapter 2

A First Example

As a first example, here is an implementation of Quicksort in Scala.

def sort(xs: Array[int]) {
def swap(i: int, j: int) {
val t = xs(i); xs(i) = xs(j); xs(j) = t

}
def sort1(l: int, r: int) {
val pivot = xs((l + r) / 2)
var i = l; var j = r
while (i <= j) {
while (xs(i) < pivot) { i = i + 1 }
while (xs(j) > pivot) { j = j - 1 }
if (i <= j) {
swap(i, j)
i = i + 1
j = j - 1

}
}
if (l < j) sort1(l, j)
if (j < r) sort1(i, r)

}
sort1(0, xs.length - 1)

}

The implementation looks quite similar to what one would write in Java or C. We
use the same operators and similar control structures. There are also some minor
syntactical differences. In particular:

• Definitions start with a reserved word. Function definitions start with def,
variable definitions start with var and definitions of values (i.e. read only vari-
ables) start with val.
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• The declared type of a symbol is given after the symbol and a colon. The de-
clared type can often be omitted, because the compiler can infer it from the
context.

• Array types are written Array[T] rather than T[], and array selections are writ-
ten a(i) rather than a[i].

• Functions can be nested inside other functions. Nested functions can access
parameters and local variables of enclosing functions. For instance, the name
of the array a is visible in functions swap and sort1, and therefore need not be
passed as a parameter to them.

So far, Scala looks like a fairly conventional language with some syntactic peculiar-
ities. In fact it is possible to write programs in a conventional imperative or object-
oriented style. This is important because it is one of the things that makes it easy
to combine Scala components with components written in mainstream languages
such as Java, C# or Visual Basic.

However, it is also possible to write programs in a style which looks completely dif-
ferent. Here is Quicksort again, this time written in functional style.

def sort(xs: Array[int]): Array[int] =
if (xs.length <= 1) xs
else {
val pivot = xs(xs.length / 2)
Array.concat(
sort(xs filter (pivot >))

xs filter (pivot ==),
sort(xs filter (pivot <)))

}

The functional program captures the essence of the quicksort algorithm in a concise
way:

• If the array is empty or consists of a single element, it is already sorted, so
return it immediately.

• If the array is not empty, pick an an element in the middle of it as a pivot.

• Partition the array into two sub-arrays containing elements that are less than,
respectively greater than the pivot element, and a third array which contains
elements equal to pivot.

• Sort the first two sub-arrays by a recursive invocation of the sort function.1

• The result is obtained by appending the three sub-arrays together.

1This is not quite what the imperative algorithm does; the latter partitions the array into two
sub-arrays containing elements less than or greater or equal to pivot.
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Both the imperative and the functional implementation have the same asymptotic
complexity – O(N l og (N )) in the average case and O(N 2) in the worst case. But
where the imperative implementation operates in place by modifying the argument
array, the functional implementation returns a new sorted array and leaves the ar-
gument array unchanged. The functional implementation thus requires more tran-
sient memory than the imperative one.

The functional implementation makes it look like Scala is a language that’s special-
ized for functional operations on arrays. In fact, it is not; all of the operations used in
the example are simple library methods of a sequence class Seq[t] which is part of
the standard Scala library, and which itself is implemented in Scala. Because arrays
are instances of Seq all sequence methods are available for them.

In particular, there is the method filter which takes as argument a predicate func-
tion that maps array elements to boolean values. The result of filter is an array
consisting of all the elements of the original array for which the given predicate
function is true. The filter method of an object of type Array[t] thus has the
signature

def filter(p: t => boolean): Array[t]

Here, t => boolean is the type of functions that take an element of type t and return
a boolean. Functions like filter that take another function as argument or return
one as result are called higher-order functions.

Scala does not distinguish between identifiers and operator names. An identifier
can be either a sequence of letters and digits which begins with a letter, or it can be
a sequence of special characters, such as “+”, “*”, or “:”. Any identfier can be used
as an infix operator in Scala. The binary operation E op E ′ is always interpreted as
the method call E .op(E ′). This holds also for binary infix operators which start with
a letter. Hence, the expression xs filter (pivot >) is equivalent to the method
call xs.filter(pivot >).

In the quicksort program, filter is applied three times to an anonymous function
argument. The first argument, pivot >, represents a function that takes an argu-
ment x and returns the value pivot > x. Another way to write this function which
makes the missing argument explicit is x => pivot > x. The function is anony-
mous, i.e. it is not defined with a name. The type of the x parameter is omitted
because a Scala compiler can infer it automatically from the context where the func-
tion is used. To summarize, xs.filter(pivot >) returns a list consisting of all ele-
ments of the list xs that are smaller than pivot.

Looking again in detail at the first, imperative implementation of Quicksort, we find
that many of the language constructs used in the second solution are also present,
albeit in a disguised form.

For instance, “standard” binary operators such as +, -, or < are not treated in any
special way. Like append, they are methods of their left operand. Consequently, the
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expression i + 1 is regarded as the invocation i.+(1) of the + method of the integer
value x. Of course, a compiler is free (if it is moderately smart, even expected) to
recognize the special case of calling the + method over integer arguments and to
generate efficient inline code for it.

For efficiency and better error diagnostics the while loop is a primitive construct in
Scala. But in principle, it could have just as well been a predefined function. Here is
a possible implementation of it:

def While (p: => boolean) (s: => unit): unit =
if (p) { s ; While(p)(s) }

The While function takes as first parameter a test function, which takes no parame-
ters and yields a boolean value. As second parameter it takes a command function
which also takes no parameters and yields a result of type unit. While invokes the
command function as long as the test function yields true.

Scala’s unit type roughly corresponds to void in Java; it is used whenever a func-
tion does not return an interesting result. In fact, because Scala is an expression-
oriented language, every function returns some result. If no explicit return expres-
sion is given, the value (), which is pronounced “unit”, is assumed. This value is
of type unit. Unit-returning functions are also called procedures. Here’s a more
“expression-oriented” formulation of the swap function in the first implementation
of quicksort, which makes this explicit:

def swap(i: int, j: int): unit = {
val t = xs(i); xs(i) = xs(j); xs(j) = t
()

}

The result value of this function is simply its last expression – a return keyword is
not necessary. Note that functions returning an explicit value always need an “=”
before their body or defining expression.



Chapter 3

Programming with Actors and Mes-
sages

Here’s an example that shows an application area for which Scala is particularly well
suited. Consider the task of implementing an electronic auction service. We use
an Erlang-style actor process model to implement the participants of the auction.
Actors are objects to which messages are sent. Every process has a “mailbox” of
its incoming messages which is represented as a queue. It can work sequentially
through the messages in its mailbox, or search for messages matching some pattern.

For every traded item there is an auctioneer process that publishes information
about the traded item, that accepts offers from clients and that communicates with
the seller and winning bidder to close the transaction. We present an overview of a
simple implementation here.

As a first step, we define the messages that are exchanged during an auction. There
are two abstract base classes AuctionMessage for messages from clients to the auc-
tion service, and AuctionReply for replies from the service to the clients. For both
base classes there exists a number of cases, which are defined in Figure 3.1.

For each base class, there are a number of case classes which define the format of
particular messages in the class. These messages might well be ultimately mapped
to small XML documents. We expect automatic tools to exist that convert between
XML documents and internal data structures like the ones defined above.

Figure 3.2 presents a Scala implementation of a class Auction for auction processes
that coordinate the bidding on one item. Objects of this class are created by indi-
cating

• a seller process which needs to be notified when the auction is over,

• a minimal bid,

• the date when the auction is to be closed.
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abstract class AuctionMessage
case class Offer(bid: int, client: Actor) extends AuctionMessage
case class Inquire(client: Actor) extends AuctionMessage

abstract class AuctionReply
case class Status(asked: int, expire: Date) extends AuctionReply
case object BestOffer extends AuctionReply
case class BeatenOffer(maxBid: int) extends AuctionReply
case class AuctionConcluded(seller: Actor, client: Actor)

extends AuctionReply
case object AuctionFailed extends AuctionReply
case object AuctionOver extends AuctionReply

Listing 3.1: Message Classes for an Auction Service

The process behavior is defined by its run method. That method repeatedly selects
(using receiveWithin) a message and reacts to it, until the auction is closed, which
is signaled by a TIMEOUT message. Before finally stopping, it stays active for another
period determined by the timeToShutdown constant and replies to further offers that
the auction is closed.

Here are some further explanations of the constructs used in this program:

• The receiveWithin method of class Actor takes as parameters a time span
given in milliseconds and a function that processes messages in the mailbox.
The function is given by a sequence of cases that each specify a pattern and
an action to perform for messages matching the pattern. The receiveWithin

method selects the first message in the mailbox which matches one of these
patterns and applies the corresponding action to it.

• The last case of receiveWithin is guarded by a TIMEOUT pattern. If no other
messages are received in the meantime, this pattern is triggered after the time
span which is passed as argument to the enclosing receiveWithin method.
TIMEOUT is a particular instance of class Message, which is triggered by the
Actor implementation itself.

• Reply messages are sent using syntax of the form
destination send SomeMessage. send is used here as a binary operator
with a process and a message as arguments. This is equivalent in Scala to the
method call destination.send(SomeMessage), i.e. the invocation of the send

of the destination process with the given message as parameter.

The preceding discussion gave a flavor of distributed programming in Scala. It
might seem that Scala has a rich set of language constructs that support actor pro-
cesses, message sending and receiving, programming with timeouts, etc. In fact, the
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class Auction(seller: Actor, minBid: int, closing: Date) extends Actor {
val timeToShutdown = 36000000; // msec
val bidIncrement = 10
override def run() = {

var maxBid = minBid - bidIncrement
var maxBidder: Actor = _
var running = true
while (running) {
receiveWithin ((closing.getTime() - new Date().getTime())) {

case Offer(bid, client) =>
if (bid >= maxBid + bidIncrement) {

if (maxBid >= minBid) maxBidder send BeatenOffer(bid)
maxBid = bid; maxBidder = client; client send BestOffer

} else {
client send BeatenOffer(maxBid)

}
case Inquire(client) =>
client send Status(maxBid, closing)

case TIMEOUT =>
if (maxBid >= minBid) {

val reply = AuctionConcluded(seller, maxBidder)
maxBidder send reply; seller send reply

} else {
seller send AuctionFailed

}
receiveWithin(timeToShutdown) {

case Offer(_, client) => client send AuctionOver
case TIMEOUT => running = false

}
}

}
}

}

Listing 3.2: Implementation of an Auction Service
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opposite is true. All the constructs discussed above are offered as methods in the li-
brary class Actor. That class is itself implemented in Scala, based on the underlying
thread model of the host language (e.g. Java, or .NET). The implementation of all
features of class Actor used here is given in Section 17.11.

The advantages of the library-based approach are relative simplicity of the core lan-
guage and flexibility for library designers. Because the core language need not spec-
ify details of high-level process communication, it can be kept simpler and more
general. Because the particular model of messages in a mailbox is a library module,
it can be freely modified if a different model is needed in some applications. The
approach requires however that the core language is expressive enough to provide
the necessary language abstractions in a convenient way. Scala has been designed
with this in mind; one of its major design goals was that it should be flexible enough
to act as a convenient host language for domain specific languages implemented
by library modules. For instance, the actor communication constructs presented
above can be regarded as one such domain specific language, which conceptually
extends the Scala core.



Chapter 4

Expressions and Simple Functions

The previous examples gave an impression of what can be done with Scala. We now
introduce its constructs one by one in a more systematic fashion. We start with the
smallest level, expressions and functions.

4.1 Expressions And Simple Functions

A Scala system comes with an interpreter which can be seen as a fancy calculator.
A user interacts with the calculator by typing in expressions. The calculator returns
the evaluation results and their types. Example:

> 87 + 145
232: scala.Int

> 5 + 2 * 3
11: scala.Int

> "hello" + " world!"
hello world: scala.String

It is also possible to name a sub-expression and use the name instead of the expres-
sion afterwards:

> def scale = 5
def scale: int

> 7 * scale
35: scala.Int

> def pi = 3.141592653589793
def pi: scala.Double
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> def radius = 10
def radius: scala.Int

> 2 * pi * radius
62.83185307179586: scala.Double

Definitions start with the reserved word def; they introduce a name which stands
for the expression following the = sign. The interpreter will answer with the intro-
duced name and its type.

Executing a definition such as def x = e will not evaluate the expression e. In-
stead e is evaluated whenever x is used. Alternatively, Scala offers a value defini-
tion val x = e, which does evaluate the right-hand-side e as part of the evaluation
of the definition. If x is then used subsequently, it is immediately replaced by the
pre-computed value of e, so that the expression need not be evaluated again.

How are expressions evaluated? An expression consisting of operators and
operands is evaluated by repeatedly applying the following simplification steps.

• pick the left-most operation

• evaluate its operands

• apply the operator to the operand values.

A name defined by def is evaluated by replacing the name by the (unevaluated)
definition’s right hand side. A name defined by val is evaluated by replacing the
name by the value of the definitions’s right-hand side. The evaluation process stops
once we have reached a value. A value is some data item such as a string, a number,
an array, or a list.

Example 4.1.1 Here is an evaluation of an arithmetic expression.

(2 * pi) * radius
→ (2 * 3.141592653589793) * radius
→ 6.283185307179586 * radius
→ 6.283185307179586 * 10
→ 62.83185307179586

The process of stepwise simplification of expressions to values is called reduction.

4.2 Parameters

Using def, one can also define functions with parameters. Example:
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> def square(x: double) = x * x
def (x: double): scala.Double

> square(2)
4.0: scala.Double

> square(5 + 3)
64.0: scala.Double

> square(square(4))
256.0: scala.Double

> def sumOfSquares(x: double, y: double) = square(x) + square(y)
def sumOfSquares(scala.Double,scala.Double): scala.Double

> sumOfSquares(3, 2 + 2)
25.0: scala.Double

Function parameters follow the function name and are always enclosed in paren-
theses. Every parameter comes with a type, which is indicated following the param-
eter name and a colon. At the present time, we only need basic numeric types such
as the type scala.Double of double precision numbers. Scala defines type aliases for
some standard types, so we can write numeric types as in Java. For instance double

is a type alias of scala.Double and int is a type alias for scala.Int.

Functions with parameters are evaluated analogously to operators in expressions.
First, the arguments of the function are evaluated (in left-to-right order). Then, the
function application is replaced by the function’s right hand side, and at the same
time all formal parameters of the function are replaced by their corresponding ac-
tual arguments.

Example 4.2.1

sumOfSquares(3, 2+2)
→ sumOfSquares(3, 4)
→ square(3) + square(4)
→ 3 * 3 + square(4)
→ 9 + square(4)
→ 9 + 4 * 4
→ 9 + 16
→ 25

The example shows that the interpreter reduces function arguments to values be-
fore rewriting the function application. One could instead have chosen to apply the
function to unreduced arguments. This would have yielded the following reduction
sequence:
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sumOfSquares(3, 2+2)
→ square(3) + square(2+2)
→ 3 * 3 + square(2+2)
→ 9 + square(2+2)
→ 9 + (2+2) * (2+2)
→ 9 + 4 * (2+2)
→ 9 + 4 * 4
→ 9 + 16
→ 25

The second evaluation order is known as call-by-name, whereas the first one is
known as call-by-value. For expressions that use only pure functions and that there-
fore can be reduced with the substitution model, both schemes yield the same final
values.

Call-by-value has the advantage that it avoids repeated evaluation of arguments.
Call-by-name has the advantage that it avoids evaluation of arguments when the
parameter is not used at all by the function. Call-by-value is usually more efficient
than call-by-name, but a call-by-value evaluation might loop where a call-by-name
evaluation would terminate. Consider:

> def loop: int = loop
def loop: scala.Int

> def first(x: int, y: int) = x
def first(x: scala.Int, y: scala.Int): scala.Int

Then first(1, loop) reduces with call-by-name to 1, whereas the same term re-
duces with call-by-value repeatedly to itself, hence evaluation does not terminate.

first(1, loop)
→ first(1, loop)
→ first(1, loop)
→ ...

Scala uses call-by-value by default, but it switches to call-by-name evaluation if the
parameter type is preceded by =>.

Example 4.2.2

> def constOne(x: int, y: => int) = 1
constOne(x: scala.Int, y: => scala.Int): scala.Int

> constOne(1, loop)
1: scala.Int

> constOne(loop, 2) // gives an infinite loop.
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^C

4.3 Conditional Expressions

Scala’s if-else lets one choose between two alternatives. Its syntax is like Java’s
if-else. But where Java’s if-else can be used only as an alternative of state-
ments, Scala allows the same syntax to choose between two expressions. That’s
why Scala’s if-else serves also as a substitute for Java’s conditional expression
... ? ... : ....

Example 4.3.1

> def abs(x: double) = if (x >= 0) x else -x
abs(x: double): double

Scala’s boolean expressions are similar to Java’s; they are formed from the constants
true and false, comparison operators, boolean negation ! and the boolean opera-
tors && and ||.

4.4 Example: Square Roots by Newton’s Method

We now illustrate the language elements introduced so far in the construction of a
more interesting program. The task is to write a function

def sqrt(x: double): double = ...

which computes the square root of x.

A common way to compute square roots is by Newton’s method of successive ap-
proximations. One starts with an initial guess y (say: y = 1). One then repeatedly
improves the current guess y by taking the average of y and x/y. As an example, the
next three columns indicate the guess y, the quotient x/y, and their average for the
first approximations of

p
2.

1 2/1 = 2 1.5
1.5 2/1.5 = 1.3333 1.4167
1.4167 2/1.4167 = 1.4118 1.4142
1.4142 ... ...

y x/y (y +x/y)/2

One can implement this algorithm in Scala by a set of small functions, which each
represent one of the elements of the algorithm.

We first define a function for iterating from a guess to the result:
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def sqrtIter(guess: double, x: double): double =
if (isGoodEnough(guess, x)) guess
else sqrtIter(improve(guess, x), x)

Note that sqrtIter calls itself recursively. Loops in imperative programs can always
be modeled by recursion in functional programs.

Note also that the definition of sqrtIter contains a return type, which follows the
parameter section. Such return types are mandatory for recursive functions. For a
non-recursive function, the return type is optional; if it is missing the type checker
will compute it from the type of the function’s right-hand side. However, even for
non-recursive functions it is often a good idea to include a return type for better
documentation.

As a second step, we define the two functions called by sqrtIter: a function to
improve the guess and a termination test isGoodEnough. Here is their definition.

def improve(guess: double, x: double) =
(guess + x / guess) / 2

def isGoodEnough(guess: double, x: double) =
abs(square(guess) - x) < 0.001

Finally, the sqrt function itself is defined by an application of sqrtIter.

def sqrt(x: double) = sqrtIter(1.0, x)

Exercise 4.4.1 The isGoodEnough test is not very precise for small numbers and
might lead to non-termination for very large ones (why?). Design a different ver-
sion of isGoodEnough which does not have these problems.

Exercise 4.4.2 Trace the execution of the sqrt(4) expression.

4.5 Nested Functions

The functional programming style encourages the construction of many small
helper functions. In the last example, the implementation of sqrt made use of the
helper functions sqrtIter, improve and isGoodEnough. The names of these func-
tions are relevant only for the implementation of sqrt. We normally do not want
users of sqrt to access these functions directly.

We can enforce this (and avoid name-space pollution) by including the helper func-
tions within the calling function itself:

def sqrt(x: double) = {
def sqrtIter(guess: double, x: double): double =
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if (isGoodEnough(guess, x)) guess
else sqrtIter(improve(guess, x), x)

def improve(guess: double, x: double) =
(guess + x / guess) / 2

def isGoodEnough(guess: double, x: double) =
abs(square(guess) - x) < 0.001

sqrtIter(1.0, x)
}

In this program, the braces { ... } enclose a block. Blocks in Scala are themselves
expressions. Every block ends in a result expression which defines its value. The
result expression may be preceded by auxiliary definitions, which are visible only in
the block itself.

Every definition in a block must be followed by a semicolon, which separates this
definition from subsequent definitions or the result expression. However, a semi-
colon is inserted implicitly if the definition ends in a right brace and is followed by
a new line. Therefore, the following are all legal:

def f(x) = x + 1; /* ‘;’ mandatory */
f(1) + f(2)

def g(x) = {x + 1}
g(1) + g(2)

def h(x) = {x + 1}; /* ‘;’ mandatory */ h(1) + h(2)

Scala uses the usual block-structured scoping rules. A name defined in some outer
block is visible also in some inner block, provided it is not redefined there. This rule
permits us to simplify our sqrt example. We need not pass x around as an additional
parameter of the nested functions, since it is always visible in them as a parameter
of the outer function sqrt. Here is the simplified code:

def sqrt(x: double) = {
def sqrtIter(guess: double): double =
if (isGoodEnough(guess)) guess
else sqrtIter(improve(guess))

def improve(guess: double) =
(guess + x / guess) / 2

def isGoodEnough(guess: double) =
abs(square(guess) - x) < 0.001

sqrtIter(1.0)
}
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4.6 Tail Recursion

Consider the following function to compute the greatest common divisor of two
given numbers.

def gcd(a: int, b: int): int = if (b == 0) a else gcd(b, a % b)

Using our substitution model of function evaluation, gcd(14, 21) evaluates as fol-
lows:

gcd(14, 21)
→ if (21 == 0) 14 else gcd(21, 14 % 21)
→ if (false) 14 else gcd(21, 14 % 21)
→ gcd(21, 14 % 21)
→ gcd(21, 14)
→ if (14 == 0) 21 else gcd(14, 21 % 14)
→ → gcd(14, 21 % 14)
→ gcd(14, 7)
→ if (7 == 0) 14 else gcd(7, 14 % 7)
→ → gcd(7, 14 % 7)
→ gcd(7, 0)
→ if (0 == 0) 7 else gcd(0, 7 % 0)
→ → 7

Contrast this with the evaluation of another recursive function, factorial:

def factorial(n: int): int = if (n == 0) 1 else n * factorial(n - 1)

The application factorial(5) rewrites as follows:

factorial(5)
→ if (5 == 0) 1 else 5 * factorial(5 - 1)
→ 5 * factorial(5 - 1)
→ 5 * factorial(4)
→ . . . → 5 * (4 * factorial(3))
→ . . . → 5 * (4 * (3 * factorial(2)))
→ . . . → 5 * (4 * (3 * (2 * factorial(1))))
→ . . . → 5 * (4 * (3 * (2 * (1 * factorial(0))))
→ . . . → 5 * (4 * (3 * (2 * (1 * 1))))
→ . . . → 120

There is an important difference between the two rewrite sequences: The terms in
the rewrite sequence of gcd have again and again the same form. As evaluation pro-
ceeds, their size is bounded by a constant. By contrast, in the evaluation of factorial
we get longer and longer chains of operands which are then multiplied in the last
part of the evaluation sequence.
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Even though actual implementations of Scala do not work by rewriting terms, they
nevertheless should have the same space behavior as in the rewrite sequences. In
the implementation of gcd, one notes that the recursive call to gcd is the last action
performed in the evaluation of its body. One also says that gcd is “tail-recursive”.
The final call in a tail-recursive function can be implemented by a jump back to the
beginning of that function. The arguments of that call can overwrite the parameters
of the current instantiation of gcd, so that no new stack space is needed. Hence,
tail recursive functions are iterative processes, which can be executed in constant
space.

By contrast, the recursive call in factorial is followed by a multiplication. Hence,
a new stack frame is allocated for the recursive instance of factorial, and is deallo-
cated after that instance has finished. The given formulation of the factorial func-
tion is not tail-recursive; it needs space proportional to its input parameter for its
execution.

More generally, if the last action of a function is a call to another (possibly the same)
function, only a single stack frame is needed for both functions. Such calls are called
“tail calls”. In principle, tail calls can always re-use the stack frame of the calling
function. However, some run-time environments (such as the Java VM) lack the
primitives to make stack frame re-use for tail calls efficient. A production quality
Scala implementation is therefore only required to re-use the stack frame of a di-
rectly tail-recursive function whose last action is a call to itself. Other tail calls might
be optimized also, but one should not rely on this across implementations.

Exercise 4.6.1 Design a tail-recursive version of factorial.





Chapter 5

First-Class Functions

A function in Scala is a “first-class value”. Like any other value, it may be passed as
a parameter or returned as a result. Functions which take other functions as pa-
rameters or return them as results are called higher-order functions. This chapter
introduces higher-order functions and shows how they provide a flexible mecha-
nism for program composition.

As a motivating example, consider the following three related tasks:

1. Write a function to sum all integers between two given numbers a and b:

def sumInts(a: int, b: int): int =
if (a > b) 0 else a + sumInts(a + 1, b)

2. Write a function to sum the squares of all integers between two given numbers
a and b:

def square(x: int): int = x * x
def sumSquares(a: int, b: int): int =
if (a > b) 0 else square(a) + sumSquares(a + 1, b)

3. Write a function to sum the powers 2n of all integers n between two given
numbers a and b:

def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x - 1)
def sumPowersOfTwo(a: int, b: int): int =
if (a > b) 0 else powerOfTwo(a) + sumPowersOfTwo(a + 1, b)

These functions are all instances of
∑b

a f (n) for different values of f . We can factor
out the common pattern by defining a function sum:

def sum(f: int => int, a: int, b: int): double =
if (a > b) 0 else f(a) + sum(f, a + 1, b)



22 First-Class Functions

The type int => int is the type of functions that take arguments of type int and
return results of type int. So sum is a function which takes another function as a
parameter. In other words, sum is a higher-order function.

Using sum, we can formulate the three summing functions as follows.

def sumInts(a: int, b: int): int = sum(id, a, b)
def sumSquares(a: int, b: int): int = sum(square, a, b)
def sumPowersOfTwo(a: int, b: int): int = sum(powerOfTwo, a, b)

where

def id(x: int): int = x
def square(x: int): int = x * x
def powerOfTwo(x: int): int = if (x == 0) 1 else x * powerOfTwo(x - 1)

5.1 Anonymous Functions

Parameterization by functions tends to create many small functions. In the previous
example, we defined id, square and power as separate functions, so that they could
be passed as arguments to sum.

Instead of using named function definitions for these small argument functions, we
can formulate them in a shorter way as anonymous functions. An anonymous func-
tion is an expression that evaluates to a function; the function is defined without
giving it a name. As an example consider the anonymous square function:

x: int => x * x

The part before the arrow ‘=>’ is the parameter of the function, whereas the part
following the ‘=>’ is its body. If there are several parameters, we need to enclose
them in parentheses. For instance, here is an anonymous function which multiples
its two arguments.

(x: int, y: int) => x * y

Using anonymous functions, we can reformulate the first two summation functions
without named auxiliary functions:

def sumInts(a: int, b: int): int = sum(x: int => x, a, b)
def sumSquares(a: int, b: int): int = sum(x: int => x * x, a, b)

Often, the Scala compiler can deduce the parameter type(s) from the context of the
anonymous function in which case they can be omitted. For instance, in the case
of sumInts or sumSquares, one knows from the type of sum that the first parameter
must be a function of type int => int. Hence, the parameter type int is redundant
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and may be omitted:

def sumInts(a: int, b: int): int = sum(x => x, a, b)
def sumSquares(a: int, b: int): int = sum(x => x * x, a, b)

Generally, the Scala term (x1: T1, ..., xn: Tn) => E defines a function which
maps its parameters x1, ..., xn to the result of the expression E (where E may
refer to x1, ..., xn). Anonymous functions are not essential language elements
of Scala, as they can always be expressed in terms of named functions. Indeed, the
anonymous function

(x1: T1, ..., xn: Tn) => E

is equivalent to the block

{ def f (x1: T1, ..., xn: Tn) = E ; f }

where f is fresh name which is used nowhere else in the program. We also say,
anonymous functions are “syntactic sugar”.

5.2 Currying

The latest formulation of the summing functions is already quite compact. But we
can do even better. Note that a and b appear as parameters and arguments of every
function but they do not seem to take part in interesting combinations. Is there a
way to get rid of them?

Let’s try to rewrite sum so that it does not take the bounds a and b as parameters:

def sum(f: int => int) = {
def sumF(a: int, b: int): int =
if (a > b) 0 else f(a) + sumF(a + 1, b)

sumF
}

In this formulation, sum is a function which returns another function, namely the
specialized summing function sumF. This latter function does all the work; it takes
the bounds a and b as parameters, applies sum’s function parameter f to all integers
between them, and sums up the results.

Using this new formulation of sum, we can now define:

def sumInts = &sum(x => x)
def sumSquares = &sum(x => x * x)
def sumPowersOfTwo = &sum(powerOfTwo)

Or, equivalently, with value definitions:



24 First-Class Functions

val sumInts = &sum(x => x)
val sumSquares = &sum(x => x * x)
val sumPowersOfTwo = &sum(powerOfTwo)

Note the prefix operator & in front of the right-hand sides of the definitions above.
This operator expresses that the partial applications of sum should be treated as
function values. If it is omitted, the Scala compiler would complain that the appli-
cations of sum lack some of their arguments. The & operator can however be omitted
if the expected type of an expression is a function type.

sumInts, sumSquares, and sumPowersOfTwo can be applied like any other function.
For instance,

> sumSquares(1, 10) + sumPowersOfTwo(10, 20)
267632001: scala.Int

How are function-returning functions applied? As an example, in the expression

sum(x => x * x)(1, 10) ,

the function sum is applied to the squaring function (x => x * x). The resulting
function is then applied to the second argument list, (1, 10).

This notation is possible because function application associates to the left. That is,
if args1 and args2 are argument lists, then

f (args1)(args2) is equivalent to ( f (args1))(args2)

In our example, sum(x => x * x)(1, 10) is equivalent to the following expression:
(sum(x => x * x))(1, 10).

The style of function-returning functions is so useful that Scala has special syntax
for it. For instance, the next definition of sum is equivalent to the previous one, but
is shorter:

def sum(f: int => int)(a: int, b: int): int =
if (a > b) 0 else f(a) + sum(f)(a + 1, b)

Generally, a curried function definition

def f (args1) ... (argsn) = E

where n > 1 expands to

def f (args1) ... (argsn−1) = { def g (argsn) = E ; g }

where g is a fresh identifier. Or, shorter, using an anonymous function:

def f (args1) ... (argsn−1) = ( argsn ) => E .
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Performing this step n times yields that

def f (args1) ... (argsn) = E

is equivalent to

def f = (args1) => ... => (argsn) => E .

Or, equivalently, using a value definition:

val f = (args1) => ... => (argsn) => E .

This style of function definition and application is called currying after its promoter,
Haskell B. Curry, a logician of the 20th century, even though the idea goes back fur-
ther to Moses Schönfinkel and Gottlob Frege.

The type of a function-returning function is expressed analogously to its param-
eter list. Taking the last formulation of sum as an example, the type of sum is
(int => int) => (int, int) => int. This is possible because function types as-
sociate to the right. I.e.

T1 => T2 => T3 is equivalent to T1 => (T2 => T3)

Exercise 5.2.1 1. The sum function uses a linear recursion. Can you write a tail-
recursive one by filling in the ??’s?

def sum(f: int => double)(a: int, b: int): double = {
def iter(a, result) = {
if (??) ??
else iter(??, ??)

}
iter(??, ??)

}

Exercise 5.2.2 Write a function product that computes the product of the values of
functions at points over a given range.

Exercise 5.2.3 Write factorial in terms of product.

Exercise 5.2.4 Can you write an even more general function which generalizes both
sum and product?

5.3 Example: Finding Fixed Points of Functions

A number x is called a fixed point of a function f if
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f(x) = x .

For some functions f we can locate the fixed point by beginning with an initial guess
and then applying f repeatedly, until the value does not change anymore (or the
change is within a small tolerance). This is possible if the sequence

x, f(x), f(f(x)), f(f(f(x))), ...

converges to fixed point of f . This idea is captured in the following “fixed-point
finding function”:

val tolerance = 0.0001
def isCloseEnough(x: double, y: double) = abs((x - y) / x) < tolerance
def fixedPoint(f: double => double)(firstGuess: double) = {
def iterate(guess: double): double = {
val next = f(guess)
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(firstGuess)

}

We now apply this idea in a reformulation of the square root function. Let’s start
with a specification of sqrt:

sqrt(x) = the y such that y * y = x
= the y such that y = x / y

Hence, sqrt(x) is a fixed point of the function y => x / y. This suggests that
sqrt(x) can be computed by fixed point iteration:

def sqrt(x: double) = fixedPoint(y => x / y)(1.0)

But if we try this, we find that the computation does not converge. Let’s instrument
the fixed point function with a print statement which keeps track of the current
guess value:

def fixedPoint(f: double => double)(firstGuess: double) = {
def iterate(guess: double): double = {
val next = f(guess)
System.out.println(next)
if (isCloseEnough(guess, next)) next
else iterate(next)

}
iterate(firstGuess)

}
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Then, sqrt(2) yields:

2.0
1.0
2.0
1.0
2.0
...

One way to control such oscillations is to prevent the guess from changing too
much. This can be achieved by averaging successive values of the original sequence:

> def sqrt(x: double) = fixedPoint(y => (y + x/y) / 2)(1.0)
def sqrt(x: scala.Double): scala.Double
> sqrt(2.0)
1.5
1.4166666666666665
1.4142156862745097
1.4142135623746899
1.4142135623746899

In fact, expanding the fixedPoint function yields exactly our previous definition of
fixed point from Section 4.4.

The previous examples showed that the expressive power of a language is consid-
erably enhanced if functions can be passed as arguments. The next example shows
that functions which return functions can also be very useful.

Consider again fixed point iterations. We started with the observation that
p

(x) is
a fixed point of the function y => x / y. Then we made the iteration converge by
averaging successive values. This technique of average damping is so general that it
can be wrapped in another function.

def averageDamp(f: double => double)(x: double) = (x + f(x)) / 2

Using averageDamp, we can reformulate the square root function as follows.

def sqrt(x: double) = fixedPoint(averageDamp(y => x/y))(1.0)

This expresses the elements of the algorithm as clearly as possible.

Exercise 5.3.1 Write a function for cube roots using fixedPoint and averageDamp.

5.4 Summary

We have seen in the previous chapter that functions are essential abstractions, be-
cause they permit us to introduce general methods of computing as explicit, named
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elements in our programming language. The present chapter has shown that these
abstractions can be combined by higher-order functions to create further abstrac-
tions. As programmers, we should look out for opportunities to abstract and to
reuse. The highest possible level of abstraction is not always the best, but it is im-
portant to know abstraction techniques, so that one can use abstractions where ap-
propriate.

5.5 Language Elements Seen So Far

Chapters 4 and 5 have covered Scala’s language elements to express expressions and
types comprising of primitive data and functions. The context-free syntax of these
language elements is given below in extended Backus-Naur form, where ‘|’ denotes
alternatives, [...] denotes option (0 or 1 occurrence), and {...} denotes repetition
(0 or more occurrences).

Characters

Scala programs are sequences of (Unicode) characters. We distinguish the following
character sets:

• whitespace, such as ‘’, tabulator, or newline characters,

• letters ‘a’ to ‘z’, ‘A’ to ‘Z’,

• digits ‘0’ to ‘9’,

• the delimiter characters

. , ; ( ) { } [ ] \ " ’

• operator characters, such as ‘#’ ‘+’, ‘:’. Essentially, these are printable charac-
ters which are in none of the character sets above.

Lexemes:

ident = letter {letter | digit}
| operator { operator }
| ident ’_’ ident

literal = “as in Java”

Literals are as in Java. They define numbers, characters, strings, or boolean values.
Examples of literals as 0, 1.0d10, ’x’, "he said "hi!"", or true.

Identifiers can be of two forms. They either start with a letter, which is followed by a
(possibly empty) sequence of letters or symbols, or they start with an operator char-
acter, which is followed by a (possibly empty) sequence of operator characters. Both
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forms of identifiers may contain underscore characters ‘_’. Furthermore, an under-
score character may be followed by either sort of identifier. Hence, the following are
all legal identifiers:

x Room10a + -- foldl_: +_vector

It follows from this rule that subsequent operator-identifiers need to be separated
by whitespace. For instance, the input x+-y is parsed as the three token sequence x,
+-, y. If we want to express the sum of x with the negated value of y, we need to add
at least one space, e.g. x+ -y.

The $ character is reserved for compiler-generated identifiers; it should not be used
in source programs.

The following are reserved words, they may not be used as identifiers:

abstract case catch class def
do else extends false final
finally for if implicit import
match new null object override
package private protected requires return
sealed super this throw trait
try true type val var
while with yield
_ : = => <- <: <% >: # @

Types:

Type = SimpleType | FunctionType
FunctionType = SimpleType ’=>’ Type | ’(’ [Types] ’)’ ’=>’ Type
SimpleType = byte | short | char | int | long | double | float |

boolean | unit | String
Types = Type {‘,’ Type}

Types can be:

• number types byte, short, char, int, long, float and double (these are as in
Java),

• the type boolean with values true and false,

• the type unit with the only value (),

• the type String,

• function types such as (int, int) => int or String => int => String.

Expressions:

Expr = InfixExpr | FunctionExpr | if ’(’ Expr ’)’ Expr else Expr
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InfixExpr = PrefixExpr | InfixExpr Operator InfixExpr
Operator = ident
PrefixExpr = [’+’ | ’-’ | ’!’ | ’~’ ] SimpleExpr
SimpleExpr = ident | literal | SimpleExpr ’.’ ident | Block
FunctionExpr = Bindings ’=>’ Expr
Bindings = ident [’:’ SimpleType] | ’(’ [Binding {’,’ Binding}] ’)’
Binding = ident [’:’ Type]
Block = ’{’ {Def ’;’} Expr ’}’

Expressions can be:

• identifiers such as x, isGoodEnough, *, or +-,

• literals, such as 0, 1.0, or "abc",

• field and method selections, such as System.out.println,

• function applications, such as sqrt(x),

• operator applications, such as -x or y + x,

• conditionals, such as if (x < 0) -x else x,

• blocks, such as { val x = abs(y) ; x * 2 },

• anonymous functions, such as x => x + 1 or (x: int, y: int) => x + y.

Definitions:

Def = FunDef | ValDef
FunDef = ’def’ ident {’(’ [Parameters] ’)’} [’:’ Type] ’=’ Expr
ValDef = ’val’ ident [’:’ Type] ’=’ Expr
Parameters = Parameter {’,’ Parameter}
Parameter = ident ’:’ [’=>’] Type

Definitions can be:

• function definitions such as def square(x: int): int = x * x,

• value definitions such as val y = square(2).
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Classes and Objects

Scala does not have a built-in type of rational numbers, but it is easy to define one,
using a class. Here’s a possible implementation.

class Rational(n: int, d: int) {
private def gcd(x: int, y: int): int = {
if (x == 0) y
else if (x < 0) gcd(-x, y)
else if (y < 0) -gcd(x, -y)
else gcd(y % x, x)

}
private val g = gcd(n, d)

val numer: int = n/g
val denom: int = d/g
def +(that: Rational) =
new Rational(numer * that.denom + that.numer * denom,

denom * that.denom)
def -(that: Rational) =
new Rational(numer * that.denom - that.numer * denom,

denom * that.denom)
def *(that: Rational) =
new Rational(numer * that.numer, denom * that.denom)

def /(that: Rational) =
new Rational(numer * that.denom, denom * that.numer)

}

This defines Rational as a class which takes two constructor arguments n and d,
containing the number’s numerator and denominator parts. The class provides
fields which return these parts as well as methods for arithmetic over rational num-
bers. Each arithmetic method takes as parameter the right operand of the opera-
tion. The left operand of the operation is always the rational number of which the
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method is a member.

Private members. The implementation of rational numbers defines a private
method gcd which computes the greatest common denominator of two integers, as
well as a private field g which contains the gcd of the constructor arguments. These
members are inaccessible outside class Rational. They are used in the implementa-
tion of the class to eliminate common factors in the constructor arguments in order
to ensure that numerator and denominator are always in normalized form.

Creating and Accessing Objects. As an example of how rational numbers can be
used, here’s a program that prints the sum of all numbers 1/i where i ranges from 1
to 10.

var i = 1
var x = new Rational(0, 1)
while (i <= 10) {
x = x + new Rational(1,i)
i = i + 1

}
System.out.println("" + x.numer + "/" + x.denom)

The + takes as left operand a string and as right operand a value of arbitrary type. It
returns the result of converting its right operand to a string and appending it to its
left operand.

Inheritance and Overriding. Every class in Scala has a superclass which it ex-
tends. If a class does not mention a superclass in its definition, the root type
scala.AnyRef is implicitly assumed (for Java implementations, this type is an alias
for java.lang.Object. For instance, class Rational could equivalently be defined
as

class Rational(n: int, d: int) extends AnyRef {
... // as before

}

A class inherits all members from its superclass. It may also redefine (or: override)
some inherited members. For instance, class java.lang.Object defines a method
toString which returns a representation of the object as a string:

class Object {
...
def toString: String = ...

}
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The implementation of toString in Object forms a string consisting of the object’s
class name and a number. It makes sense to redefine this method for objects that
are rational numbers:

class Rational(n: int, d: int) extends AnyRef {
... // as before
override def toString = "" + numer + "/" + denom

}

Note that, unlike in Java, redefining definitions need to be preceded by an override
modifier.

If class A extends class B , then objects of type A may be used wherever objects of
type B are expected. We say in this case that type A conforms to type B . For instance,
Rational conforms to AnyRef, so it is legal to assign a Rational value to a variable
of type AnyRef:

var x: AnyRef = new Rational(1,2)

Parameterless Methods. Unlike in Java, methods in Scala do not necessarily take
a parameter list. An example is the square method below. This method is invoked
by simply mentioning its name.

class Rational(n: int, d: int) extends AnyRef {
... // as before
def square = new Rational(numer*numer, denom*denom)

}
val r = new Rational(3,4)
System.out.println(r.square); // prints‘‘9/16’’*

That is, parameterless methods are accessed just as value fields such as numer are.
The difference between values and parameterless methods lies in their definition.
The right-hand side of a value is evaluated when the object is created, and the value
does not change afterwards. A right-hand side of a parameterless method, on the
other hand, is evaluated each time the method is called. The uniform access of
fields and parameterless methods gives increased flexibility for the implementer of
a class. Often, a field in one version of a class becomes a computed value in the next
version. Uniform access ensures that clients do not have to be rewritten because of
that change.

Abstract Classes. Consider the task of writing a class for sets of integer numbers
with two operations, incl and contains. (s incl x) should return a new set which
contains the element x together with all the elements of set s. (s contains x)

should return true if the set s contains the element x, and should return false oth-
erwise. The interface of such sets is given by:
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abstract class IntSet {
def incl(x: int): IntSet
def contains(x: int): boolean

}

IntSet is labeled as an abstract class. This has two consequences. First, abstract
classes may have deferred members which are declared but which do not have an
implementation. In our case, both incl and contains are such members. Second,
because an abstract class might have unimplemented members, no objects of that
class may be created using new. By contrast, an abstract class may be used as a base
class of some other class, which implements the deferred members.

Traits. Instead of abstract class one also often uses the keyword trait in Scala.
Traits are abstract classes that are meant to be added to some other class. This
might be because a trait adds some methods or fields to an unknown parent class.
For instance, a trait Bordered might be used to add a border to a various graphical
components. Another usage scenario is where the trait collects signatures of some
functionality provided by different classes, much in the way a Java interface would
work.

Since IntSet falls in this category, one can alternatively define it as a trait:

trait IntSet {
def incl(x: int): IntSet
def contains(x: int): boolean

}

Implementing Abstract Classes. Let’s say, we plan to implement sets as binary
trees. There are two possible forms of trees. A tree for the empty set, and a tree
consisting of an integer and two subtrees. Here are their implementations.

class EmptySet extends IntSet {
def contains(x: int): boolean = false
def incl(x: int): IntSet = new NonEmptySet(x, new EmptySet, new EmptySet)

}

class NonEmptySet(elem:int, left:IntSet, right:IntSet) extends IntSet {
def contains(x: int): boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true

def incl(x: int): IntSet =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this
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}

Both EmptySet and NonEmptySet extend class IntSet. This implies that types
EmptySet and NonEmptySet conform to type IntSet – a value of type EmptySet or
NonEmptySet may be used wherever a value of type IntSet is required.

Exercise 6.0.1 Write methods union and intersection to form the union and in-
tersection between two sets.

Exercise 6.0.2 Add a method

def excl(x: int)

to return the given set without the element x. To accomplish this, it is useful to also
implement a test method

def isEmpty: boolean

for sets.

Dynamic Binding. Object-oriented languages (Scala included) use dynamic dis-
patch for method invocations. That is, the code invoked for a method call depends
on the run-time type of the object which contains the method. For example, con-
sider the expression s contains 7 where s is a value of declared type s: IntSet.
Which code for contains is executed depends on the type of value of s at run-time.
If it is an EmptySet value, it is the implementation of contains in class EmptySet

that is executed, and analogously for NonEmptySet values. This behavior is a direct
consequence of our substitution model of evaluation. For instance,

(new EmptySet).contains(7)

-> (by replacing contains by its body in class EmptySet)

false

Or,

new NonEmptySet(7, new EmptySet, new EmptySet).contains(1)

-> (by replacing contains by its body in class NonEmptySet)

if (1 < 7) new EmptySet contains 1
else if (1 > 7) new EmptySet contains 1
else true

-> (by rewriting the conditional)
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new EmptySet contains 1

-> (by replacing contains by its body in class EmptySet)

false .

Dynamic method dispatch is analogous to higher-order function calls. In both
cases, the identity of code to be executed is known only at run-time. This similarity
is not just superficial. Indeed, Scala represents every function value as an object
(see Section 8.6).

Objects. In the previous implementation of integer sets, empty sets were ex-
pressed with new EmptySet; so a new object was created every time an empty set
value was required. We could have avoided unnecessary object creations by defin-
ing a value empty once and then using this value instead of every occurrence of
new EmptySet. E.g.

val EmptySetVal = new EmptySet

One problem with this approach is that a value definition such as the one above is
not a legal top-level definition in Scala; it has to be part of another class or object.
Also, the definition of class EmptySet now seems a bit of an overkill – why define
a class of objects, if we are only interested in a single object of this class? A more
direct approach is to use an object definition. Here is a more streamlined alternative
definition of the empty set:

object EmptySet extends IntSet {
def contains(x: int): boolean = false
def incl(x: int): IntSet = new NonEmptySet(x, EmptySet, EmptySet)

}

The syntax of an object definition follows the syntax of a class definition; it has
an optional extends clause as well as an optional body. As is the case for classes,
the extends clause defines inherited members of the object whereas the body de-
fines overriding or new members. However, an object definition defines a single
object only it is not possible to create other objects with the same structure using
new. Therefore, object definitions also lack constructor parameters, which might be
present in class definitions.

Object definitions can appear anywhere in a Scala program; including at top-level.
Since there is no fixed execution order of top-level entities in Scala, one might ask
exactly when the object defined by an object definition is created and initialized.
The answer is that the object is created the first time one of its members is accessed.
This strategy is called lazy evaluation.
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Standard Classes. Scala is a pure object-oriented language. This means that every
value in Scala can be regarded as an object. In fact, even primitive types such as int
or boolean are not treated specially. They are defined as type aliases of Scala classes
in module Predef:

type boolean = scala.Boolean
type int = scala.Int
type long = scala.Long
...

For efficiency, the compiler usually represents values of type scala.Int by 32 bit
integers, values of type scala.Boolean by Java’s booleans, etc. But it converts these
specialized representations to objects when required, for instance when a primitive
int value is passed to a function with a parameter of type AnyRef. Hence, the special
representation of primitive values is just an optimization, it does not change the
meaning of a program.

Here is a specification of class Boolean.

package scala
abstract class Boolean {
def && (x: => Boolean): Boolean
def || (x: => Boolean): Boolean
def ! : Boolean

def == (x: Boolean) : Boolean
def != (x: Boolean) : Boolean
def < (x: Boolean) : Boolean
def > (x: Boolean) : Boolean
def <= (x: Boolean) : Boolean
def >= (x: Boolean) : Boolean

}

Booleans can be defined using only classes and objects, without reference to a built-
in type of booleans or numbers. A possible implementation of class Boolean is given
below. This is not the actual implementation in the standard Scala library. For effi-
ciency reasons the standard implementation uses built-in booleans.

package scala
abstract class Boolean {
def ifThenElse(thenpart: => Boolean, elsepart: => Boolean)

def && (x: => Boolean): Boolean = ifThenElse(x, false)
def || (x: => Boolean): Boolean = ifThenElse(true, x)
def ! : Boolean = ifThenElse(false, true)

def == (x: Boolean) : Boolean = ifThenElse(x, x.!)
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def != (x: Boolean) : Boolean = ifThenElse(x.!, x)
def < (x: Boolean) : Boolean = ifThenElse(false, x)
def > (x: Boolean) : Boolean = ifThenElse(x.!, false)
def <= (x: Boolean) : Boolean = ifThenElse(x, true)
def >= (x: Boolean) : Boolean = ifThenElse(true, x.!)

}
case object True extends Boolean {
def ifThenElse(t: => Boolean, e: => Boolean) = t

}
case object False extends Boolean {
def ifThenElse(t: => Boolean, e: => Boolean) = e

}

Here is a partial specification of class Int.

package scala
abstract class Int extends AnyVal {
def coerce: Long
def coerce: Float
def coerce: Double

def + (that: Double): Double
def + (that: Float): Float
def + (that: Long): Long
def + (that: Int): Int; // analogous for -, *, /, %

def << (cnt: Int): Int; // analogous for >>, >>>

def & (that: Long): Long
def & (that: Int): Int; // analogous for |, ^

def == (that: Double): Boolean
def == (that: Float): Boolean
def == (that: Long): Boolean; // analogous for !=, <, >, <=, >=

}

Class Int can in principle also be implemented using just objects and classes, with-
out reference to a built in type of integers. To see how, we consider a slightly simpler
problem, namely how to implement a type Nat of natural (i.e. non-negative) num-
bers. Here is the definition of an abstract class Nat:

abstract class Nat {
def isZero: Boolean
def predecessor: Nat
def successor: Nat
def + (that: Nat): Nat
def - (that: Nat): Nat



39

}

To implement the operations of class Nat, we define a sub-object Zero and a sub-
class Succ (for successor). Each number N is represented as N applications of the
Succ constructor to Zero:

new Succ( ... new Succ︸ ︷︷ ︸
N times

(Zero) ... )

The implementation of the Zero object is straightforward:

object Zero extends Nat {
def isZero: Boolean = true
def predecessor: Nat = throw new Error("negative number")
def successor: Nat = new Succ(Zero)
def + (that: Nat): Nat = that
def - (that: Nat): Nat = if (that.isZero) Zero

else throw new Error("negative number")
}

The implementation of the predecessor and subtraction functions on Zero throws
an Error exception, which aborts the program with the given error message.

Here is the implementation of the successor class:

class Succ(x: Nat) extends Nat {
def isZero: Boolean = false
def predecessor: Nat = x
def successor: Nat = new Succ(this)
def + (that: Nat): Nat = x + that.successor
def - (that: Nat): Nat = x - that.predecessor

}

Note the implementation of method successor. To create the successor of a num-
ber, we need to pass the object itself as an argument to the Succ constructor. The
object itself is referenced by the reserved name this.

The implementations of + and - each contain a recursive call with the constructor
argument as receiver. The recursion will terminate once the receiver is the Zero

object (which is guaranteed to happen eventually because of the way numbers are
formed).

Exercise 6.0.3 Write an implementation Integer of integer numbers The imple-
mentation should support all operations of class Nat while adding two methods

def isPositive: Boolean
def negate: Integer
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The first method should return true if the number is positive. The second method
should negate the number. Do not use any of Scala’s standard numeric classes in
your implementation. (Hint: There are two possible ways to implement Integer.
One can either make use the existing implementation of Nat, representing an inte-
ger as a natural number and a sign. Or one can generalize the given implementation
of Nat to Integer, using the three subclasses Zero for 0, Succ for positive numbers
and Pred for negative numbers.)

Language Elements Introduced In This Chapter

Types:

Type = ... | ident

Types can now be arbitrary identifiers which represent classes.

Expressions:

Expr = ... | Expr ’.’ ident | ’new’ Expr | ’this’

An expression can now be an object creation, or a selection E.m of a member m from
an object-valued expression E, or it can be the reserved name this.

Definitions and Declarations:

Def = FunDef | ValDef | ClassDef | TraitDef | ObjectDef
ClassDef = [’abstract’] ’class’ ident [’(’ [Parameters] ’)’]

[’extends’ Expr] [‘{’ {TemplateDef} ‘}’]
TraitDef = ’trait’ ident [’extends’ Expr] [’{’ {TemplateDef} ’}’]
ObjectDef = ’object’ ident [’extends’ Expr] [’{’ {ObjectDef} ’}’]
TemplateDef = [Modifier] (Def | Dcl)
ObjectDef = [Modifier] Def
Modifier = ’private’ | ’override’
Dcl = FunDcl | ValDcl
FunDcl = ’def’ ident {’(’ [Parameters] ’)’} ’:’ Type
ValDcl = ’val’ ident ’:’ Type

A definition can now be a class, trait or object definition such as

class C(params) extends B { defs }
trait T extends B { defs }
object O extends B { defs }

The definitions defs in a class, trait or object may be preceded by modifiers private
or override.

Abstract classes and traits may also contain declarations. These introduce deferred
functions or values with their types, but do not give an implementation. Deferred
members have to be implemented in subclasses before objects of an abstract class
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or trait can be created.





Chapter 7

Case Classes and Pattern Match-
ing

Say, we want to write an interpreter for arithmetic expressions. To keep things sim-
ple initially, we restrict ourselves to just numbers and + operations. Such expres-
sions can be represented as a class hierarchy, with an abstract base class Expr as the
root, and two subclasses Number and Sum. Then, an expression 1 + (3 + 7) would
be represented as

new Sum(new Number(1), new Sum(new Number(3), new Number(7)))

Now, an evaluator of an expression like this needs to know of what form it is (either
Sum or Number) and also needs to access the components of the expression. The
following implementation provides all necessary methods.

abstract class Expr {
def isNumber: boolean
def isSum: boolean
def numValue: int
def leftOp: Expr
def rightOp: Expr

}
class Number(n: int) extends Expr {
def isNumber: boolean = true
def isSum: boolean = false
def numValue: int = n
def leftOp: Expr = throw new Error("Number.leftOp")
def rightOp: Expr = throw new Error("Number.rightOp")

}
class Sum(e1: Expr, e2: Expr) extends Expr {
def isNumber: boolean = false
def isSum: boolean = true
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def numValue: int = throw new Error("Sum.numValue")
def leftOp: Expr = e1
def rightOp: Expr = e2

}

With these classification and access methods, writing an evaluator function is sim-
ple:

def eval(e: Expr): int = {
if (e.isNumber) e.numValue
else if (e.isSum) eval(e.leftOp) + eval(e.rightOp)
else throw new Error("unrecognized expression kind")

}

However, defining all these methods in classes Sum and Number is rather tedious.
Furthermore, the problem becomes worse when we want to add new forms of ex-
pressions. For instance, consider adding a new expression form Prod for products.
Not only do we have to implement a new class Prod, with all previous classification
and access methods; we also have to introduce a new abstract method isProduct in
class Expr and implement that method in subclasses Number, Sum, and Prod. Having
to modify existing code when a system grows is always problematic, since it intro-
duces versioning and maintenance problems.

The promise of object-oriented programming is that such modifications should be
unnecessary, because they can be avoided by re-using existing, unmodified code
through inheritance. Indeed, a more object-oriented decomposition of our prob-
lem solves the problem. The idea is to make the “high-level” operation eval a
method of each expression class, instead of implementing it as a function outside
the expression class hierarchy, as we have done before. Because eval is now a mem-
ber of all expression nodes, all classification and access methods become superflu-
ous, and the implementation is simplified considerably:

abstract class Expr {
def eval: int

}
class Number(n: int) extends Expr {
def eval: int = n

}
class Sum(e1: Expr, e2: Expr) extends Expr {
def eval: int = e1.eval + e2.eval

}

Furthermore, adding a new Prod class does not entail any changes to existing code:

class Prod(e1: Expr, e2: Expr) extends Expr {
def eval: int = e1.eval * e2.eval

}
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The conclusion we can draw from this example is that object-oriented decomposi-
tion is the technique of choice for constructing systems that should be extensible
with new types of data. But there is also another possible way we might want to ex-
tend the expression example. We might want to add new operations on expressions.
For instance, we might want to add an operation that pretty-prints an expression
tree to standard output.

If we have defined all classification and access methods, such an operation can eas-
ily be written as an external function. Here is an example:

def print(e: Expr) {
if (e.isNumber) System.out.print(e.numValue)
else if (e.isSum) {
System.out.print("(");
print(e.leftOp);
System.out.print("+")
print(e.rightOp)
System.out.print(")")

} else throw new Error("unrecognized expression kind")
}

However, if we had opted for an object-oriented decomposition of expressions, we
would need to add a new print procedure to each class:

abstract class Expr {
def eval: int
def print

}
class Number(n: int) extends Expr {
def eval: int = n
def print { System.out.print(n) }

}
class Sum(e1: Expr, e2: Expr) extends Expr {
def eval: int = e1.eval + e2.eval
def print {
System.out.print("(");
print(e1);
System.out.print("+")
print(e2)
System.out.print(")")

}
}

Hence, classical object-oriented decomposition requires modification of all existing
classes when a system is extended with new operations.
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As yet another way we might want to extend the interpreter, consider expression
simplification. For instance, we might want to write a function which rewrites ex-
pressions of the form a * b + a * c to a * (b + c). This operation requires in-
spection of more than a single node of the expression tree at the same time. Hence,
it cannot be implemented by a method in each expression kind, unless that method
can also inspect other nodes. So we are forced to have classification and access
methods in this case. This seems to bring us back to square one, with all the prob-
lems of verbosity and extensibility.

Taking a closer look, one observers that the only purpose of the classification and
access functions is to reverse the data construction process. They let us determine,
first, which sub-class of an abstract base class was used and, second, what were the
constructor arguments. Since this situation is quite common, Scala has a way to
automate it with case classes.

7.1 Case Classes and Case Objects

Case classes and case objects are defined like a normal classes or objects, except that
the definition is prefixed with the modifier case. For instance, the definitions

abstract class Expr
case class Number(n: int) extends Expr
case class Sum(e1: Expr, e2: Expr) extends Expr

introduce Number and Sum as case classes. The case modifier in front of a class or
object definition has the following effects.

1. Case classes implicitly come with a constructor function, with the same name
as the class. In our example, the two functions

def Number(n: int) = new Number(n)
def Sum(e1: Expr, e2: Expr) = new Sum(e1, e2)

would be added. Hence, one can now construct expression trees a bit more
concisely, as in

Sum(Sum(Number(1), Number(2)), Number(3))

2. Case classes and case objects implicitly come with implementations of meth-
ods toString, equals and hashCode, which override the methods with the
same name in class AnyRef. The implementation of these methods takes
in each case the structure of a member of a case class into account. The
toString method represents an expression tree the way it was constructed.
So,

Sum(Sum(Number(1), Number(2)), Number(3))
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would be converted to exactly that string, whereas the default implementa-
tion in class AnyRef would return a string consisting of the outermost con-
structor name Sum and a number. The equals methods treats two case mem-
bers of a case class as equal if they have been constructed with the same con-
structor and with arguments which are themselves pairwise equal. This also
affects the implementation of == and !=, which are implemented in terms of
equals in Scala. So,

Sum(Number(1), Number(2)) == Sum(Number(1), Number(2))

will yield true. If Sum or Number were not case classes, the same expression
would be false, since the standard implementation of equals in class AnyRef
always treats objects created by different constructor calls as being differ-
ent. The hashCode method follows the same principle as other two meth-
ods. It computes a hash code from the case class constructor name and the
hash codes of the constructor arguments, instead of from the object’s address,
which is what the as the default implementation of hashCode does.

3. Case classes implicitly come with nullary accessor methods which retrieve
the constructor arguments. In our example, Number would obtain an acces-
sor method

def n: int

which returns the constructor parameter n, whereas Sum would obtain two
accessor methods

def e1: Expr, e2: Expr

Hence, if for a value s of type Sum, say, one can now write s.e1, to access the
left operand. However, for a value e of type Expr, the term e.e1 would be
illegal since e1 is defined in Sum; it is not a member of the base class Expr. So,
how do we determine the constructor and access constructor arguments for
values whose static type is the base class Expr? This is solved by the fourth
and final particularity of case classes.

4. Case classes allow the constructions of patterns which refer to the case class
constructor.

7.2 Pattern Matching

Pattern matching is a generalization of C or Java’s switch statement to class hier-
archies. Instead of a switch statement, there is a standard method match, which is
defined in Scala’s root class Any, and therefore is available for all objects. The match
method takes as argument a number of cases. For instance, here is an implementa-
tion of eval using pattern matching.
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def eval(e: Expr): int = e match {
case Number(x) => x
case Sum(l, r) => eval(l) + eval(r)

}

In this example, there are two cases. Each case associates a pattern with an expres-
sion. Patterns are matched against the selector values e. The first pattern in our
example, Number(n), matches all values of the form Number(v), where v is an arbi-
trary value. In that case, the pattern variable n is bound to the value v. Similarly, the
pattern Sum(l, r) matches all selector values of form Sum(v1, v2) and binds the
pattern variables l and r to v1 and v2, respectively.

In general, patterns are built from

• Case class constructors, e.g. Number, Sum, whose arguments are again patterns,

• pattern variables, e.g. n, e1, e2,

• the “wildcard” pattern _,

• literals, e.g. 1, true, "abc",

• constant identifiers, e.g. MAXINT, EmptySet.

Pattern variables always start with a lower-case letter, so that they can be distin-
guished from constant identifiers, which start with an upper case letter. Each vari-
able name may occur only once in a pattern. For instance, Sum(x, x) would be
illegal as a pattern, since the pattern variable x occurs twice in it.

Meaning of Pattern Matching. A pattern matching expression

e match { case p1 => e1 ... case pn => en }

matches the patterns p1, . . . , pn in the order they are written against the selector
value e.

• A constructor pattern C (p1, . . . , pn) matches all values that are of type C (or a
subtype thereof) and that have been constructed with C-arguments matching
patterns p1, . . . , pn .

• A variable pattern x matches any value and binds the variable name to that
value.

• The wildcard pattern ‘_’ matches any value but does not bind a name to that
value.

• A constant pattern C matches a value which is equal (in terms of ==) to C.
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The pattern matching expression rewrites to the right-hand-side of the first case
whose pattern matches the selector value. References to pattern variables are re-
placed by corresponding constructor arguments. If none of the patterns matches,
the pattern matching expression is aborted with a MatchError exception.

Example 7.2.1 Our substitution model of program evaluation extends quite natu-
rally to pattern matching, For instance, here is how eval applied to a simple expres-
sion is re-written:

eval(Sum(Number(1), Number(2)))

-> (by rewriting the application)

Sum(Number(1), Number(2)) match {
case Number(n) => n
case Sum(e1, e2) => eval(e1) + eval(e2)

}

-> (by rewriting the pattern match)

eval(Number(1)) + eval(Number(2))

-> (by rewriting the first application)

Number(1) match {
case Number(n) => n
case Sum(e1, e2) => eval(e1) + eval(e2)

} + eval(Number(2))

-> (by rewriting the pattern match)

1 + eval(Number(2))

->∗ 1 + 2 -> 3

Pattern Matching and Methods. In the previous example, we have used pattern
matching in a function which was defined outside the class hierarchy over which it
matches. Of course, it is also possible to define a pattern matching function in that
class hierarchy itself. For instance, we could have defined eval is a method of the
base class Expr, and still have used pattern matching in its implementation:

abstract class Expr {
def eval: int = this match {
case Number(n) => n
case Sum(e1, e2) => e1.eval + e2.eval
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}
}

Exercise 7.2.2 Consider the following definitions representing trees of integers.
These definitions can be seen as an alternative representation of IntSet:

abstract class IntTree
case object EmptyTree extends IntTree
case class Node(elem: int, left: IntTree, right: IntTree) extends IntTree

Complete the following implementations of function contains and insert for
IntTree’s.

def contains(t: IntTree, v: int): boolean = t match { ...
...

}
def insert(t: IntTree, v: int): IntTree = t match { ...
...

}

Pattern Matching Anonymous Functions. So far, case-expressions always ap-
peared in conjunction with a match operation. But it is also possible to use case-
expressions by themselves. A block of case-expressions such as

{ case P1 => E1 ... case Pn => En }

is seen by itself as a function which matches its arguments against the patterns
P1, . . . , Pn , and produces the result of one of E1, . . . , En . (If no pattern matches, the
function would throw a MatchError exception instead). In other words, the expres-
sion above is seen as a shorthand for the anonymous function

(x => x match { case P1 => E1 ... case Pn => En })

where x is a fresh variable which is not used otherwise in the expression.
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Generic Types and Methods

Classes in Scala can have type parameters. We demonstrate the use of type parame-
ters with functional stacks as an example. Say, we want to write a data type of stacks
of integers, with methods push, top, pop, and isEmpty. This is achieved by the fol-
lowing class hierarchy:

abstract class IntStack {
def push(x: int): IntStack = new IntNonEmptyStack(x, this)
def isEmpty: boolean
def top: int
def pop: IntStack

}
class IntEmptyStack extends IntStack {
def isEmpty = true
def top = throw new Error("EmptyStack.top")
def pop = throw new Error("EmptyStack.pop")

}
class IntNonEmptyStack(elem: int, rest: IntStack) {
def isEmpty = false
def top = elem
def pop = rest

}

Of course, it would also make sense to define an abstraction for a stack of Strings.
To do that, one could take the existing abstraction for IntStack, rename it to
StringStack and at the same time rename all occurrences of type int to String.

A better way, which does not entail code duplication, is to parameterize the stack
definitions with the element type. Parameterization lets us generalize from a spe-
cific instance of a problem to a more general one. So far, we have used parameteri-
zation only for values, but it is available also for types. To arrive at a generic version
of Stack, we equip it with a type parameter.
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abstract class Stack[a] {
def push(x: a): Stack[a] = new NonEmptyStack[a](x, this)
def isEmpty: boolean
def top: a
def pop: Stack[a]

}
class EmptyStack[a] extends Stack[a] {
def isEmpty = true
def top = throw new Error("EmptyStack.top")
def pop = throw new Error("EmptyStack.pop")

}
class NonEmptyStack[a](elem: a, rest: Stack[a]) extends Stack[a] {
def isEmpty = false
def top = elem
def pop = rest

}

In the definitions above, ‘a’ is a type parameter of class Stack and its subclasses.
Type parameters are arbitrary names; they are enclosed in brackets instead of
parentheses, so that they can be easily distinguished from value parameters. Here
is an example how the generic classes are used:

val x = new EmptyStack[int]
val y = x.push(1).push(2)
System.out.println(y.pop.top)

The first line creates a new empty stack of int’s. Note the actual type argument
[int] which replaces the formal type parameter a.

It is also possible to parameterize methods with types. As an example, here is a
generic method which determines whether one stack is a prefix of another.

def isPrefix[a](p: Stack[a], s: Stack[a]): boolean = {
p.isEmpty ||
p.top == s.top && isPrefix[a](p.pop, s.pop)

}

parameters are called polymorphic. Generic methods are also called polymorphic.
The term comes from the Greek, where it means “having many forms”. To apply a
polymorphic method such as isPrefix, we pass type parameters as well as value
parameters to it. For instance,

val s1 = new EmptyStack[String].push("abc")
val s2 = new EmptyStack[String].push("abx").push(s.pop)
System.out.println(isPrefix[String](s1, s2))
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Local Type Inference. Passing type parameters such as [int] or [String] all the
time can become tedious in applications where generic functions are used a lot.
Quite often, the information in a type parameter is redundant, because the correct
parameter type can also be determined by inspecting the function’s value parame-
ters or expected result type. Taking the expression isPrefix[String](s1, s2) as an
example, we know that its value parameters are both of type Stack[String], so we
can deduce that the type parameter must be String. Scala has a fairly powerful type
inferencer which allows one to omit type parameters to polymorphic functions and
constructors in situations like these. In the example above, one could have writ-
ten isPrefix(s1, s2) and the missing type argument [String] would have been
inserted by the type inferencer.

8.1 Type Parameter Bounds

Now that we know how to make classes generic it is natural to generalize some of
the earlier classes we have written. For instance class IntSet could be generalized
to sets with arbitrary element types. Let’s try. The abstract class for generic sets is
easily written.

abstract class Set[a] {
def incl(x: a): Set[a];
def contains(x: a): boolean;

}

However, if we still want to implement sets as binary search trees, we encounter a
problem. The contains and incl methods both compare elements using methods
< and >. For IntSet this was OK, since type int has these two methods. But for
an arbitrary type parameter a, we cannot guarantee this. Therefore, the previous
implementation of, say, contains would generate a compiler error.

def contains(x: int): boolean =
if (x < elem) left contains x

^ < not a member of type a.

One way to solve the problem is to restrict the legal types that can be substituted for
type a to only those types that contain methods < and > of the correct types. There is
a trait Ordered[a] in the standard class library Scala which represents values which
are comparable (via < and >) to values of type a. This trait is defined as follows:

/** A class for totally ordered data. */
trait Ordered[a] {

/** Result of comparing ‘this’ with operand ‘that’.

* returns ‘x’ where

* x < 0 iff this < that
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* x == 0 iff this == that

* x > 0 iff this > that

*/
def compare(that: a): int;

def < (that: a): boolean = (this compare that) < 0
def > (that: a): boolean = (this compare that) > 0
def <= (that: a): boolean = (this compare that) <= 0
def >= (that: a): boolean = (this compare that) >= 0
def compareTo(that: a): int = compare(that)

}

We can enforce the comparability of a type by demanding that the type is a subtype
of Ordered. This is done by giving an upper bound to the type parameter of Set:

trait Set[a <: Ordered[a]] {
def incl(x: a): Set[a];
def contains(x: a): boolean;

}

The parameter declaration a <: Ordered[a] introduces a as a type parameter
which must be a subtype of Ordered[a], i.e. its values must be comparable to values
of the same type.

With this restriction, we can now implement the rest of the generic set abstraction
as we did in the case of IntSets before.

class EmptySet[a <: Ordered[a]] extends Set[a] {
def contains(x: a): boolean = false
def incl(x: a): Set[a] = new NonEmptySet(x, new EmptySet[a], new EmptySet[a])

}

class NonEmptySet[a <: Ordered[a]]
(elem:a, left: Set[a], right: Set[a]) extends Set[a] {

def contains(x: a): boolean =
if (x < elem) left contains x
else if (x > elem) right contains x
else true

def incl(x: a): Set[a] =
if (x < elem) new NonEmptySet(elem, left incl x, right)
else if (x > elem) new NonEmptySet(elem, left, right incl x)
else this

}

Note that we have left out the type argument in the object creations
new NonEmptySet(...). In the same way as for polymorphic methods, missing type
arguments in constructor calls are inferred from value arguments and/or the ex-



8.1 Type Parameter Bounds 55

pected result type.

Here is an example that uses the generic set abstraction. Let’s first create a subclass
of Ordered, like this:

case class Num(value: double) extends Ordered[Num] {
def compare(that: Num): int =
if (this.value < that.value) -1
else if (this.value > that.value) 1
else 0

}

Then:

val s = new EmptySet[double].incl(Num(1.0)).incl(Num(2.0))
s.contains(1.5)

This is OK, as type Num implements the trait Ordered[Num]. However, the following
example is in error.

val s = new EmptySet[java.io.File]
^ java.io.File does not conform to type

parameter bound Ordered[java.io.File].

One probem with type parameter bounds is that they require forethought: if we had
not declared Num a subclass of Ordered, we would not have been able to use Num

elements in sets. By the same token, types inherited from Java, such as int, double,
or String are not subclasses of Ordered, so values of these types cannot be used as
set elements.

A more flexible design, which admits elements of these types, uses view bounds in-
stead of the plain type bounds we have seen so far. The only change this entails in
the example above is in the type parameters:

trait Set[a <% Ordered[a]] ...
class EmptySet[a <% Ordered[a]] ...
class NonEmptySet[a <% Ordered[a]] ...

View bounds <% are weaker than plain bounds <:: A view bounded type parameter
clause [a <% T] only specifies that the bounded type a must be convertible to the
bound type T, using an implicit conversion.

The Scala library predefines implicit conversions for a number of types, including
the primitive types and String. Therefore, the redesign set abstraction can be in-
stantiated with these types as well. More explanations on implicit conversions and
view bounds are given in Section 14.
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8.2 Variance Annotations

The combination of type parameters and subtyping poses some interesting ques-
tions. For instance, should Stack[String] be a subtype of Stack[AnyRef]? Intu-
itively, this seems OK, since a stack of Strings is a special case of a stack of AnyRefs.
More generally, if T is a subtype of type S then Stack[T] should be a subtype of
Stack[S]. This property is called co-variant subtyping.

In Scala, generic types have by default non-variant subtyping. That is, with Stack

defined as above, stacks with different element types would never be in a subtype
relation. However, we can enforce co-variant subtyping of stacks by changing the
first line of the definition of class Stack as follows.

class Stack[+a] {

Prefixing a formal type parameter with a + indicates that subtyping is covariant in
that parameter. Besides +, there is also a prefix - which indicates contra-variant
subtyping. If Stack was defined class Stack[-a] ..., then T a subtype of type S

would imply that Stack[S] is a subtype of Stack[T] (which in the case of stacks
would be rather surprising!).

In a purely functional world, all types could be co-variant. However, the situation
changes once we introduce mutable data. Consider the case of arrays in Java or
.NET. Such arrays are represented in Scala by a generic class Array. Here is a partial
definition of this class.

class Array[a] {
def apply(index: int): a
def update(index: int, elem: a)

}

The class above defines the way Scala arrays are seen from Scala user programs. The
Scala compiler will map this abstraction to the underlying arrays of the host system
in most cases where this possible.

In Java, arrays are indeed covariant; that is, for reference types T and S, if T is a sub-
type of S, then also Array[T] is a subtype of Array[S]. This might seem natural but
leads to safety problems that require special runtime checks. Here is an example:

val x = new Array[String](1)
val y: Array[Any] = x
y(0) = new Rational(1, 2); // this is syntactic sugar for

// y.update(0, new Rational(1, 2))

In the first line, a new array of strings is created. In the second line, this array is
bound to a variable y, of type Array[Any]. Assuming arrays are covariant, this is OK,
since Array[String] is a subtype of Array[Any]. Finally, in the last line a rational
number is stored in the array. This is also OK, since type Rational is a subtype of
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the element type Any of the array y. We thus end up storing a rational number in an
array of strings, which clearly violates type soundness.

Java solves this problem by introducing a run-time check in the third line which
tests whether the stored element is compatible with the element type with which
the array was created. We have seen in the example that this element type is not
necessarily the static element type of the array being updated. If the test fails, an
ArrayStoreException is raised.

Scala solves this problem instead statically, by disallowing the second line at
compile-time, because arrays in Scala have non-variant subtyping. This raises the
question how a Scala compiler verifies that variance annotations are correct. If we
had simply declared arrays co-variant, how would the potential problem have been
detected?

Scala uses a conservative approximation to verify soundness of variance annota-
tions. A covariant type parameter of a class may only appear in co-variant posi-
tions inside the class. Among the co-variant positions are the types of values in the
class, the result types of methods in the class, and type arguments to other covariant
types. Not co-variant are types of formal method parameters. Hence, the following
class definition would have been rejected

class Array[+a] {
def apply(index: int): a
def update(index: int, elem: a)

^ covariant type parameter a
appears in contravariant position.

}

So far, so good. Intuitively, the compiler was correct in rejecting the update proce-
dure in a co-variant class because update potentially changes state, and therefore
undermines the soundness of co-variant subtyping.

However, there are also methods which do not mutate state, but where a type pa-
rameter still appears contra-variantly. An example is push in type Stack. Again the
Scala compiler will reject the definition of this method for co-variant stacks.

class Stack[+a] {
def push(x: a): Stack[a] =

^ covariant type parameter a
appears in contravariant position.

This is a pity, because, unlike arrays, stacks are purely functional data structures and
therefore should enable co-variant subtyping. However, there is a a way to solve the
problem by using a polymorphic method with a lower type parameter bound.
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8.3 Lower Bounds

We have seen upper bounds for type parameters. In a type parameter declaration
such as t <: U, the type parameter t is restricted to range only over subtypes of type
U. Symmetrical to this are lower bounds in Scala. In a type parameter declaration
t >: L, the type parameter t is restricted to range only over supertypes of type L.
(One can also combine lower and upper bounds, as in t >: L <: U.)

Using lower bounds, we can generalize the push method in Stack as follows.

class Stack[+a] {
def push[b >: a](x: b): Stack[b] = new NonEmptyStack(x, this)

Technically, this solves our variance problem since now the type parameter a ap-
pears no longer as a parameter type of method push. Instead, it appears as lower
bound for another type parameter of a method, which is classified as a co-variant
position. Hence, the Scala compiler accepts the new definition of push.

In fact, we have not only solved the technical variance problem but also have gen-
eralized the definition of push. Before, we were required to push only elements with
types that conform to the declared element type of the stack. Now, we can push also
elements of a supertype of this type, but the type of the returned stack will change
accordingly. For instance, we can now push an AnyRef onto a stack of Strings, but
the resulting stack will be a stack of AnyRefs instead of a stack of Strings!

In summary, one should not hesitate to add variance annotations to your data struc-
tures, as this yields rich natural subtyping relationships. The compiler will detect
potential soundness problems. Even if the compiler’s approximation is too conser-
vative, as in the case of method push of class Stack, this will often suggest a useful
generalization of the contested method.

8.4 Least Types

Scala does not allow one to parameterize objects with types. That’s why we orig-
inally defined a generic class EmptyStack[a], even though a single value denoting
empty stacks of arbitrary type would do. For co-variant stacks, however, one can
use the following idiom:

object EmptyStack extends Stack[Nothing] { ... }

The bottom type Nothing contains no value, so the type Stack[Nothing] expresses
the fact that an EmptyStack contains no elements. Furthermore, Nothing is a sub-
type of all other types. Hence, for co-variant stacks, Stack[Nothing] is a subtype of
Stack[T], for any other type T. This makes it possible to use a single empty stack
object in user code. For instance:
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val s = EmptyStack.push("abc").push(new AnyRef())

Let’s analyze the type assignment for this expression in detail. The EmptyStack ob-
ject is of type Stack[Nothing], which has a method

push[b >: Nothing](elem: b): Stack[b] .

Local type inference will determine that the type parameter b should be instanti-
ated to String in the application EmptyStack.push("abc"). The result type of that
application is hence Stack[String], which in turn has a method

push[b >: String](elem: b): Stack[b] .

The final part of the value definition above is the application of this method to
new AnyRef(). Local type inference will determine that the type parameter b should
this time be instantiated to AnyRef, with result type Stack[AnyRef]. Hence, the type
assigned to value s is Stack[AnyRef].

Besides Nothing, which is a subtype of every other type, there is also the type Null,
which is a subtype of scala.AnyRef, and every class derived from it. The null lit-
eral in Scala is the only value of that type. This makes null compatible with every
reference type, but not with a value type such as int.

We conclude this section with the complete improved definition of stacks. Stacks
have now co-variant subtyping, the push method has been generalized, and the
empty stack is represented by a single object.

abstract class Stack[+a] {
def push[b >: a](x: b): Stack[b] = new NonEmptyStack(x, this)
def isEmpty: boolean
def top: a
def pop: Stack[a]

}
object EmptyStack extends Stack[Nothing] {
def isEmpty = true
def top = throw new Error("EmptyStack.top")
def pop = throw new Error("EmptyStack.pop")

}
class NonEmptyStack[+a](elem: a, rest: Stack[a]) extends Stack[a] {
def isEmpty = false
def top = elem
def pop = rest

}

Many classes in the Scala library are generic. We now present two commonly used
families of generic classes, tuples and functions. The discussion of another com-
mon class, lists, is deferred to the next chapter.
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8.5 Tuples

Sometimes, a function needs to return more than one result. For instance, take the
function divmod which returns the integer quotient and rest of two given integer
arguments. Of course, one can define a class to hold the two results of divmod, as in:

case class TwoInts(first: int, second: int)
def divmod(x: int, y: int): TwoInts = new TwoInts(x / y, x % y)

However, having to define a new class for every possible pair of result types is very
tedious. In Scala one can use instead a the generic classes Tuplen, for each n be-
tween 2 and 9. As an example, here is the definition of Tuple2.

package scala
case class Tuple2[a, b](_1: a, _2: b)

With Tuple2, the divmod method can be written as follows.

def divmod(x: int, y: int) = new Tuple2[int, int](x / y, x % y)

As usual, type parameters to constructors can be omitted if they are deducible from
value arguments. Also, Scala defines an alias Pair for Tuple2 (as well as Triple for
Tuple3). With these conventions, divmod can equivalently be written as follows.

def divmod(x: int, y: int) = Pair(x / y, x % y)

How are elements of tuples accessed? Since tuples are case classes, there are two
possibilities. One can either access a tuple’s fields using the names of the construc-
tor parameters _i , as in the following example:

val xy = divmod(x, y)
System.out.println("quotient: " + x._1 + ", rest: " + x._2)

Or one uses pattern matching on tuples, as in the following example:

divmod(x, y) match {
case Pair(n, d) =>
System.out.println("quotient: " + n + ", rest: " + d)

}

Note that type parameters are never used in patterns; it would have been illegal to
write case Pair[int, int](n, d).
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8.6 Functions

Scala is a functional language in that functions are first-class values. Scala is also an
object-oriented language in that every value is an object. It follows that functions
are objects in Scala. For instance, a function from type String to type int is repre-
sented as an instance of the trait Function1[String, int]. The Function1 trait is
defined as follows.

package scala
trait Function1[-a, +b] {
def apply(x: a): b

}

Besides Function1, there are also definitions of Function0 and Function2 up to
Function9 in the standard Scala library. That is, there is one definition for each
possible number of function parameters between 0 and 9. Scala’s function type
syntax T1, . . . , Tn => S is simply an abbreviation for the parameterized type
Functionn[T1, . . . , Tn ,S] .

Scala uses the same syntax f (x) for function application, no matter whether f is a
method or a function object. This is made possible by the following convention: A
function application f (x) where f is an object (as opposed to a method) is taken
to be a shorthand for f .apply(x). Hence, the apply method of a function type is
inserted automatically where this is necessary.

That’s also why we defined array subscripting in Section 8.2 by an apply method.
For any array a, the subscript operation a(i) is taken to be a shorthand for
a.apply(i).

Functions are an example where a contra-variant type parameter declaration is use-
ful. For example, consider the following code:

val f: (AnyRef => int) = x => x.hashCode()
val g: (String => int) = f
g("abc")

It’s sound to bind the value g of type String => int to f, which is of type
AnyRef => int. Indeed, all one can do with function of type String => int is pass
it a string in order to obtain an integer. Clearly, the same works for function f: If we
pass it a string (or any other object), we obtain an integer. This demonstrates that
function subtyping is contra-variant in its argument type whereas it is covariant in
its result type. In short, S ⇒ T is a subtype of S′ ⇒ T ′, provided S′ is a subtype of S
and T is a subtype of T ′.

Example 8.6.1 Consider the Scala code

val plus1: (int => int) = (x: int) => x + 1
plus1(2)
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This is expanded into the following object code.

val plus1: Function1[int, int] = new Function1[int, int] {
def apply(x: int): int = x + 1

}
plus1.apply(2)

Here, the object creation new Function1[int, int]{ ... } represents an instance
of an anonymous class. It combines the creation of a new Function1 object with an
implementation of the applymethod (which is abstract in Function1). Equivalently,
but more verbosely, one could have used a local class:

val plus1: Function1[int, int] = {
class Local extends Function1[int, int] {
def apply(x: int): int = x + 1

}
new Local: Function1[int, int]

}
plus1.apply(2)



Chapter 9

Lists

Lists are an important data structure in many Scala programs. A list containing the
elements x1, . . . , xn is written List(x1, ..., xn). Examples are:

val fruit = List("apples", "oranges", "pears")
val nums = List(1, 2, 3, 4)
val diag3 = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))
val empty = List()

Lists are similar to arrays in languages such as C or Java, but there are also three
important differences. First, lists are immutable. That is, elements of a list cannot
be changed by assignment. Second, lists have a recursive structure, whereas arrays
are flat. Third, lists support a much richer set of operations than arrays usually do.

9.1 Using Lists

The List type. Like arrays, lists are homogeneous. That is, the elements of a list all
have the same type. The type of a list with elements of type T is written List[T]

(compare to T[] in Java).

val fruit: List[String] = List("apples", "oranges", "pears")
val nums : List[int] = List(1, 2, 3, 4)
val diag3: List[List[int]] = List(List(1, 0, 0), List(0, 1, 0), List(0, 0, 1))
val empty: List[int] = List()

List constructors. All lists are built from two more fundamental constructors, Nil
and :: (pronounced “cons”). Nil represents an empty list. The infix operator ::

expresses list extension. That is, x :: xs represents a list whose first element is x,
which is followed by (the elements of) list xs. Hence, the list values above could also
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have been defined as follows (in fact their previous definition is simply syntactic
sugar for the definitions below).

val fruit = "apples" :: ("oranges" :: ("pears" :: Nil))
val nums = 1 :: (2 :: (3 :: (4 :: Nil)))
val diag3 = (1 :: (0 :: (0 :: Nil))) ::

(0 :: (1 :: (0 :: Nil))) ::
(0 :: (0 :: (1 :: Nil))) :: Nil

val empty = Nil

The ‘::’ operation associates to the right: A :: B :: C is interpreted as
A :: (B :: C). Therefore, we can drop the parentheses in the definitions above.
For instance, we can write shorter

val nums = 1 :: 2 :: 3 :: 4 :: Nil

Basic operations on lists. All operations on lists can be expressed in terms of the
following three:

head returns the first element of a list,
tail returns the list consisting of all elements except the

first element,
isEmpty returns true iff the list is empty

These operations are defined as methods of list objects. So we invoke them by se-
lecting from the list that’s operated on. Examples:

empty.isEmpty = true
fruit.isEmpty = false
fruit.head = "apples"
fruit.tail.head = "oranges"
diag3.head = List(1, 0, 0)

The head and tail methods are defined only for non-empty lists. When selected
from an empty list, they throw an exception.

As an example of how lists can be processed, consider sorting the elements of a list
of numbers into ascending order. One simple way to do so is insertion sort, which
works as follows: To sort a non-empty list with first element x and rest xs, sort the
remainder xs and insert the element x at the right position in the result. Sorting an
empty list will yield the empty list. Expressed as Scala code:

def isort(xs: List[int]): List[int] =
if (xs.isEmpty) Nil
else insert(xs.head, isort(xs.tail))

Exercise 9.1.1 Provide an implementation of the missing function insert.
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List patterns. In fact, :: is defined as a case class in Scala’s standard library.
Hence, it is possible to decompose lists by pattern matching, using patterns com-
posed from the Nil and :: constructors. For instance, isort can be written alterna-
tively as follows.

def isort(xs: List[int]): List[int] = xs match {
case List() => List()
case x :: xs1 => insert(x, isort(xs1))

}

where

def insert(x: int, xs: List[int]): List[int] = xs match {
case List() => List(x)
case y :: ys => if (x <= y) x :: xs else y :: insert(x, ys)

}

9.2 Definition of class List I: First Order Methods

Lists are not built in in Scala; they are defined by an abstract class List, which comes
with two subclasses for :: and Nil. In the following we present a tour through class
List.

package scala
abstract class List[+a] {

List is an abstract class, so one cannot define elements by calling the empty List

constructor (e.g. by new List). The class has a type parameter a. It is co-variant
in this parameter, which means that List[S] <: List[T] for all types S and T such
that S <: T. The class is situated in the package scala. This is a package containing
the most important standard classes of Scala. List defines a number of methods,
which are explained in the following.

Decomposing lists. First, there are the three basic methods isEmpty, head, tail.
Their implementation in terms of pattern matching is straightforward:

def isEmpty: boolean = match {
case Nil => true
case x :: xs => false

}
def head: a = match {
case Nil => throw new Error("Nil.head")
case x :: xs => x

}
def tail: List[a] = match {
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case Nil => throw new Error("Nil.tail")
case x :: xs => xs

}

The next function computes the length of a list.

def length = match {
case Nil => 0
case x :: xs => 1 + xs.length

}

Exercise 9.2.1 Design a tail-recursive version of length.

The next two functions are the complements of head and tail.

def last: a
def init: List[a]

xs.last returns the last element of list xs, whereas xs.init returns all elements of
xs except the last. Both functions have to traverse the entire list, and are thus less
efficient than their head and tail analogues. Here is the implementation of last.

def last: a = match {
case Nil => throw new Error("Nil.last")
case x :: Nil => x
case x :: xs => xs.last

}

The implementation of init is analogous.

The next three functions return a prefix of the list, or a suffix, or both.

def take(n: int): List[a] =
if (n == 0 || isEmpty) Nil else head :: tail.take(n-1)

def drop(n: int): List[a] =
if (n == 0 || isEmpty) this else tail.drop(n-1)

def split(n: int): Pair[List[a], List[a]] = Pair(take(n), drop(n))

(xs take n) returns the first n elements of list xs, or the whole list, if its length is
smaller than n. (xs drop n) returns all elements of xs except the n first ones. Fi-
nally, (xs split n) returns a pair consisting of the lists resulting from xs take n

and xs drop n.

The next function returns an element at a given index in a list. It is thus analogous
to array subscripting. Indices start at 0.
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def apply(n: int): a = drop(n).head

The apply method has a special meaning in Scala. An object with an apply method
can be applied to arguments as if it was a function. For instance, to pick the 3’rd
element of a list xs, one can write either xs.apply(3) or xs(3) – the latter expression
expands into the first.

With take and drop, we can extract sublists consisting of consecutive elements of
the original list. To extract the sublist xsm , . . . , xsn−1 of a list xs, use:

xs.drop(m).take(n - m)

Zipping lists. The next function combines two lists into a list of pairs. Given two
lists

xs = List(x1, ..., xn) , and
ys = List(y1, ..., yn) ,

xs zip ys constructs the list List(Pair(x1, y1), ..., Pair(xn, yn)). If the two
lists have different lengths, the longer one of the two is truncated. Here is the defi-
nition of zip – note that it is a polymorphic method.

def zip[b](that: List[b]): List[Pair[a,b]] =
if (this.isEmpty || that.isEmpty) Nil
else Pair(this.head, that.head) :: (this.tail zip that.tail)

Consing lists.. Like any infix operator, :: is also implemented as a method of an
object. In this case, the object is the list that is extended. This is possible, because
operators ending with a ‘:’ character are treated specially in Scala. All such opera-
tors are treated as methods of their right operand. E.g.,

x :: y = y.::(x) whereas x + y = x.+(y)

Note, however, that operands of a binary operation are in each case evaluated from
left to right. So, if D and E are expressions with possible side-effects, D :: E is
translated to {val x = D; E.::(x)} in order to maintain the left-to-right order of
operand evaluation.

Another difference between operators ending in a ‘:’ and other operators concerns
their associativity. Operators ending in ‘:’ are right-associative, whereas other op-
erators are left-associative. E.g.,

x :: y :: z = x :: (y :: z) whereas x + y + z = (x + y) + z

The definition of :: as a method in class List is as follows:
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def ::[b >: a](x: b): List[b] = new scala.::(x, this)

Note that :: is defined for all elements x of type B and lists of type List[A] such that
the type B of x is a supertype of the list’s element type A. The result is in this case a list
of B’s. This is expressed by the type parameter b with lower bound a in the signature
of ::.

Concatenating lists. An operation similar to :: is list concatenation, written ‘:::’.
The result of (xs ::: ys) is a list consisting of all elements of xs, followed by all
elements of ys. Because it ends in a colon, ::: is right-associative and is considered
as a method of its right-hand operand. Therefore,

xs ::: ys ::: zs = xs ::: (ys ::: zs)
= zs.:::(ys).:::(xs)

Here is the implementation of the ::: method:

def :::[b >: a](prefix: List[b]): List[b] = prefix match {
case Nil => this
case p :: ps => this.:::(ps).::(p)

}

Reversing lists. Another useful operation is list reversal. There is a method
reverse in List to that effect. Let’s try to give its implementation:

def reverse[a](xs: List[a]): List[a] = xs match {
case Nil => Nil
case x :: xs => reverse(xs) ::: List(x)

}

This implementation has the advantage of being simple, but it is not very efficient.
Indeed, one concatenation is executed for every element in the list. List concatena-
tion takes time proportional to the length of its first operand. Therefore, the com-
plexity of reverse(xs) is

n + (n −1)+ ...+1 = n(n +1)/2

where n is the length of xs. Can reverse be implemented more efficiently? We will
see later that there exists another implementation which has only linear complexity.

9.3 Example: Merge sort

The insertion sort presented earlier in this chapter is simple to formulate, but also
not very efficient. It’s average complexity is proportional to the square of the length
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of the input list. We now design a program to sort the elements of a list which is
more efficient than insertion sort. A good algorithm for this is merge sort, which
works as follows.

First, if the list has zero or one elements, it is already sorted, so one returns the
list unchanged. Longer lists are split into two sub-lists, each containing about half
the elements of the original list. Each sub-list is sorted by a recursive call to the sort
function, and the resulting two sorted lists are then combined in a merge operation.

For a general implementation of merge sort, we still have to specify the type of list
elements to be sorted, as well as the function to be used for the comparison of el-
ements. We obtain a function of maximal generality by passing these two items as
parameters. This leads to the following implementation.

def msort[a](less: (a, a) => boolean)(xs: List[a]): List[a] = {
def merge(xs1: List[a], xs2: List[a]): List[a] =
if (xs1.isEmpty) xs2
else if (xs2.isEmpty) xs1
else if (less(xs1.head, xs2.head)) xs1.head :: merge(xs1.tail, xs2)
else xs2.head :: merge(xs1, xs2.tail)

val n = xs.length/2
if (n == 0) xs
else merge(msort(less)(xs take n), msort(less)(xs drop n))

}

The complexity of msort is O(N log (N )), where N is the length of the input list. To
see why, note that splitting a list in two and merging two sorted lists each take time
proportional to the length of the argument list(s). Each recursive call of msorthalves
the number of elements in its input, so there are O(log (N )) consecutive recursive
calls until the base case of lists of length 1 is reached. However, for longer lists each
call spawns off two further calls. Adding everything up we obtain that at each of
the O(log (N )) call levels, every element of the original lists takes part in one split
operation and in one merge operation. Hence, every call level has a total cost pro-
portional to O(N ). Since there are O(log (N )) call levels, we obtain an overall cost
of O(N log (N )). That cost does not depend on the initial distribution of elements
in the list, so the worst case cost is the same as the average case cost. This makes
merge sort an attractive algorithm for sorting lists.

Here is an example how msort is used.

msort(x: int, y: int => x < y)(List(5, 7, 1, 3))

The definition of msort is curried, to make it easy to specialize it with particular
comparison functions. For instance,

val intSort = msort(x: int, y: int => x < y)
val reverseSort = msort(x: int, y: int => x > y)
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9.4 Definition of class List II: Higher-Order Methods

The examples encountered so far show that functions over lists often have similar
structures. We can identify several patterns of computation over lists, like:

• transforming every element of a list in some way.

• extracting from a list all elements satisfying a criterion.

• combine the elements of a list using some operator.

Functional programming languages enable programmers to write general functions
which implement patterns like this by means of higher order functions. We now
discuss a set of commonly used higher-order functions, which are implemented as
methods in class List.

Mapping over lists. A common operation is to transform each element of a list
and then return the lists of results. For instance, to scale each element of a list by a
given factor.

def scaleList(xs: List[double], factor: double): List[double] = xs match {
case Nil => xs
case x :: xs1 => x * factor :: scaleList(xs1, factor)

}

This pattern can be generalized to the map method of class List:

abstract class List[a] { ...
def map[b](f: a => b): List[b] = this match {
case Nil => this
case x :: xs => f(x) :: xs.map(f)

}

Using map, scaleList can be more concisely written as follows.

def scaleList(xs: List[double], factor: double) =
xs map (x => x * factor)

As another example, consider the problem of returning a given column of a matrix
which is represented as a list of rows, where each row is again a list. This is done by
the following function column.

def column[a](xs: List[List[a[]], index: int): List[a] =
xs map (row => row at index)

Closely related to map is the foreach method, which applies a given function to all
elements of a list, but does not construct a list of results. The function is thus applied
only for its side effect. foreach is defined as follows.
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def foreach(f: a => unit) {
this match {
case Nil => ()
case x :: xs => f(x) ; xs.foreach(f)

}
}

This function can be used for printing all elements of a list, for instance:

xs foreach (x => System.out.println(x))

Exercise 9.4.1 Consider a function which squares all elements of a list and re-
turns a list with the results. Complete the following two equivalent definitions of
squareList.

def squareList(xs: List[int]): List[int] = xs match {
case List() => ??
case y :: ys => ??

}
def squareList(xs: List[int]): List[int] =
xs map ??

Filtering Lists. Another common operation selects from a list all elements fulfill-
ing a given criterion. For instance, to return a list of all positive elements in some
given lists of integers:

def posElems(xs: List[int]): List[int] = xs match {
case Nil => xs
case x :: xs1 => if (x > 0) x :: posElems(xs1) else posElems(xs1)

}

This pattern is generalized to the filter method of class List:

def filter(p: a => boolean): List[a] = this match {
case Nil => this
case x :: xs => if (p(x)) x :: xs.filter(p) else xs.filter(p)

}

Using filter, posElems can be more concisely written as follows.

def posElems(xs: List[int]): List[int] =
xs filter (x => x > 0)

An operation related to filtering is testing whether all elements of a list satisfy a cer-
tain condition. Dually, one might also be interested in the question whether there
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exists an element in a list that satisfies a certain condition. These operations are
embodied in the higher-order functions forall and exists of class List.

def forall(p: a => boolean): boolean =
isEmpty || (p(head) && (tail forall p))

def exists(p: a => boolean): boolean =
!isEmpty && (p(head) || (tail exists p))

To illustrate the use of forall, consider the question whether a number if prime.
Remember that a number n is prime of it can be divided without remainder only
by one and itself. The most direct translation of this definition would test that n
divided by all numbers from 2 up to and excluding itself gives a non-zero remainder.
This list of numbers can be generated using a function List.range which is defined
in object List as follows.

package scala
object List { ...
def range(from: int, end: int): List[int] =
if (from >= end) Nil else from :: range(from + 1, end)

For example, List.range(2, n) generates the list of all integers from 2 up to and
excluding n. The function isPrime can now simply be defined as follows.

def isPrime(n: int) =
List.range(2, n) forall (x => n % x != 0)

We see that the mathematical definition of prime-ness has been translated directly
into Scala code.

Exercise: Define forall and exists in terms of filter.

Folding and Reducing Lists. Another common operation is to combine the ele-
ments of a list with some operator. For instance:

sum(List(x1, ..., xn)) = 0 + x1 + ... + xn

product(List(x1, ..., xn)) = 1 * x1 * ... * xn

Of course, we can implement both functions with a recursive scheme:

def sum(xs: List[int]): int = xs match {
case Nil => 0
case y :: ys => y + sum(ys)

}
def product(xs: List[int]): int = xs match {
case Nil => 1
case y :: ys => y * product(ys)

}
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But we can also use the generalization of this program scheme embodied in the
reduceLeft method of class List. This method inserts a given binary operator be-
tween adjacent elements of a given list. E.g.

List(x1, ..., xn).reduceLeft(op) = (...(x1 op x2) op ... ) op xn

Using reduceLeft, we can make the common pattern in sum and product apparent:

def sum(xs: List[int]) = (0 :: xs) reduceLeft {(x, y) => x + y}
def product(xs: List[int]) = (1 :: xs) reduceLeft {(x, y) => x * y}

Here is the implementation of reduceLeft.

def reduceLeft(op: (a, a) => a): a = this match {
case Nil => throw new Error("Nil.reduceLeft")
case x :: xs => (xs foldLeft x)(op)

}
def foldLeft[b](z: b)(op: (b, a) => b): b = this match {
case Nil => z
case x :: xs => (xs foldLeft op(z, x))(op)

}
}

We see that the reduceLeft method is defined in terms of another generally use-
ful method, foldLeft. The latter takes as additional parameter an accumulator z,
which is returned when foldLeft is applied on an empty list. That is,

(List(x1, ..., xn) foldLeft z)(op) = (...(z op x1) op ... ) op xn

The sum and product methods can be defined alternatively using foldLeft:

def sum(xs: List[int]) = (xs foldLeft 0) {(x, y) => x + y}
def product(xs: List[int]) = (xs foldLeft 1) {(x, y) => x * y}

FoldRight and ReduceRight. Applications of foldLeft and reduceLeft expand to
left-leaning trees. . They have duals foldRight and reduceRight, which produce
right-leaning trees.

List(x1, ..., xn).reduceRight(op) = x1 op ( ... (xn−1 op xn)...)
(List(x1, ..., xn) foldRight acc)(op) = x1 op ( ... (xn op acc)...)

These are defined as follows.

def reduceRight(op: (a, a) => a): a = match
case Nil => throw new Error("Nil.reduceRight")
case x :: Nil => x
case x :: xs => op(x, xs.reduceRight(op))



74 Lists

}
def foldRight[b](z: b)(op: (a, b) => b): b = match {
case Nil => z
case x :: xs => op(x, (xs foldRight z)(op))

}

Class List defines also two symbolic abbreviations for foldLeft and foldRight:

def /:[b](z: b)(f: (b, a) => b): b = foldLeft(z)(f)
def :\[b](z: b)(f: (a, b) => b): b = foldRight(z)(f)

The method names picture the left/right leaning trees of the fold operations by for-
ward or backward slashes. The : points in each case to the list argument whereas
the end of the slash points to the accumulator (or: zero) argument z. That is,

(z /: List(x1, ..., xn))(op) = (...(z op x1) op ... ) op xn

(List(x1, ..., xn) :\ z)(op) = x1 op ( ... (xn op acc)...)

For associative and commutative operators, /: and :\ are equivalent (even though
there may be a difference in efficiency).

Exercise 9.4.2 Consider the problem of writing a function flatten, which takes a
list of element lists as arguments. The result of flatten should be the concatenation
of all element lists into a single list. Here is the an implementation of this method
in terms of :\.

def flatten[a](xs: List[List[a]]): List[a] =
(xs :\ (Nil: List[a])) {(x, xs) => x ::: xs}

Consider replacing the body of flatten by

((Nil: List[a]) /: xs) ((xs, x) => xs ::: x)

What would be the difference in asymptotic complexity between the two versions
of flatten?

In fact flatten is predefined together with a set of other userful function in an ob-
ject called List in the standatd Scala library. It can be accessed from user program
by calling List.flatten. Note that flatten is not a method of class List – it would
not make sense there, since it applies only to lists of lists, not to all lists in general.

List Reversal Again. We have seen in Section 9.2 an implementation of method
reverse whose run-time was quadratic in the length of the list to be reversed. We
now develop a new implementation of reverse, which has linear cost. The idea is
to use a foldLeft operation based on the following program scheme.

class List[+a] { ...
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def reverse: List[a] = (z? /: this)(op?)

It only remains to fill in the z? and op?parts. Let’s try to deduce them from examples.

Nil
= Nil.reverse // by specification
= (z /: Nil)(op) // by the template for reverse
= (Nil foldLeft z)(op) // by the definition of /:
= z // by definition of foldLeft

Hence, z? must be Nil. To deduce the second operand, let’s study reversal of a list
of length one.

List(x)
= List(x).reverse // by specification
= (Nil /: List(x))(op) // by the template for reverse, with z = Nil
= (List(x) foldLeft Nil)(op) // by the definition of /:
= op(Nil, x) // by definition of foldLeft

Hence, op(Nil, x) equals List(x), which is the same as x :: Nil. This suggests
to take as op the :: operator with its operands exchanged. Hence, we arrive at the
following implementation for reverse, which has linear complexity.

def reverse: List[a] =
((Nil: List[a]) /: this) {(xs, x) => x :: xs}

(Remark: The type annotation of Nil is necessary to make the type inferencer work.)

Exercise 9.4.3 Fill in the missing expressions to complete the following definitions
of some basic list-manipulation operations as fold operations.

def mapFun[a, b](xs: List[a], f: a => b): List[b] =
(xs :\ List[b]()){ ?? }

def lengthFun[a](xs: List[a]): int =
(0 /: xs){ ?? }

Nested Mappings. We can employ higher-order list processing functions to ex-
press many computations that are normally expressed as nested loops in imperative
languages.

As an example, consider the following problem: Given a positive integer n, find all
pairs of positive integers i and j , where 1 ≤ j < i < n such that i + j is prime. For
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instance, if n = 7, the pairs are

i 2 3 4 4 5 6 6
j 1 2 1 3 2 1 5

i + j 3 5 5 7 7 7 11

A natural way to solve this problem consists of two steps. In a first step, one gener-
ates the sequence of all pairs (i , j ) of integers such that 1 ≤ j < i < n. In a second
step one then filters from this sequence all pairs (i , j ) such that i + j is prime.

Looking at the first step in more detail, a natural way to generate the sequence of
pairs consists of three sub-steps. First, generate all integers between 1 and n for i .

Second, for each integer i between 1 and n, generate the list of pairs (i ,1) up to
(i , i −1). This can be achieved by a combination of range and map:

List.range(1, i) map (x => Pair(i, x))

Finally, combine all sublists using foldRight with :::. Putting everything together
gives the following expression:

List.range(1, n)
.map(i => List.range(1, i).map(x => Pair(i, x)))
.foldRight(List[Pair[int, int]]()) {(xs, ys) => xs ::: ys}
.filter(pair => isPrime(pair._1 + pair._2))

Flattening Maps. The combination of mapping and then concatenating sublists
resulting from the map is so common that we there is a special method for it in class
List:

abstract class List[+a] { ...
def flatMap[b](f: a => List[b]): List[b] = match {
case Nil => Nil
case x :: xs => f(x) ::: (xs flatMap f)

}
}

With flatMap, the pairs-whose-sum-is-prime expression could have been written
more concisely as follows.

List.range(1, n)
.flatMap(i => List.range(1, i).map(x => Pair(i, x)))
.filter(pair => isPrime(pair._1 + pair._2))
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9.5 Summary

This chapter has ingtroduced lists as a fundamental data structure in programming.
Since lists are immutable, they are a common data type in functional programming
languages. They play there a role comparable to arrays in imperative languages.
However, the access patterns between arrays and lists are quite different. Where
array accessing is always done by indexing, this is much less common for lists. We
have seen that scala.List defines a method called apply for indexing however this
operation is much more costly than in the case of arrays (linear as opposed to con-
stant time). Instead of indexing, lists are usually traversed recursively, where re-
cursion steps are usually based on a pattern match over the traversed list. There is
also a rich set of higher-order combinators which allow one to instantiate a set of
predefined patterns of computations over lists.





Chapter 10

For-Comprehensions

The last chapter demonstrated that higher-order functions such as map, flatMap,
filter provide powerful constructions for dealing with lists. But sometimes the
level of abstraction required by these functions makes a program hard to under-
stand.

To help understandability, Scala has a special notation which simplifies common
patterns of applications of higher-order functions. This notation builds a bridge
between set-comprehensions in mathematics and for-loops in imperative lan-
guages such as C or Java. It also closely resembles the query notation of relational
databases.

As a first example, say we are given a list persons of persons with name and age fields.
To print the names of all persons in the sequence which are aged over 20, one can
write:

for (val p <- persons; p.age > 20) yield p.name

This is equivalent to the following expression , which uses higher-order functions
filter and map:

persons filter (p => p.age > 20) map (p => p.name)

The for-comprehension looks a bit like a for-loop in imperative languages, except
that it constructs a list of the results of all iterations.

Generally, a for-comprehension is of the form

for ( s ) yield e

Here, s is a sequence of generators, definitions and filters. A generator is of the form
val x <- e, where e is a list-valued expression. It binds x to successive values in the
list. A definition is of the form val x = e. It introduces x as a name for the value of e
in the rest of the comprehension. A filter is an expression f of type boolean. It omits
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from consideration all bindings for which f is false. The sequence s starts in each
case with a generator. If there are several generators in a sequence, later generators
vary more rapidly than earlier ones.

The sequence s may also be enclosed in braces instead of parentheses, in which
case the semicolons between generators, definitions and filters can be omitted.

Here are two examples that show how for-comprehensions are used. First, let’s redo
an example of the previous chapter: Given a positive integer n, find all pairs of
positive integers i and j , where 1 ≤ j < i < n such that i + j is prime. With a for-
comprehension this problem is solved as follows:

for { val i <- List.range(1, n)
val j <- List.range(1, i)
isPrime(i+j) } yield Pair(i, j)

This is arguably much clearer than the solution using map, flatMap and filter that
we have developed previously.

As a second example, consider computing the scalar product of two vectors xs and
ys. Using a for-comprehension, this can be written as follows.

sum (for(val (x, y) <- xs zip ys) yield x * y)

10.1 The N-Queens Problem

For-comprehensions are especially useful for solving combinatorial puzzles. An ex-
ample of such a puzzle is the 8-queens problem: Given a standard chess-board,
place 8 queens such that no queen is in check from any other (a queen can check
another piece if they are on the same column, row, or diagonal). We will now de-
velop a solution to this problem, generalizing it to chess-boards of arbitrary size.
Hence, the problem is to place n queens on a chess-board of size n ×n.

To solve this problem, note that we need to place a queen in each row. So we could
place queens in successive rows, each time checking that a newly placed queen is
not in check from any other queens that have already been placed. In the course of
this search, it might arrive that a queen to be placed in row k would be in check in
all fields of that row from queens in row 1 to k − 1. In that case, we need to abort
that part of the search in order to continue with a different configuration of queens
in columns 1 to k −1.

This suggests a recursive algorithm. Assume that we have already generated all so-
lutions of placing k −1 queens on a board of size n×n. We can represent each such
solution by a list of length k − 1 of column numbers (which can range from 1 to
n). We treat these partial solution lists as stacks, where the column number of the
queen in row k − 1 comes first in the list, followed by the column number of the
queen in row k −2, etc. The bottom of the stack is the column number of the queen
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placed in the first row of the board. All solutions together are then represented as a
list of lists, with one element for each solution.

Now, to place the k’the queen, we generate all possible extensions of each previous
solution by one more queen. This yields another list of solution lists, this time of
length k. We continue the process until we have reached solutions of the size of the
chess-board n. This algorithmic idea is embodied in function placeQueens below:

def queens(n: int): List[List[int]] = {
def placeQueens(k: int): List[List[int]] =
if (k == 0) List(List())
else for { val queens <- placeQueens(k - 1)

val column <- List.range(1, n + 1)
isSafe(column, queens, 1) } yield col :: queens

placeQueens(n)
}

Exercise 10.1.1 Write the function

def isSafe(col: int, queens: List[int], delta: int): boolean

which tests whether a queen in the given column col is safe with respect to the
queens already placed. Here, delta is the difference between the row of the queen
to be placed and the row of the first queen in the list.

10.2 Querying with For-Comprehensions

The for-notation is essentially equivalent to common operations of database query
languages. For instance, say we are given a database books, represented as a list of
books, where Book is defined as follows.

case class Book(title: String, authors: List[String])

Here is a small example database:

val books: List[Book] = List(
Book("Structure and Interpretation of Computer Programs",

List("Abelson, Harold", "Sussman, Gerald J.")),
Book("Principles of Compiler Design",

List("Aho, Alfred", "Ullman, Jeffrey")),
Book("Programming in Modula-2",

List("Wirth, Niklaus")),
Book("Introduction to Functional Programming"),

List("Bird, Richard")),
Book("The Java Language Specification",

List("Gosling, James", "Joy, Bill", "Steele, Guy", "Bracha, Gilad")))
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Then, to find the titles of all books whose author’s last name is “Ullman”:

for (val b <- books; val a <- b.authors; a startsWith "Ullman")
yield b.title

(Here, startsWith is a method in java.lang.String). Or, to find the titles of all
books that have the string “Program” in their title:

for (val b <- books; (b.title indexOf "Program") >= 0)
yield b.title

Or, to find the names of all authors that have written at least two books in the
database.

for (val b1 <- books; val b2 <- books; b1 != b2;
val a1 <- b1.authors; val a2 <- b2.authors; a1 == a2)

yield a1

The last solution is not yet perfect, because authors will appear several times in the
list of results. We still need to remove duplicate authors from result lists. This can
be achieved with the following function.

def removeDuplicates[a](xs: List[a]): List[a] =
if (xs.isEmpty) xs
else xs.head :: removeDuplicates(xs.tail filter (x => x != xs.head))

Note that the last expression in method removeDuplicates can be equivalently ex-
pressed using a for-comprehension.

xs.head :: removeDuplicates(for (val x <- xs.tail; x != xs.head) yield x)

10.3 Translation of For-Comprehensions

Every for-comprehension can be expressed in terms of the three higher-order func-
tions map, flatMap and filter. Here is the translation scheme, which is also used
by the Scala compiler.

• A simple for-comprehension

for (val x <- e) yield e’

is translated to

e.map(x => e’)

• A for-comprehension
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for (val x <- e; f; s) yield e’

where f is a filter and s is a (possibly empty) sequence of generators or filters
is translated to

for (val x <- e.filter(x => f); s) yield e’

and then translation continues with the latter expression.

• A for-comprehension

for (val x <- e; y <- e’; s) yield e’’

where s is a (possibly empty) sequence of generators or filters is translated to

e.flatMap(x => for (y <- e’; s) yield e’’)

and then translation continues with the latter expression.

For instance, taking our "pairs of integers whose sum is prime" example:

for { val i <- range(1, n)
val j <- range(1, i)
isPrime(i+j)

} yield (i, j)

Here is what we get when we translate this expression:

range(1, n)
.flatMap(i =>
range(1, i)
.filter(j => isPrime(i+j))
.map(j => (i, j)))

Conversely, it would also be possible to express functions map, flatMap and filter

using for-comprehensions. Here are the three functions again, this time imple-
mented using for-comprehensions.

object Demo {
def map[a, b](xs: List[a], f: a => b): List[b] =
for (val x <- xs) yield f(x)

def flatMap[a, b](xs: List[a], f: a => List[b]): List[b] =
for (val x <- xs; val y <- f(x)) yield y

def filter[a](xs: List[a], p: a => boolean): List[a] =
for (val x <- xs; p(x)) yield x

}
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Not surprisingly, the translation of the for-comprehension in the body of Demo.map
will produce a call to map in class List. Similarly, Demo.flatMap and Demo.filter

translate to flatMap and filter in class List.

Exercise 10.3.1 Define the following function in terms of for.

def flatten[a](xss: List[List[a]]): List[a] =
(xss :\ (Nil: List[a])) ((xs, ys) => xs ::: ys)

Exercise 10.3.2 Translate

for ( val b <- books; val a <- b.authors; a startsWith "Bird" ) yield b.title
for ( val b <- books; (b.title indexOf "Program") >= 0 ) yield b.title

to higher-order functions.

10.4 For-Loops

For-comprehensions resemble for-loops in imperative languages, except that they
produce a list of results. Sometimes, a list of results is not needed but we would
still like the flexibility of generators and filters in iterations over lists. This is made
possible by a variant of the for-comprehension syntax, which expresses for-loops:

for ( s ) e

This construct is the same as the standard for-comprehension syntax except that
the keyword yield is missing. The for-loop is executed by executing the expression
e for each element generated from the sequence of generators and filters s.

As an example, the following expression prints out all elements of a matrix repre-
sented as a list of lists:

for (val xs <- xss) {
for (val x <- xs) System.out.print(x + "\t")
System.out.println()

}

The translation of for-loops to higher-order methods of class List is similar to
the translation of for-comprehensions, but is simpler. Where for-comprehensions
translate to map and flatMap, for-loops translate in each case to foreach.

10.5 Generalizing For

We have seen that the translation of for-comprehensions only relies on the presence
of methods map, flatMap, and filter. Therefore it is possible to apply the same
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notation to generators that produce objects other than lists; these objects only have
to support the three key functions map, flatMap, and filter.

The standard Scala library has several other abstractions that support these three
methods and with them support for-comprehensions. We will encounter some of
them in the following chapters. As a programmer you can also use this principle to
enable for-comprehensions for types you define – these types just need to support
methods map, flatMap, and filter.

There are many examples where this is useful: Examples are database interfaces,
XML trees, or optional values. We will see in Chapter 15.2 how for-comprehensions
can be used in the definition of parsers for context-free grammars that construct
abstract syntax trees.

One caveat: It is not assured automatically that the result translating a for-
comprehension is well-typed. To ensure this, the types of map, flatMap and filter

have to be essentially similar to the types of these methods in class List.

To make this precise, assume you have a parameterized class C[a] for which you
want to enable for-comprehensions. Then C should define map, flatMap and filter

with the following types:

def map[b](f: a => b): C[b]
def flatMap[b](f: a => C[b]): C[b]
def filter(p: a => boolean): C[a]

It would be attractive to enforce these types statically in the Scala compiler, for
instance by requiring that any type supporting for-comprehensions implements a
standard trait with these methods 1. The problem is that such a standard trait would
have to abstract over the identity of the class C, for instance by taking C as a type pa-
rameter. Note that this parameter would be a type constructor, which gets applied
to several different types in the signatures of methods map and flatMap. Unfortu-
nately, the Scala type system is too weak to express this construct, since it can han-
dle only type parameters which are fully applied types.

1In the programming language Haskell, which has similar constructs, this abstraction is called a
“monad with zero”
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Mutable State

Most programs we have presented so far did not have side-effects 1. Therefore, the
notion of time did not matter. For a program that terminates, any sequence of ac-
tions would have led to the same result! This is also reflected by the substitution
model of computation, where a rewrite step can be applied anywhere in a term,
and all rewritings that terminate lead to the same solution. In fact, this confluence
property is a deep result in λ-calculus, the theory underlying functional program-
ming.

In this chapter, we introduce functions with side effects and study their behavior.
We will see that as a consequence we have to fundamentally modify up the substi-
tution model of computation which we employed so far.

11.1 Stateful Objects

We normally view the world as a set of objects, some of which have state that
changes over time. Normally, state is associated with a set of variables that can be
changed in the course of a computation. There is also a more abstract notion of
state, which does not refer to particular constructs of a programming language: An
object has state (or: is stateful) if its behavior is influenced by its history.

For instance, a bank account object has state, because the question “can I withdraw
100 CHF?” might have different answers during the lifetime of the account.

In Scala, all mutable state is ultimately built from variables. A variable definition is
written like a value definition, but starts with var instead of val. For instance, the
following two definitions introduce and initialize two variables x and count.

var x: String = "abc"

1We ignore here the fact that some of our program printed to standard output, which technically
is a side effect.
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var count = 111

Like a value definition, a variable definition associates a name with a value. But in
the case of a variable definition, this association may be changed later by an assign-
ment. Such assignments are written as in C or Java. Examples:

x = "hello"
count = count + 1

In Scala, every defined variable has to be initialized at the point of its definition.
For instance, the statement var x: int; is not regarded as a variable definition,
because the initializer is missing2. If one does not know, or does not care about, the
appropriate initializer, one can use a wildcard instead. I.e.

val x: T = _

will initialize x to some default value (null for reference types, false for booleans,
and the appropriate version of 0 for numeric value types).

Real-world objects with state are represented in Scala by objects that have variables
as members. For instance, here is a class that represents bank accounts.

class BankAccount {
private var balance = 0
def deposit(amount: int) {
if (amount > 0) balance = balance + amount

}

def withdraw(amount: int): int =
if (0 < amount && amount <= balance) {
balance = balance - amount
balance

} else throw new Error("insufficient funds")
}

The class defines a variable balance which contains the current balance of an ac-
count. Methods deposit and withdraw change the value of this variable through
assignments. Note that balance is private in class BankAccount – hence it can not
be accessed directly outside the class.

To create bank-accounts, we use the usual object creation notation:

val myAccount = new BankAccount

2If a statement like this appears in a class, it is instead regarded as a variable declaration, which
introduces abstract access methods for the variable, but does not associate these methods with a
piece of state.
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Example 11.1.1 Here is a scalaint session that deals with bank accounts.

> :l bankaccount.scala
loading file ’bankaccount.scala’
> val account = new BankAccount
val account : BankAccount = BankAccount$class@1797795
> account deposit 50
(): scala.Unit
> account withdraw 20
30: scala.Int
> account withdraw 20
10: scala.Int
> account withdraw 15
java.lang.RuntimeException: insufficient funds

at BankAccount$class.withdraw(bankaccount.scala:13)
at <top-level>(console:1)

>

The example shows that applying the same operation (withdraw 20) twice to an
account yields different results. So, clearly, accounts are stateful objects.

Sameness and Change. Assignments pose new problems in deciding when two
expressions are “the same”. If assignments are excluded, and one writes

val x = E; val y = E

where E is some arbitrary expression, then x and y can reasonably be assumed to be
the same. I.e. one could have equivalently written

val x = E; val y = x

(This property is usually called referential transparency). But once we admit assign-
ments, the two definition sequences are different. Consider:

val x = new BankAccount; val y = new BankAccount

To answer the question whether x and y are the same, we need to be more pre-
cise what “sameness” means. This meaning is captured in the notion of operational
equivalence, which, somewhat informally, is stated as follows.

Suppose we have two definitions of x and y. To test whether x and y define the same
value, proceed as follows.

• Execute the definitions followed by an arbitrary sequence S of operations that
involve x and y. Observe the results (if any).

• Then, execute the definitions with another sequence S’ which results from S

by renaming all occurrences of y in S to x.
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• If the results of running S’ are different, then surely x and y are different.

• On the other hand, if all possible pairs of sequences (S, S’) yield the same
results, then x and y are the same.

In other words, operational equivalence regards two definitions x and y as defining
the same value, if no possible experiment can distinguish between x and y. An ex-
periment in this context are two version of an arbitrary program which use either x
or y.

Given this definition, let’s test whether

val x = new BankAccount; val y = new BankAccount

defines values x and y which are the same. Here are the definitions again, followed
by a test sequence:

> val x = new BankAccount
> val y = new BankAccount
> x deposit 30
30
> y withdraw 20
java.lang.RuntimeException: insufficient funds

Now, rename all occurrences of y in that sequence to x. We get:

> val x = new BankAccount
> val y = new BankAccount
> x deposit 30
30
> x withdraw 20
10

Since the final results are different, we have established that x and y are not the
same. On the other hand, if we define

val x = new BankAccount; val y = x

then no sequence of operations can distinguish between x and y, so x and y are the
same in this case.

Assignment and the Substitution Model. These examples show that our previous
substitution model of computation cannot be used anymore. After all, under this
model we could always replace a value name by its defining expression. For instance
in

val x = new BankAccount; val y = x
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the x in the definition of y could be replaced by new BankAccount. But we have seen
that this change leads to a different program. So the substitution model must be
invalid, once we add assignments.

11.2 Imperative Control Structures

Scala has the while and do-while loop constructs known from the C and Java lan-
guages. There is also a single branch if which leaves out the else-part as well as a
return statement which aborts a function prematurely. This makes it possible to
program in a conventional imperative style. For instance, the following function,
which computes the n’th power of a given parameter x, is implemented using while
and single-branch if.

def power (x: double, n: int): double = {
var r = 1.0
var i = n
while (i > 0) {
if ((i & 1) == 1) { r = r * x }
if (i > 1) r = r * r
i = i >> 1

}
r

}

These imperative control constructs are in the language for convenience. They
could have been left out, as the same constructs can be implemented using just
functions. As an example, let’s develop a functional implementation of the while
loop. whileLoop should be a function that takes two parameters: a condition, of
type boolean, and a command, of type unit. Both condition and command need
to be passed by-name, so that they are evaluated repeatedly for each loop iteration.
This leads to the following definition of whileLoop.

def whileLoop(condition: => boolean)(command: => unit): unit =
if (condition) {
command; whileLoop(condition)(command)

} else {}

Note that whileLoop is tail recursive, so it operates in constant stack space.

Exercise 11.2.1 Write a function repeatLoop, which should be applied as follows:

repeatLoop { command } ( condition )

Is there also a way to obtain a loop syntax like the following?

repeatLoop { command } until ( condition )
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Some other control constructs known from C and Java are missing in Scala: There
are no break and continue jumps for loops. There are also no for-loops in the Java
sense – these have been replaced by the more general for-loop construct discussed
in Section 10.4.

11.3 Extended Example: Discrete Event Simulation

We now discuss an example that demonstrates how assignments and higher-order
functions can be combined in interesting ways. We will build a simulator for digital
circuits.

The example is taken from Abelson and Sussman’s book [ASS96]. We augment
their basic (Scheme-) code by an object-oriented structure which allows code-reuse
through inheritance. The example also shows how discrete event simulation pro-
grams in general are structured and built.

We start with a little language to describe digital circuits. A digital circuit is built
from wires and function boxes. Wires carry signals which are transformed by func-
tion boxes. We will represent signals by the booleans true and false.

Basic function boxes (or: gates) are:

• An inverter, which negates its signal

• An and-gate, which sets its output to the conjunction of its input.

• An or-gate, which sets its output to the disjunction of its input.

Other function boxes can be built by combining basic ones.

Gates have delays, so an output of a gate will change only some time after its inputs
change.

A Language for Digital Circuits. We describe the elements of a digital circuit by
the following set of Scala classes and functions.

First, there is a class Wire for wires. We can construct wires as follows.

val a = new Wire
val b = new Wire
val c = new Wire

Second, there are procedures

def inverter(input: Wire, output: Wire)
def andGate(a1: Wire, a2: Wire, output: Wire)
def orGate(o1: Wire, o2: Wire, output: Wire)
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which “make” the basic gates we need (as side-effects). More complicated function
boxes can now be built from these. For instance, to construct a half-adder, we can
define:

def halfAdder(a: Wire, b: Wire, s: Wire, c: Wire) {
val d = new Wire
val e = new Wire
orGate(a, b, d)
andGate(a, b, c)
inverter(c, e)
andGate(d, e, s)

}

This abstraction can itself be used, for instance in defining a full adder:

def fullAdder(a: Wire, b: Wire, cin: Wire, sum: Wire, cout: Wire) {
val s = new Wire
val c1 = new Wire
val c2 = new Wire
halfAdder(a, cin, s, c1)
halfAdder(b, s, sum, c2)
orGate(c1, c2, cout)

}

Class Wire and functions inverter, andGate, and orGate represent thus a little lan-
guage in which users can define digital circuits. We now give implementations of
this class and these functions, which allow one to simulate circuits. These imple-
mentations are based on a simple and general API for discrete event simulation.

The Simulation API. Discrete event simulation performs user-defined actions at
specified times. An action is represented as a function which takes no parameters
and returns a unit result:

type Action = () => unit

The time is simulated; it is not the actual “wall-clock” time.

A concrete simulation will be done inside an object which inherits from the abstract
Simulation class. This class has the following signature:

abstract class Simulation {
def currentTime: int
def afterDelay(delay: int, action: => Action)
def run

}
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Here, currentTime returns the current simulated time as an integer number,
afterDelay schedules an action to be performed at a specified delay after
currentTime, and run runs the simulation until there are no further actions to be
performed.

The Wire Class. A wire needs to support three basic actions.

getSignal: boolean returns the current signal on the wire.

setSignal(sig: boolean) sets the wire’s signal to sig.

addAction(p: Action) attaches the specified procedure p to the actions of
the wire. All attached action procedures will be executed every time the signal
of a wire changes.

Here is an implementation of the Wire class:

class Wire {
private var sigVal = false
private var actions: List[Action] = List()
def getSignal = sigVal
def setSignal(s: boolean) =
if (s != sigVal) {
sigVal = s
actions.foreach(action => action());

}
def addAction(a: Action) = {
actions = a :: actions; a()

}
}

Two private variables make up the state of a wire. The variable sigVal represents the
current signal, and the variable actions represents the action procedures currently
attached to the wire.

The Inverter Class. We implement an inverter by installing an action on its input
wire, namely the action which puts the negated input signal onto the output sig-
nal. The action needs to take effect at InverterDelay simulated time units after the
input changes. This suggests the following implementation:

def inverter(input: Wire, output: Wire) = {
def invertAction() = {
val inputSig = input.getSignal
afterDelay(InverterDelay, () => output.setSignal(!inputSig))

}
input addAction invertAction

}
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The And-Gate Class. And-gates are implemented analogously to inverters. The
action of an andGate is to output the conjunction of its input signals. This should
happen at AndGateDelay simulated time units after any one of its two inputs
changes. Hence, the following implementation:

def andGate(a1: Wire, a2: Wire, output: Wire) = {
def andAction() = {
val a1Sig = a1.getSignal
val a2Sig = a2.getSignal
afterDelay(AndGateDelay, () => output.setSignal(a1Sig & a2Sig))

}
a1 addAction andAction
a2 addAction andAction

}

Exercise 11.3.1 Write the implementation of orGate.

Exercise 11.3.2 Another way is to define an or-gate by a combination of inverters
and and gates. Define a function orGate in terms of andGate and inverter. What is
the delay time of this function?

The Simulation Class. Now, we just need to implement class Simulation, and we
are done. The idea is that we maintain inside a Simulation object an agenda of
actions to perform. The agenda is represented as a list of pairs of actions and the
times they need to be run. The agenda list is sorted, so that earlier actions come
before later ones.

class Simulation {
private type Agenda = List[Pair[int, Action]]
private var agenda: Agenda = List()

There is also a private variable curtime to keep track of the current simulated time.

private var curtime = 0

An application of the method afterDelay(delay, action) inserts the pair
(curtime + delay, action) into the agenda list at the appropriate place.

def afterDelay(int delay)(action: => Action) {
val actiontime = curtime + delay
def insertAction(ag: Agenda): Agenda = ag match {
case List() =>
Pair(actiontime, action) :: ag

case (first @ Pair(time, act)) :: ag1 =>
if (actiontime < time) Pair(actiontime, action) :: ag
else first :: insert(ag1)
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}
agenda = insert(agenda)

}

An application of the runmethod removes successive elements from the agenda and
performs their actions. It continues until the agenda is empty:

def run = {
afterDelay(0, () => System.out.println("*** simulation started ***"))
agenda match {
case List() =>
case Pair(_, action) :: agenda1 =>
agenda = agenda1; action(); run

}
}

Running the Simulator. To run the simulator, we still need a way to inspect
changes of signals on wires. To this purpose, we write a function probe.

def probe(name: String, wire: Wire) {
wire addAction {() =>
System.out.println(
name + " " + currentTime + " new_value = " + wire.getSignal)

}
}

Now, to see the simulator in action, let’s define four wires, and place probes on two
of them:

> val input1 = new Wire
> val input2 = new Wire
> val sum = new Wire
> val carry = new Wire

> probe("sum", sum)
sum 0 new_value = false
> probe("carry", carry)
carry 0 new_value = false

Now let’s define a half-adder connecting the wires:

> halfAdder(input1, input2, sum, carry)

Finally, set one after another the signals on the two input wires to true and run the
simulation.
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> input1 setSignal true; run

*** simulation started ***
sum 8 new_value = true
> input2 setSignal true; run
carry 11 new_value = true
sum 15 new_value = false

11.4 Summary

We have seen in this chapter the constructs that let us model state in Scala – these
are variables, assignments, and imperative control structures. State and Assign-
ment complicate our mental model of computation. In particular, referential trans-
parency is lost. On the other hand, assignment gives us new ways to formulate pro-
grams elegantly. As always, it depends on the situation whether purely functional
programming or programming with assignments works best.
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Computing with Streams

The previous chapters have introduced variables, assignment and stateful objects.
We have seen how real-world objects that change with time can be modeled by
changing the state of variables in a computation. Time changes in the real world
thus are modeled by time changes in program execution. Of course, such time
changes are usually stretched out or compressed, but their relative order is the
same. This seems quite natural, but there is a also price to pay: Our simple and pow-
erful substitution model for functional computation is no longer applicable once we
introduce variables and assignment.

Is there another way? Can we model state change in the real world using only im-
mutable functions? Taking mathematics as a guide, the answer is clearly yes: A
time-changing quantity is simply modeled by a function f(t) with a time parame-
ter t. The same can be done in computation. Instead of overwriting a variable with
successive values, we represent all these values as successive elements in a list. So,
a mutable variable var x: T gets replaced by an immutable value val x: List[T].
In a sense, we trade space for time – the different values of the variable now all exist
concurrently as different elements of the list. One advantage of the list-based view
is that we can “time-travel”, i.e. view several successive values of the variable at the
same time. Another advantage is that we can make use of the powerful library of list
processing functions, which often simplifies computation. For instance, consider
the imperative way to compute the sum of all prime numbers in an interval:

def sumPrimes(start: int, end: int): int = {
var i = start
var acc = 0
while (i < end) {
if (isPrime(i)) acc = acc + i
i = i + 1

}
acc

}



100 Computing with Streams

Note that the variable i “steps through” all values of the interval [start .. end-1].

A more functional way is to represent the list of values of variable i directly as
range(start, end). Then the function can be rewritten as follows.

def sumPrimes(start: int, end: int) =
sum(range(start, end) filter isPrime)

No contest which program is shorter and clearer! However, the functional program
is also considerably less efficient since it constructs a list of all numbers in the in-
terval, and then another one for the prime numbers. Even worse from an efficiency
point of view is the following example:

To find the second prime number between 1000 and 10000:

range(1000, 10000) filter isPrime at 1

Here, the list of all numbers between 1000 and 10000 is constructed. But most of
that list is never inspected!

However, we can obtain efficient execution for examples like these by a trick:

Avoid computing the tail of a sequence unless that tail is actually neces-
sary for the computation.

We define a new class for such sequences, which is called Stream.

Streams are created using the constant empty and the constructor cons, which are
both defined in module scala.Stream. For instance, the following expression con-
structs a stream with elements 1 and 2:

Stream.cons(1, Stream.cons(2, Stream.empty))

As another example, here is the analogue of List.range, but returning a stream
instead of a list:

def range(start: int, end: int): Stream[int] =
if (start >= end) Stream.empty
else Stream.cons(start, range(start + 1, end))

(This function is also defined as given above in module Stream). Even though
Stream.range and List.range look similar, their execution behavior is completely
different:

Stream.range immediately returns with a Stream object whose first element is
start. All other elements are computed only when they are demanded by calling
the tail method (which might be never at all).

Streams are accessed just as lists. as for lists, the basic access methods are isEmpty,
head and tail. For instance, we can print all elements of a stream as follows.
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def print(xs: Stream[a]) {
if (!xs.isEmpty) { System.out.println(xs.head); print(xs.tail) }

}

Streams also support almost all other methods defined on lists (see below for where
their methods sets differ). For instance, we can find the second prime number be-
tween 1000 and 10000 by applying methods filter and apply on an interval stream:

Stream.range(1000, 10000) filter isPrime at 1

The difference to the previous list-based implementation is that now we do not
needlessly construct and test for primality any numbers beyond 3.

Consing and appending streams. Two methods in class List which are not sup-
ported by class Stream are :: and :::. The reason is that these methods are dis-
patched on their right-hand side argument, which means that this argument needs
to be evaluated before the method is called. For instance, in the case of x :: xs

on lists, the tail xs needs to be evaluated before :: can be called and the new list
can be constructed. This does not work for streams, where we require that the tail
of a stream should not be evaluated until it is demanded by a tail operation. The
argument why list-append ::: cannot be adapted to streams is analogous.

Instead of x :: xs, one uses Stream.cons(x, xs) for constructing a stream with
first element x and (unevaluated) rest xs. Instead of xs ::: ys, one uses the opera-
tion xs append ys.
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Iterators

Iterators are the imperative version of streams. Like streams, iterators describe po-
tentially infinite lists. However, there is no data-structure which contains the el-
ements of an iterator. Instead, iterators allow one to step through the sequence,
using two abstract methods next and hasNext.

trait Iterator[+a] {
def hasNext: boolean
def next: a

Method next returns successive elements. Method hasNext indicates whether there
are still more elements to be returned by next. Iterators also support some other
methods, which are explained later.

As an example, here is an application which prints the squares of all numbers from
1 to 100.

var it: Iterator[int] = Iterator.range(1, 100)
while (it.hasNext) {
val x = it.next
System.out.println(x * x)

}

13.1 Iterator Methods

Iterators support a rich set of methods besides next and hasNext, which is described
in the following. Many of these methods mimic a corresponding functionality in
lists.



104 Iterators

Append. Method append constructs an iterator which resumes with the given iter-
ator it after the current iterator has finished.

def append[b >: a](that: Iterator[b]): Iterator[b] = new Iterator[b] {
def hasNext = Iterator.this.hasNext || that.hasNext
def next = if (Iterator.this.hasNext) Iterator.this.next else that.next

}

The terms Iterator.this.next and Iterator.this.hasNext in the definition of
append call the corresponding methods as they are defined in the enclosing
Iterator class. If the Iterator prefix to this would have been missing, hasNext
and next would have called recursively the methods being defined in the result of
append, which is not what we want.

Map, FlatMap, Foreach. Method map constructs an iterator which returns all ele-
ments of the original iterator transformed by a given function f.

def map[b](f: a => b): Iterator[b] = new Iterator[b] {
def hasNext = Iterator.this.hasNext
def next = f(Iterator.this.next)

}

Method flatMap is like method map, except that the transformation function f now
returns an iterator. The result of flatMap is the iterator resulting from appending
together all iterators returned from successive calls of f.

def flatMap[b](f: a => Iterator[b]): Iterator[b] = new Iterator[b] {
private var cur: Iterator[b] = Iterator.empty
def hasNext: boolean =
if (cur.hasNext) true
else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); hasNext }
else false

def next: b =
if (cur.hasNext) cur.next
else if (Iterator.this.hasNext) { cur = f(Iterator.this.next); next }
else throw new Error("next on empty iterator")

}

Closely related to map is the foreach method, which applies a given function to all
elements of an iterator, but does not construct a list of results

def foreach(f: a => unit): unit =
while (hasNext) { f(next) }
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Filter. Method filter constructs an iterator which returns all elements of the
original iterator that satisfy a criterion p.

def filter(p: a => boolean) = new BufferedIterator[a] {
private val source =
Iterator.this.buffered

private def skip
{ while (source.hasNext && !p(source.head)) { source.next; () } }

def hasNext: boolean =
{ skip; source.hasNext }

def next: a =
{ skip; source.next }

def head: a =
{ skip; source.head; }

}

In fact, filter returns instances of a subclass of iterators which are “buffered”. A
BufferedIterator object is an iterator which has in addition a method head. This
method returns the element which would otherwise have been returned by head,
but does not advance beyond that element. Hence, the element returned by head

is returned again by the next call to head or next. Here is the definition of the
BufferedIterator trait.

trait BufferedIterator[+a] extends Iterator[a] {
def head: a

}

Since map, flatMap, filter, and foreach exist for iterators, it follows that for-
comprehensions and for-loops can also be used on iterators. For instance, the ap-
plication which prints the squares of numbers between 1 and 100 could have equiv-
alently been expressed as follows.

for (val i <- Iterator.range(1, 100))
System.out.println(i * i)

Zip. Method zip takes another iterator and returns an iterator consisting of pairs
of corresponding elements returned by the two iterators.

def zip[b](that: Iterator[b]) = new Iterator[Pair[a, b]] {
def hasNext = Iterator.this.hasNext && that.hasNext
def next = Pair(Iterator.this.next, that.next)

}
}
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13.2 Constructing Iterators

Concrete iterators need to provide implementations for the two abstract methods
next and hasNext in class Iterator. The simplest iterator is Iterator.empty which
always returns an empty sequence:

object Iterator {
object empty extends Iterator[Nothing] {
def hasNext = false
def next: a = throw new Error("next on empty iterator")

}

A more interesting iterator enumerates all elements of an array. This iterator is con-
structed by the fromArray method, which is also defined in the object Iterator

def fromArray[a](xs: Array[a]) = new Iterator[a] {
private var i = 0
def hasNext: boolean =
i < xs.length

def next: a =
if (i < xs.length) { val x = xs(i) ; i = i + 1 ; x }
else throw new Error("next on empty iterator")

}

Another iterator enumerates an integer interval. The Iterator.range function re-
turns an iterator which traverses a given interval of integer values. It is defined as
follows.

object Iterator {
def range(start: int, end: int) = new Iterator[int] {
private var current = start
def hasNext = current < end
def next = {
val r = current
if (current < end) current = current + 1
else throw new Error("end of iterator")
r

}
}

}

All iterators seen so far terminate eventually. It is also possible to define iterators
that go on forever. For instance, the following iterator returns successive integers
from some start value1.

1Due to the finite representation of type int, numbers will wrap around at 231.



13.3 Using Iterators 107

def from(start: int) = new Iterator[int] {
private var last = start - 1
def hasNext = true
def next = { last = last + 1; last }

}

13.3 Using Iterators

Here are two more examples how iterators are used. First, to print all elements of an
array xs: Array[int], one can write:

Iterator.fromArray(xs) foreach (x =>
System.out.println(x))

Or, using a for-comprehension:

for (val x <- Iterator.fromArray(xs))
System.out.println(x)

As a second example, consider the problem of finding the indices of all the elements
in an array of doubles greater than some limit. The indices should be returned as
an iterator. This is achieved by the following expression.

import Iterator._
fromArray(xs)
.zip(from(0))
.filter(case Pair(x, i) => x > limit)
.map(case Pair(x, i) => i)

Or, using a for-comprehension:

import Iterator._
for (val Pair(x, i) <- fromArray(xs) zip from(0); x > limit)
yield i





Chapter 14

Implicit Parameters and Conver-
sions

Implicit parameters and conversions are powerful tools for custimizing existing li-
braries and for creating high-level abstractions. As an example, let’s start with an
abstract class of semi-groups that support an unspecified add operation.

abstract class SemiGroup[a] {
def add(x: a, y: a): a

}

Here’s a subclass Monoid of SemiGroup which adds a unit element.

abstract class Monoid[a] extends SemiGroup[a] {
def unit: a

}

Here are two implementations of monoids:

object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}

object intMonoid extends Monoid[int] {
def add(x: int, y: int): int = x + y
def unit: int = 0

}

A sum method, which works over arbitrary monoids, can be written in plain Scala as
follows.

def sum[a](xs: List[a])(m: Monoid[a]): a =
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if (xs.isEmpty) m.unit
else m.add(xs.head, sum(m)(xs.tail)

This sum method can be called as follows:

sum(List("a", "bc", "def"))(stringMonoid)
sum(List(1, 2, 3))(intMonoid)

All this works, but it is not very nice. The problem is that the monoid implementa-
tions have to be passed into all code that uses them. We would sometimes wish that
the system could figure out the correct arguments automatically, similar to what is
done when type arguments are inferred. This is what implicit parameters provide.

Implicit Parameters: The Basics

In Scala 2 there is a new implicit keyword that can be used at the beginning of a
parameter list. Syntax:

ParamClauses ::= {‘(’ [Param {‘,’ Param}] ’)’}
[‘(’ implicit Param {‘,’ Param} ‘)’]

If the keyword is present, it makes all parameters in the list implicit. For instance,
the following version of sum has m as an implicit parameter.

def sum[a](xs: List[a])(implicit m: Monoid[a]): a =
if (xs.isEmpty) m.unit
else m.add(xs.head, sum(xs.tail))

As can be seen from the example, it is possible to combine normal and implicit
parameters. However, there may only be one implicit parameter list for a method or
constructor, and it must come last.

implicit can also be used as a modifier for definitions and declarations. Examples:

implicit object stringMonoid extends Monoid[String] {
def add(x: String, y: String): String = x.concat(y)
def unit: String = ""

}
implicit object intMonoid extends Monoid[int] {
def add(x: int, y: int): int = x + y
def unit: int = 0

}

The principal idea behind implicit parameters is that arguments for them can be left
out from a method call. If the arguments corresponding to an implicit parameter
section are missing, they are inferred by the Scala compiler.



111

The actual arguments that are eligible to be passed to an implicit parameter are all
identifiers X that can be accessed at the point of the method call without a prefix
and that denote an implicit definition or parameter.

If there are several eligible arguments which match the implicit parameter’s type,
the Scala compiler will chose a most specific one, using the standard rules of static
overloading resolution. For instance, assume the call

sum(List(1, 2, 3))

in a context where stringMonoid and intMonoid are visible. We know that the formal
type parameter a of sum needs to be instantiated to int. The only eligible value
which matches the implicit formal parameter type Monoid[int] is intMonoid so this
object will be passed as implicit parameter.

This discussion also shows that implicit parameters are inferred after any type ar-
guments are inferred.

Implicit Conversions

Say you have an expression E of type T which is expected to type S. T does not con-
form to S and is not convertible to S by some other predefined conversion. Then the
Scala compiler will try to apply as last resort an implicit conversion I (E). Here, I is
an identifier denoting an implicit definition or parameter that is accessible without
a prefix at the point of the conversion, that can be applied to arguments of type T
and whose result type conforms to the expected type S.

Implicit conversions can also be applied in member selections. Given a selection
E .x where x is not a member of the type E , the Scala compiler will try to insert an
implicit conversion I (E).x, so that x is a member of I (E).

Here is an example of an implicit conversion function that converts integers into
instances of class scala.Ordered:

implicit def int2ordered(x: int): Ordered[int] = new Ordered[int] {
def compare(y: int): int =
if (x < y1) -1
else if (x > y1) 1
else 0

}

View Bounds

View bounds are convenient syntactic sugar for implicit parameters. Consider for
instance a generic sort method:

def sort[a <% Ordered[a]](xs: List[a]): List[a] =
if (xs.isEmpty || xs.tail.isEmpty) xs
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else {
val Pair(ys, zs) = xs.splitAt(xs.length / 2)
merge(ys, zs)

}

The view bounded type parameter [a <% Ordered[a]] expresses that sort is ap-
plicable to lists of type a such that there exists an implicit conversion from a to
Ordered[a]. The definition is treated as a shorthand for the following method sig-
nature with an implicit parameter:

def sort[a](xs: List[a])(implicit c: a => Ordered[a]): List[a] = ...

(Here, the parameter name c is chosen arbitrarily in a way that does not collide with
other names in the program.)

As a more detailed example, consider the merge method that comes with the sort

method above:

def merge[a <% Ordered[a]](xs: List[a], ys: List[a]): List[a] =
if (xs.isEmpty) ys
else if (ys.isEmpty) xs
else if (xs.head < ys.head) xs.head :: merge(xs.tail, ys)
else if ys.head :: merge(xs, ys.tail)

After expanding view bounds and inserting implicit conversions, this method im-
plementation becomes:

def merge[a](xs: List[a], ys: List[a])
(implicit c: a => Ordered[a]): List[a] =

if (xs.isEmpty) ys
else if (ys.isEmpty) xs
else if (c(xs.head) < ys.head) xs.head :: merge(xs.tail, ys)
else if ys.head :: merge(xs, ys.tail)(c)

The last two lines of this method definition illustrate two different uses of the im-
plicit parameter c. It is applied in a conversion in the condition of the second to last
line, and it is passed as implicit argument in the recursive call to merge on the last
line.



Chapter 15

Combinator Parsing

In this chapter we describe how to write combinator parsers in Scala. Such parsers
are constructed from predefined higher-order functions, so called parser combina-
tors, that closely model the constructions of an EBNF grammar [Wir77].

As running example, we consider parsers for possibly nested lists of identifiers and
numbers, which are described by the following context-free grammar.

letter ::= /* all letters */
digit ::= /* all digits */

ident ::= letter {letter | digit }
number ::= digit {digit}

list ::= ‘(’ [listElems] ‘)’
listElems ::= expr [‘,’ listElems]
expr ::= ident | number | list

15.1 Simple Combinator Parsing

In this section we will only be concerned with the task of recognizing input strings,
not with processing them. So we can describe parsers by the sets of input strings
they accept. There are two fundamental operators over parsers: & expresses the
sequential composition of a parser with another, while | expresses an alternative.
These operations will both be defined as methods of a Parser class. We will also
define constructors for the following primitive parsers:
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empty The parser that accepts the empty string
failure(msg: String) The parser that accepts no string (msg stands for an error message)
chr(c: char) The parser that accepts the single-character string “c”.
chrSuchThat(p: char => boolean) The parser that accepts single-character strings “c”

for which p(c) is true.

There are also the two higher-order parser combinators opt, expressing optionality
and rep, expressing repetition. For any parser p, opt(p) yields a parser that accepts
the strings accepted by p or else the empty string, while rep(p) accepts arbitrary
sequences of the strings accepted by p. In EBNF, opt(p) corresponds to [p] and
rep(p) corresponds to {p}.

The central idea of parser combinators is that parsers can be produced by a straight-
forward rewrite of the grammar, replacing ::= with =, sequencing with &, repetition
{...} with rep(...) and optional occurrence [...] with opt(...). Applying this
process to the grammar of lists yields the following trait.

trait class ListParsers extends Parsers {
def chrSuchThat(p: char => boolean): Parser
def chr(c: char): Parser = chrSuchThat(d ==)

def letter : Parser = chr(Character.isLetter)
def digit : Parser = chr(Character.isDigit)

def ident : Parser = letter &&& rep(letter ||| digit)
def number : Parser = digit &&& rep(digit)
def list : Parser = chr(’(’) &&& opt(listElems) &&& chr(’)’)
def listElems : Parser = expr &&& (chr(’,’) &&& listElems ||| empty)
def expr : Parser = ident ||| number ||| list

}

This class isolates the grammar from other aspects of parsing. It abstracts over the
type of input and over the method used to parse a single character (represented by
the abstract method chr(p: char => boolean)). The missing bits of information
need to be supplied by code applying the parser class.

It remains to explain how to implement a library with the combinators described
above. We will pack combinators and their underlying implementation in a base
class Parsers, which is inherited by ListParsers. The first question to decide is
which underlying representation type to use for a parser. We treat parsers here es-
sentially as functions that take a datum of the input type intype and that yield a
parse result of type Option[intype]. The Option type is predefined as follows.

abstract class Option[+a]
case object None extends Option[Nothing]
case class Some[a](x: a) extends Option[a]

A parser applied to some input either succeeds or fails. If it fails, it returns the con-
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stant None. If it succeeds, it returns a value of the form Some(in1) where in1 repre-
sents the input that remains to be parsed.

trait Parsers {
type intype
abstract class Parser {
type Result = Option[intype]
def apply(in: intype): Result

A parser also implements the combinators for sequence and alternative:

/*** p &&& q applies first p, and if that succeeds, then q

*/
def &&& (q: => Parser) = new Parser {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(in1) => q(in1)

}
}

/*** p ||| q applies first p, and, if that fails, then q.

*/
def ||| (q: => Parser) = new Parser {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => q(in)
case s => s

}
}

The implementations of the primitive parsers empty and fail are trivial:

val empty = new Parser { def apply(in: intype): Result = Some(in) }
val fail = new Parser { def apply(in: intype): Result = None }

The higher-order parser combinators opt and rep can be defined in terms of the
combinators for sequence and alternative:

def opt(p: Parser): Parser = p ||| empty; // p? = (p | <empty>)
def rep(p: Parser): Parser = opt(rep1(p)); // p* = [p+]
def rep1(p: Parser): Parser = p &&& rep(p); // p+ = p p*

} // end Parser

To run combinator parsers, we still need to decide on a way to handle parser in-
put. Several possibilities exist: The input could be represented as a list, as an array,
or as a random access file. Note that the presented combinator parsers use back-
tracking to change from one alternative to another. Therefore, it must be possible
to reset input to a point that was previously parsed. If one restricted the focus to
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LL(1) grammars, a non-backtracking implementation of the parser combinators in
class Parsers would also be possible. In that case sequential input methods based
on (say) iterators or sequential files would also be possible.

In our example, we represent the input by a pair of a string, which contains the input
phrase as a whole, and an index, which represents the portion of the input which has
not yet been parsed. Since the input string does not change, just the index needs to
be passed around as a result of individual parse steps. This leads to the following
class of parsers that read strings:

class ParseString(s: String) extends Parsers {
type intype = int
def chrSuchThat(p: char => boolean) = new Parser {
def apply(in: int): Parser#Result =
if (in < s.length() && p(s charAt in)) Some(in + 1)
else None

}
val input = 0

}

This class implements a method chr(p: char => boolean) and a value input. The
chr method builds a parser that either reads a single character satisfying the given
predicate p or fails. All other parsers over strings are ultimately implemented in
terms of that method. The input value represents the input as a whole. In out case,
it is simply value 0, the start index of the string to be read.

Note apply’s result type, Parser#Result. This syntax selects the type element
Result of the type Parser. It thus corresponds roughly to selecting a static in-
ner class from some outer class in Java. Note that we could not have written
Parser.Result, as the latter would express selection of the Result element from
a value named Parser.

We have now extended the root class Parsers in two different directions: Class
ListParsers defines a grammar of phrases to be parsed, whereas class ParseString
defines a method by which such phrases are input. To write a concrete parsing ap-
plication, we need to define both grammar and input method. We do this by com-
bining two extensions of Parsers using a mixin composition. Here is the start of a
sample application:

object Test {
def main(args: Array[String]) {
val ps = new ParseString(args(0)) with ListParsers

}

The last line above creates a new family of parsers by composing class ListParsers
with class ParseString. The two classes share the common superclass Parsers. The
abstract method chr in ListParsers is implemented by class ParseString.
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To run the parser, we apply the start symbol of the grammar expr the argument
codeinput and observe the result:

ps.expr(ps.input) match {
case Some(n) =>
System.out.println("parsed: " + args(0).substring(0, n));

case None =>
System.out.println("nothing parsed");

}
}

}// end Test

Note the syntax ps.expr(input), which treats the expr parser as if it was a function.
In Scala, objects with apply methods can be applied directly to arguments as if they
were functions.

Here is an example run of the program above:

> java examples.Test "(x,1,(y,z))"
parsed: (x,1,(y,z))
> java examples.Test "(x,,1,(y,z))"
nothing parsed

15.2 Parsers that Produce Results

The combinator library of the previous section does not support the generation of
output from parsing. But usually one does not just want to check whether a given
string belongs to the defined language, one also wants to convert the input string
into some internal representation such as an abstract syntax tree.

In this section, we modify our parser library to build parsers that produce results.
We will make use of the for-comprehensions introduced in Chapter 10. The basic
combinator of sequential composition, formerly p &&& q, now becomes

for (val x <- p; val y <- q) yield e .

Here, the names x and y are bound to the results of executing the parsers p and q. e
is an expression that uses these results to build the tree returned by the composed
parser.

Before describing the implementation of the new parser combinators, we explain
how the new building blocks are used. Say we want to modify our list parser so that
it returns an abstract syntax tree of the parsed expression. Syntax trees are given by
the following class hierarchy:

abstract class Tree
case class Id (s: String) extends Tree
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case class Num(n: int) extends Tree
case class Lst(elems: List[Tree]) extends Tree

That is, a syntax tree is an identifier, an integer number, or a Lst node with a list of
trees as descendants.

As a first step towards parsers that produce results we define three little parsers that
return a single read character as result.

trait CharParsers extends Parsers {
def any: Parser[char]
def chr(ch: char): Parser[char] =
for (val c <- any; c == ch) yield c

def chrSuchThat(p: char => boolean): Parser[char] =
for (val c <- any; p(c)) yield c

}

The any parser succeeds with the first character of remaining input as long as input
is nonempty. It is abstract in class ListParsers since we want to abstract in this
class from the concrete input method used. The two chr parsers return as before
the first input character if it equals a given character or matches a given predicate.
They are now implemented in terms of any.

The next level is represented by parsers reading identifiers, numbers and lists. Here
is a parser for identifiers.

trait ListParsers extends CharParsers {
def ident: Parser[Tree] =
for {
val c: char <- chrSuchThat(Character.isLetter)
val cs: List[char] <- rep(chrSuchThat(Character.isLetterOrDigit))

} yield Id((c :: cs).mkString("", "", ""))

Remark: Because chrSuchThat(...) returns a single character, its repetition
rep(chrSuchThat(...)) returns a list of characters. The yield part of the for-
comprehension converts all intermediate results into an Id node with a string as
element. To convert the read characters into a string, it conses them into a single
list, and invokes the mkString method on the result.

Here is a parser for numbers:

def number: Parser[Tree] =
for {
val d: char <- chrSuchThat(Character.isDigit)
val ds: List[char] <- rep(chrSuchThat(Character.isDigit))

} yield Num(((d - ’0’) /: ds) ((x, digit) => x * 10 + digit - ’0’))

Intermediate results are in this case the leading digit of the read number, followed
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by a list of remaining digits. The yield part of the for-comprehension reduces these
to a number by a fold-left operation.

Here is a parser for lists:

def list: Parser[Tree] =
for {
val _ <- chr(’(’)
val es <- listElems ||| succeed(List())
val _ <- chr(’)’)

} yield Lst(es)

def listElems: Parser[List[Tree]] =
for {
val x <- expr
val xs <- chr(’,’) &&& listElems ||| succeed(List())

} yield x :: xs

The list parser returns a Lst node with a list of trees as elements. That list is either
the result of listElems, or, if that fails, the empty list (expressed here as: the result
of a parser which always succeeds with the empty list as result).

The highest level of our grammar is represented by function expr:

def expr: Parser[Tree] =
ident ||| number ||| list

}// end ListParsers.

We now present the parser combinators that support the new scheme. Parsers that
succeed now return a parse result besides the un-consumed input.

trait Parsers {
type intype
abstract class Parser[a] {
type Result = Option[Pair[a, intype]]
def apply(in: intype): Result

Parsers are parameterized with the type of their result. The class Parser[a] now
defines new methods map, flatMap and filter. The for expressions are mapped by
the compiler to calls of these functions using the scheme described in Chapter 10.
For parsers, these methods are implemented as follows.

def filter(pred: a => boolean) = new Parser[a] {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(Pair(x, in1)) => if (pred(x)) Some(Pair(x, in1)) else None

}
}
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def map[b](f: a => b) = new Parser[b] {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(Pair(x, in1)) => Some(Pair(f(x), in1))

}
}
def flatMap[b](f: a => Parser[b]) = new Parser[b] {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => None
case Some(Pair(x, in1)) => f(x).apply(in1)

}
}

The filter method takes as parameter a predicate p which it applies to the results
of the current parser. If the predicate is false, the parser fails by returning None; oth-
erwise it returns the result of the current parser. The map method takes as parameter
a function f which it applies to the results of the current parser. The flatMap takes
as parameter a function f which returns a parser. It applies f to the result of the
current parser and then continues with the resulting parser. The ||| method is es-
sentially defined as before. The &&& method can now be defined in terms of for.

def ||| (p: => Parser[a]) = new Parser[a] {
def apply(in: intype): Result = Parser.this.apply(in) match {
case None => p(in)
case s => s

}
}

def &&& [b](p: => Parser[b]): Parser[b] =
for (val _ <- this; val x <- p) yield x

}// end Parser

The primitive parser succeed replaces empty. It consumes no input and returns its
parameter as result.

def succeed[a](x: a) = new Parser[a] {
def apply(in: intype) = Some(Pair(x, in))

}

The parser combinators rep and opt now also return results. rep returns a list which
contains as elements the results of each iteration of its sub-parser. opt returns a list
which is either empty or returns as single element the result of the optional parser.

def rep[a](p: Parser[a]): Parser[List[a]] =
rep1(p) ||| succeed(List())

def rep1[a](p: Parser[a]): Parser[List[a]] =
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for (val x <- p; val xs <- rep(p)) yield x :: xs

def opt[a](p: Parser[a]): Parser[List[a]] =
(for (val x <- p) yield List(x)) ||| succeed(List())

} // end Parsers

The root class Parsers abstracts over which kind of input is parsed. As before, we
determine the input method by a separate class. Here is ParseString, this time
adapted to parsers that return results. It defines now the method any, which returns
the first input character.

class ParseString(s: String) extends Parsers {
type intype = int
val input = 0
def any = new Parser[char] {
def apply(in: int): Parser[char]#Result =
if (in < s.length()) Some(Pair(s charAt in, in + 1)) else None

}
}

The rest of the application is as before. Here is a test program which constructs a
list parser over strings and prints out the result of applying it to the command line
argument.

object Test {
def main(args: Array[String]) {
val ps = new ParseString(args(0)) with ListParsers
ps.expr(ps.input) match {
case Some(Pair(list, _)) => System.out.println("parsed: " + list)
case None => System.out.println("nothing parsed")

}
}

}

Exercise 15.2.1 The parsers we have defined so far can succeed even if there is
some input beyond the parsed text. To prevent this, one needs a parser which rec-
ognizes the end of input. Redesign the parser library so that such a parser can be
introduced. Which classes need to be modified?
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Hindley/Milner Type Inference

This chapter demonstrates Scala’s data types and pattern matching by developing a
type inference system in the Hindley/Milner style [Mil78]. The source language for
the type inferencer is lambda calculus with a let construct called Mini-ML. Abstract
syntax trees for the Mini-ML are represented by the following data type of Terms.

abstract class Term {}
case class Var(x: String) extends Term {
override def toString = x

}
case class Lam(x: String, e: Term) extends Term {
override def toString = "(\\" + x + "." + e + ")"

}
case class App(f: Term, e: Term) extends Term {
override def toString = "(" + f + " " + e + ")"

}
case class Let(x: String, e: Term, f: Term) extends Term {
override def toString = "let " + x + " = " + e + " in " + f

}

There are four tree constructors: Var for variables, Lam for function abstractions, App
for function applications, and Let for let expressions. Each case class overrides the
toString method of class Any, so that terms can be printed in legible form.

We next define the types that are computed by the inference system.

sealed abstract class Type {}
case class Tyvar(a: String) extends Type {
override def toString = a

}
case class Arrow(t1: Type, t2: Type) extends Type {
override def toString = "(" + t1 + "->" + t2 + ")"

}



124 Hindley/Milner Type Inference

case class Tycon(k: String, ts: List[Type]) extends Type {
override def toString =
k + (if (ts.isEmpty) "" else ts.mkString("[", ",", "]"))

}

There are three type constructors: Tyvar for type variables, Arrow for function types
and Tycon for type constructors such as boolean or List. Type constructors have as
component a list of their type parameters. This list is empty for type constants such
as boolean. Again, the type constructors implement the toString method in order
to display types legibly.

Note that Type is a sealed class. This means that no subclasses or data constructors
that extend Type can be formed outside the sequence of definitions in which Type is
defined. This makes Type a closed algebraic data type with exactly three alternatives.
By contrast, type Term is an open algebraic type for which further alternatives can be
defined.

The main parts of the type inferencer are contained in object typeInfer. We start
with a utility function which creates fresh type variables:

object typeInfer {
private var n: Int = 0
def newTyvar(): Type = { n = n + 1 ; Tyvar("a" + n) }

We next define a class for substitutions. A substitution is an idempotent function
from type variables to types. It maps a finite number of type variables to some types,
and leaves all other type variables unchanged. The meaning of a substitution is
extended point-wise to a mapping from types to types.

abstract class Subst extends Function1[Type,Type] {

def lookup(x: Tyvar): Type

def apply(t: Type): Type = t match {
case tv @ Tyvar(a) => val u = lookup(tv); if (t == u) t else apply(u);
case Arrow(t1, t2) => Arrow(apply(t1), apply(t2))
case Tycon(k, ts) => Tycon(k, ts map apply)

}

def extend(x: Tyvar, t: Type) = new Subst {
def lookup(y: Tyvar): Type = if (x == y) t else Subst.this.lookup(y)

}
}
val emptySubst = new Subst { def lookup(t: Tyvar): Type = t }
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We represent substitutions as functions, of type Type => Type. This is achieved by
making class Subst inherit from the unary function type Function1[Type, Type]1.
To be an instance of this type, a substitution s has to implement an apply method
that takes a Type as argument and yields another Type as result. A function applica-
tion s(t) is then interpreted as s.apply(t).

The lookup method is abstract in class Subst. There are two concrete forms of sub-
stitutions which differ in how they implement this method. One form is defined by
the emptySubst value, the other is defined by the extend method in class Subst.

The next data type describes type schemes, which consist of a type and a list of
names of type variables which appear universally quantified in the type scheme. For
instance, the type scheme ∀a∀b.a→b would be represented in the type checker as:

TypeScheme(List(Tyvar("a"), Tyvar("b")), Arrow(Tyvar("a"), Tyvar("b"))) .

The class definition of type schemes does not carry an extends clause; this means
that type schemes extend directly class AnyRef. Even though there is only one pos-
sible way to construct a type scheme, a case class representation was chosen since
it offers convenient ways to decompose an instance of this type into its parts.

case class TypeScheme(tyvars: List[Tyvar], tpe: Type) {
def newInstance: Type = {
(emptySubst /: tyvars) ((s, tv) => s.extend(tv, newTyvar())) (tpe)

}
}

Type scheme objects come with a method newInstance, which returns the type con-
tained in the scheme after all universally type variables have been renamed to fresh
variables. The implementation of this method folds (with /:) the type scheme’s
type variables with an operation which extends a given substitution s by renaming
a given type variable tv to a fresh type variable. The resulting substitution renames
all type variables of the scheme to fresh ones. This substitution is then applied to
the type part of the type scheme.

The last type we need in the type inferencer is Env, a type for environments, which
associate variable names with type schemes. They are represented by a type alias
Env in module typeInfer:

type Env = List[Pair[String, TypeScheme]]

There are two operations on environments. The lookup function returns the type
scheme associated with a given name, or null if the name is not recorded in the
environment.

1 The class inherits the function type as a mixin rather than as a direct superclass. This is because
in the current Scala implementation, the Function1 type is a Java interface, which cannot be used as
a direct superclass of some other class.
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def lookup(env: Env, x: String): TypeScheme = env match {
case List() => null
case Pair(y, t) :: env1 => if (x == y) t else lookup(env1, x)

}

The gen function turns a given type into a type scheme, quantifying over all type
variables that are free in the type, but not in the environment.

def gen(env: Env, t: Type): TypeScheme =
TypeScheme(tyvars(t) diff tyvars(env), t)

The set of free type variables of a type is simply the set of all type variables which oc-
cur in the type. It is represented here as a list of type variables, which is constructed
as follows.

def tyvars(t: Type): List[Tyvar] = t match {
case tv @ Tyvar(a) =>
List(tv)

case Arrow(t1, t2) =>
tyvars(t1) union tyvars(t2)

case Tycon(k, ts) =>
(List[Tyvar]() /: ts) ((tvs, t) => tvs union tyvars(t))

}

Note that the syntax tv @ ... in the first pattern introduces a variable which is
bound to the pattern that follows. Note also that the explicit type parameter [Tyvar]
in the expression of the third clause is needed to make local type inference work.

The set of free type variables of a type scheme is the set of free type variables of its
type component, excluding any quantified type variables:

def tyvars(ts: TypeScheme): List[Tyvar] =
tyvars(ts.tpe) diff ts.tyvars

Finally, the set of free type variables of an environment is the union of the free type
variables of all type schemes recorded in it.

def tyvars(env: Env): List[Tyvar] =
(List[Tyvar]() /: env) ((tvs, nt) => tvs union tyvars(nt._2))

A central operation of Hindley/Milner type checking is unification, which computes
a substitution to make two given types equal (such a substitution is called a unifier).
Function mgu computes the most general unifier of two given types t and u under a
pre-existing substitution s. That is, it returns the most general substitution s′ which
extends s, and which makes s′(t ) and s′(u) equal types.

def mgu(t: Type, u: Type, s: Subst): Subst = Pair(s(t), s(u)) match {
case Pair(Tyvar(a), Tyvar(b)) if (a == b) =>
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s
case Pair(Tyvar(a), _) if !(tyvars(u) contains a) =>
s.extend(Tyvar(a), u)

case Pair(_, Tyvar(a)) =>
mgu(u, t, s)

case Pair(Arrow(t1, t2), Arrow(u1, u2)) =>
mgu(t1, u1, mgu(t2, u2, s))

case Pair(Tycon(k1, ts), Tycon(k2, us)) if (k1 == k2) =>
(s /: (ts zip us)) ((s, tu) => mgu(tu._1, tu._2, s))

case _ =>
throw new TypeError("cannot unify " + s(t) + " with " + s(u))

}

The mgu function throws a TypeError exception if no unifier substitution exists. This
can happen because the two types have different type constructors at correspond-
ing places, or because a type variable is unified with a type that contains the type
variable itself. Such exceptions are modeled here as instances of case classes that
inherit from the predefined Exception class.

case class TypeError(s: String) extends Exception(s) {}

The main task of the type checker is implemented by function tp. This function
takes as parameters an environment env , a term e, a proto-type t , and a pre-existing
substitution s. The function yields a substitution s′ that extends s and that turns
s′(env) ` e : s′(t ) into a derivable type judgment according to the derivation rules
of the Hindley/Milner type system [Mil78]. A TypeError exception is thrown if no
such substitution exists.

def tp(env: Env, e: Term, t: Type, s: Subst): Subst = {
current = e
e match {
case Var(x) =>
val u = lookup(env, x)
if (u == null) throw new TypeError("undefined: " + x)
else mgu(u.newInstance, t, s)

case Lam(x, e1) =>
val a, b = newTyvar()
val s1 = mgu(t, Arrow(a, b), s)
val env1 = Pair(x, TypeScheme(List(), a)) :: env
tp(env1, e1, b, s1)

case App(e1, e2) =>
val a = newTyvar()
val s1 = tp(env, e1, Arrow(a, t), s)
tp(env, e2, a, s1)
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case Let(x, e1, e2) =>
val a = newTyvar()
val s1 = tp(env, e1, a, s)
tp(Pair(x, gen(env, s1(a))) :: env, e2, t, s1)

}
}
var current: Term = null

To aid error diagnostics, the tp function stores the currently analyzed sub-term in
variable current. Thus, if type checking is aborted with a TypeError exception, this
variable will contain the subterm that caused the problem.

The last function of the type inference module, typeOf, is a simplified facade for
tp. It computes the type of a given term e in a given environment env . It does
so by creating a fresh type variable a, computing a typing substitution that makes
env ` e : a into a derivable type judgment, and returning the result of applying the
substitution to a.

def typeOf(env: Env, e: Term): Type = {
val a = newTyvar()
tp(env, e, a, emptySubst)(a)

}
}// end typeInfer

To apply the type inferencer, it is convenient to have a predefined environment that
contains bindings for commonly used constants. The module predefined defines
an environment env that contains bindings for the types of booleans, numbers and
lists together with some primitive operations over them. It also defines a fixed point
operator fix, which can be used to represent recursion.

object predefined {
val booleanType = Tycon("Boolean", List())
val intType = Tycon("Int", List())
def listType(t: Type) = Tycon("List", List(t))

private def gen(t: Type): typeInfer.TypeScheme = typeInfer.gen(List(), t)
private val a = typeInfer.newTyvar()
val env = List(
Pair("true", gen(booleanType)),
Pair("false", gen(booleanType)),
Pair("if", gen(Arrow(booleanType, Arrow(a, Arrow(a, a))))),
Pair("zero", gen(intType)),
Pair("succ", gen(Arrow(intType, intType))),
Pair("nil", gen(listType(a))),
Pair("cons", gen(Arrow(a, Arrow(listType(a), listType(a))))),
Pair("isEmpty", gen(Arrow(listType(a), booleanType))),
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Pair("head", gen(Arrow(listType(a), a))),
Pair("tail", gen(Arrow(listType(a), listType(a)))),
Pair("fix", gen(Arrow(Arrow(a, a), a)))

)
}

Here’s an example how the type inferencer can be used. Let’s define a function
showType which returns the type of a given term computed in the predefined en-
vironment Predefined.env:

object testInfer {
def showType(e: Term): String =
try {
typeInfer.typeOf(predefined.env, e).toString

} catch {
case typeInfer.TypeError(msg) =>
"\n cannot type: " + typeInfer.current +
"\n reason: " + msg

}

Then the application

> testInfer.showType(Lam("x", App(App(Var("cons"), Var("x")), Var("nil"))))

would give the response

> (a6->List[a6])

To make the type inferencer more useful, we complete it with a parser. Function
main of module testInfer parses and typechecks a Mini-ML expression which is
given as the first command line argument.

def main(args: Array[String]) {
val ps = new ParseString(args(0)) with MiniMLParsers
ps.all(ps.input) match {
case Some(Pair(term, _)) =>
System.out.println("" + term + ": " + showType(term))

case None =>
System.out.println("syntax error")

}
}

}// testInfer

To do the parsing, method main uses the combinator parser scheme of Chapter 15.
It creates a parser family ps as a mixin composition of parsers that understand Min-
iML (but do not know where input comes from) and parsers that read input from a
given string. The MiniMLParsers object implements parsers for the following gram-
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mar.

term ::= "\" ident "." term
| term1 {term1}
| "let" ident "=" term "in" term

term1 ::= ident
| "(" term ")"

all ::= term ";"

Input as a whole is described by the production all; it consists of a term followed by
a semicolon. We allow “whitespace” consisting of one or more space, tabulator or
newline characters between any two lexemes (this is not reflected in the grammar
above). Identifiers are defined as in Chapter 15 except that an identifier cannot be
one of the two reserved words "let" and "in".

trait MiniMLParsers extends CharParsers {

/** whitespace */
def whitespace = rep{chr(’ ’) ||| chr(’\t’) ||| chr(’\n’)}

/** A given character, possible preceded by whitespace */
def wschr(ch: char) = whitespace &&& chr(ch)

/** identifiers or keywords */
def id: Parser[String] =
for {
val c: char <- whitespace &&& chrSuchThat(Character.isLetter);
val cs: List[char] <- rep(chrSuchThat(Character.isLetterOrDigit))

} yield (c :: cs).mkString("", "", "")

/** Non-keyword identifiers */
def ident: Parser[String] =
for { val s <- id; s != "let" && s != "in" } yield s

/** term = ’\’ ident ’.’ term | term1 {term1} | let ident "=" term in term */
def term: Parser[Term] = (
( for {

val _ <- wschr(’\\’)
val x <- ident
val _ <- wschr(’.’)
val t <- term

} yield Lam(x, t): Term )
|||
( for {

val letid <- id; letid == "let"
val x <- ident
val _ <- wschr(’=’)
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val t <- term;
val inid <- id; inid == "in"
val c <- term

} yield Let(x, t, c) )
|||
( for {

val t <- term1
val ts <- rep(term1)

} yield (t /: ts)((f, arg) => App(f, arg)) )
)

/** term1 = ident | ’(’ term ’)’ */
def term1: Parser[Term] = (
( for { val s <- ident }
yield Var(s): Term )

|||
( for {

val _ <- wschr(’(’)
val t <- term
val _ <- wschr(’)’)

} yield t )
)

/** all = term ’;’ */
def all: Parser[Term] =
for {
val t <- term
val _ <- wschr(’;’)

} yield t
}

Here are some sample MiniML programs and the output the type inferencer gives
for each of them:

> java testInfer
| "\x.\f.f(f x);"
(\x.(\f.(f (f x)))): (a8->((a8->a8)->a8))

> java testInfer
| "let id = \x.x
| in if (id true) (id nil) (id (cons zero nil));"
let id = (\x.x) in (((if (id true)) (id nil)) (id ((cons zero) nil))): List[Int]

> java testInfer
| "let id = \x.x
| in if (id true) (id nil);"
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let id = (\x.x) in ((if (id true)) (id nil)): (List[a13]->List[a13])

> java testInfer
| "let length = fix (\len.\xs.
| if (isEmpty xs)
| zero
| (succ (len (tail xs))))
| in (length nil);"
let length = (fix (\len.(\xs.(((if (isEmpty xs)) zero)
(succ (len (tail xs))))))) in (length nil): Int

> java testInfer
| "let id = \x.x
| in if (id true) (id nil) zero;"
let id = (\x.x) in (((if (id true)) (id nil)) zero):
cannot type: zero
reason: cannot unify Int with List[a14]

Exercise 16.0.2 Using the parser library constructed in Exercise Exercise 15.2.1,
modify the MiniML parser library so that no marker “;” is necessary for indicating
the end of input.

Exercise 16.0.3 Extend the Mini-ML parser and type inferencer with a letrec con-
struct which allows the definition of recursive functions. Syntax:

letrec ident "=" term in term .

The typing of letrec is as for let, except that the defined identifier is visible in the
defining expression. Using letrec, the length function for lists can now be defined
as follows.

letrec length = \xs.
if (isEmpty xs)
zero
(succ (length (tail xs)))

in ...



Chapter 17

Abstractions for Concurrency

This section reviews common concurrent programming patterns and shows how
they can be implemented in Scala.

17.1 Signals and Monitors

Example 17.1.1 The monitor provides the basic means for mutual exclusion of pro-
cesses in Scala. Every instance of class AnyRef can be used as a monitor by calling
one or more of the methods below.

def synchronized[a] (e: => a): a
def wait()
def wait(msec: long)
def notify()
def notifyAll()

The synchronized method executes its argument computation e in mutual exclu-
sive mode – at any one time, only one thread can execute a synchronized argument
of a given monitor.

Threads can suspend inside a monitor by waiting on a signal. Threads that call the
wait method wait until a notify method of the same object is called subsequently
by some other thread. Calls to notify with no threads waiting for the signal are
ignored.

There is also a timed form of wait, which blocks only as long as no signal was re-
ceived or the specified amount of time (given in milliseconds) has elapsed. Fur-
thermore, there is a notifyAll method which unblocks all threads which wait for
the signal. These methods, as well as class Monitor are primitive in Scala; they are
implemented in terms of the underlying runtime system.
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Typically, a thread waits for some condition to be established. If the condition does
not hold at the time of the wait call, the thread blocks until some other thread has
established the condition. It is the responsibility of this other thread to wake up
waiting processes by issuing a notify or notifyAll. Note however, that there is no
guarantee that a waiting process gets to run immediately after the call to notify is is-
sued. It could be that other processes get to run first which invalidate the condition
again. Therefore, the correct form of waiting for a condition C uses a while loop:

while (!C) wait()

As an example of how monitors are used, here is is an implementation of a bounded
buffer class.

class BoundedBuffer[a](N: int) {
var in = 0, out = 0, n = 0
val elems = new Array[a](N)

def put(x: a) = synchronized {
while (n >= N) wait()
elems(in) = x ; in = (in + 1) % N ; n = n + 1
if (n == 1) notifyAll()

}

def get: a = synchronized {
while (n == 0) wait()
val x = elems(out) ; out = (out + 1) % N ; n = n - 1
if (n == N - 1) notifyAll()
x

}
}

And here is a program using a bounded buffer to communicate between a producer
and a consumer process.

import scala.concurrent.ops._
...
val buf = new BoundedBuffer[String](10)
spawn { while (true) { val s = produceString ; buf.put(s) } }
spawn { while (true) { val s = buf.get ; consumeString(s) } }
}

The spawn method spawns a new thread which executes the expression given in the
parameter. It is defined in object concurrent.ops as follows.

def spawn(p: => unit) {
val t = new Thread() { override def run() = p; }
t.start()
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}

17.2 SyncVars

A synchronized variable (or syncvar for short) offers get and put operations to read
and set the variable. get operations block until the variable has been defined. An
unset operation resets the variable to undefined state.

Here’s the standard implementation of synchronized variables.

package scala.concurrent
class SyncVar[a] {
private var isDefined: boolean = false
private var value: a = _
def get = synchronized {
if (!isDefined) wait()
value

}
def set(x: a) = synchronized {
value = x ; isDefined = true ; notifyAll()

}
def isSet: boolean = synchronized {
isDefined

}
def unset = synchronized {
isDefined = false;

}
}

17.3 Futures

A future is a value which is computed in parallel to some other client thread, to be
used by the client thread at some future time. Futures are used in order to make
good use of parallel processing resources. A typical usage is:

import scala.concurrent.ops._
...
val x = future(someLengthyComputation)
anotherLengthyComputation
val y = f(x()) + g(x())

The future method is defined in object scala.concurrent.ops as follows.

def future[a](p: => a): unit => a = {
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val result = new SyncVar[a]
fork { result.set(p) }
(() => result.get)

}

The future method gets as parameter a computation p to be performed. The type
of the computation is arbitrary; it is represented by future’s type parameter a. The
future method defines a guard result, which takes a parameter representing the
result of the computation. It then forks off a new thread that computes the result
and invokes the result guard when it is finished. In parallel to this thread, the func-
tion returns an anonymous function of type a. When called, this functions waits on
the result guard to be invoked, and, once this happens returns the result argument.
At the same time, the function reinvokes the result guard with the same argument,
so that future invocations of the function can return the result immediately.

17.4 Parallel Computations

The next example presents a function par which takes a pair of computations as
parameters and which returns the results of the computations in another pair. The
two computations are performed in parallel.

The function is defined in object scala.concurrent.ops as follows.

def par[a, b](xp: => a, yp: => b): Pair[a, b] = {
val y = new SyncVar[b]
spawn { y set yp }
Pair(xp, y.get)

}

Defined in the same place is a function replicate which performs a number of
replicates of a computation in parallel. Each replication instance is passed an inte-
ger number which identifies it.

def replicate(start: int, end: int)(p: int => unit) {
if (start == end)
()

else if (start + 1 == end)
p(start)

else {
val mid = (start + end) / 2
spawn { replicate(start, mid)(p) }
replicate(mid, end)(p)

}
}
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The next function uses replicate to perform parallel computations on all elements
of an array.

def parMap[a,b](f: a => b, xs: Array[a]): Array[b] = {
val results = new Array[b](xs.length)
replicate(0, xs.length) { i => results(i) = f(xs(i)) }
results

}

17.5 Semaphores

A common mechanism for process synchronization is a lock (or: semaphore). A lock
offers two atomic actions: acquire and release. Here’s the implementation of a lock
in Scala:

package scala.concurrent

class Lock {
var available = true
def acquire = synchronized {
if (!available) wait()
available = false

}
def release = synchronized {
available = true
notify()

}
}

17.6 Readers/Writers

A more complex form of synchronization distinguishes between readers which ac-
cess a common resource without modifying it and writers which can both access
and modify it. To synchronize readers and writers we need to implement opera-
tions startRead, startWrite, endRead, endWrite, such that:

• there can be multiple concurrent readers,

• there can only be one writer at one time,

• pending write requests have priority over pending read requests, but don’t
preempt ongoing read operations.

The following implementation of a readers/writers lock is based on the mailbox
concept (see Section 17.10).
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import scala.concurrent._

class ReadersWriters {
val m = new MailBox
private case class Writers(n: int), Readers(n: int) { m send this; }
Writers(0); Readers(0)
def startRead = m receive {
case Writers(n) if n == 0 => m receive {
case Readers(n) => Writers(0) ; Readers(n+1)

}
}
def startWrite = m receive {
case Writers(n) =>
Writers(n+1)
m receive { case Readers(n) if n == 0 => }

}
def endRead = m receive {
case Readers(n) => Readers(n-1)

}
def endWrite = m receive {
case Writers(n) => Writers(n-1) ; if (n == 0) Readers(0)

}
}

17.7 Asynchronous Channels

A fundamental way of interprocess communication is the asynchronous channel.
Its implementation makes use the following simple class for linked lists:

class LinkedList[a] {
var elem: a = _
var next: LinkedList[a] = null

}

To facilitate insertion and deletion of elements into linked lists, every reference into
a linked list points to the node which precedes the node which conceptually forms
the top of the list. Empty linked lists start with a dummy node, whose successor is
null.

The channel class uses a linked list to store data that has been sent but not read yet.
At the opposite end, threads that wish to read from an empty channel, register their
presence by incrementing the nreaders field and waiting to be notified.

package scala.concurrent
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class Channel[a] {
class LinkedList[a] {
var elem: a = _
var next: LinkedList[a] = null

}
private var written = new LinkedList[a]
private var lastWritten = written
private var nreaders = 0

def write(x: a) = synchronized {
lastWritten.elem = x
lastWritten.next = new LinkedList[a]
lastWritten = lastWritten.next
if (nreaders > 0) notify()

}

def read: a = synchronized {
if (written.next == null) {
nreaders = nreaders + 1; wait(); nreaders = nreaders - 1

}
val x = written.elem
written = written.next
x

}
}

17.8 Synchronous Channels

Here’s an implementation of synchronous channels, where the sender of a message
blocks until that message has been received. Synchronous channels only need a
single variable to store messages in transit, but three signals are used to coordinate
reader and writer processes.

package scala.concurrent

class SyncChannel[a] {
private var data: a = _
private var reading = false
private var writing = false

def write(x: a) = synchronized {
while (writing) wait()
data = x
writing = true
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if (reading) notifyAll()
else while (!reading) wait()

}

def read: a = synchronized {
while (reading) wait()
reading = true
while (!writing) wait()
val x = data
writing = false
reading = false
notifyAll()
x

}
}

17.9 Workers

Here’s an implementation of a compute server in Scala. The server implements a
future method which evaluates a given expression in parallel with its caller. Unlike
the implementation in Section 17.3 the server computes futures only with a prede-
fined number of threads. A possible implementation of the server could run each
thread on a separate processor, and could hence avoid the overhead inherent in
context-switching several threads on a single processor.

import scala.concurrent._, scala.concurrent.ops._

class ComputeServer(n: int) {

private abstract class Job {
type t
def task: t
def ret(x: t)

}

private val openJobs = new Channel[Job]()

private def processor(i: int) {
while (true) {
val job = openJobs.read
job.ret(job.task)

}
}
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def future[a](p: => a): () => a = {
val reply = new SyncVar[a]()
openJobs.write{
new Job {
type t = a
def task = p
def ret(x: a) = reply.set(x)

}
}
() => reply.get

}

spawn(replicate(0, n) { processor })
}

Expressions to be computed (i.e. arguments to calls of future) are written to the
openJobs channel. A job is an object with

• An abstract type t which describes the result of the compute job.

• A parameterless task method of type t which denotes the expression to be
computed.

• A return method which consumes the result once it is computed.

The compute server creates n processor processes as part of its initialization. Every
such process repeatedly consumes an open job, evaluates the job’s taskmethod and
passes the result on to the job’s return method. The polymorphic future method
creates a new job where the returnmethod is implemented by a guard named reply

and inserts this job into the set of open jobs by calling the isOpen guard. It then waits
until the corresponding reply guard is called.

The example demonstrates the use of abstract types. The abstract type t keeps track
of the result type of a job, which can vary between different jobs. Without abstract
types it would be impossible to implement the same class to the user in a statically
type-safe way, without relying on dynamic type tests and type casts.

Here is some code which uses the compute server to evaluate the expression 41 + 1.

object Test with Executable {
val server = new ComputeServer(1)
val f = server.future(41 + 1)
Console.println(f())

}
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17.10 Mailboxes

Mailboxes are high-level, flexible constructs for process synchronization and com-
munication. They allow sending and receiving of messages. A message in this con-
text is an arbitrary object. There is a special message TIMEOUT which is used to signal
a time-out.

case object TIMEOUT

Mailboxes implement the following signature.

class MailBox {
def send(msg: Any)
def receive[a](f: PartialFunction[Any, a]): a
def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a

}

The state of a mailbox consists of a multi-set of messages. Messages are added to
the mailbox the send method. Messages are removed using the receive method,
which is passed a message processor f as argument, which is a partial function from
messages to some arbitrary result type. Typically, this function is implemented as a
pattern matching expression. The receive method blocks until there is a message
in the mailbox for which its message processor is defined. The matching message is
then removed from the mailbox and the blocked thread is restarted by applying the
message processor to the message. Both sent messages and receivers are ordered
in time. A receiver r is applied to a matching message m only if there is no other
(message, receiver) pair which precedes (m,r ) in the partial ordering on pairs that
orders each component in time.

As a simple example of how mailboxes are used, consider a one-place buffer:

class OnePlaceBuffer {
private val m = new MailBox; // An internal mailbox
private case class Empty, Full(x: int); // Types of messages we deal with
m send Empty; // Initialization
def write(x: int)
{ m receive { case Empty => m send Full(x) } }

def read: int =
m receive { case Full(x) => m send Empty ; x }

}

Here’s how the mailbox class can be implemented:

class MailBox {
private abstract class Receiver extends Signal {
def isDefined(msg: Any): boolean
var msg = null
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}

We define an internal class for receivers with a test method isDefined, which indi-
cates whether the receiver is defined for a given message. The receiver inherits from
class Signal a notify method which is used to wake up a receiver thread. When the
receiver thread is woken up, the message it needs to be applied to is stored in the
msg variable of Receiver.

private val sent = new LinkedList[Any]
private var lastSent = sent
private val receivers = new LinkedList[Receiver]
private var lastReceiver = receivers

The mailbox class maintains two linked lists, one for sent but unconsumed mes-
sages, the other for waiting receivers.

def send(msg: Any) = synchronized {
var r = receivers, r1 = r.next
while (r1 != null && !r1.elem.isDefined(msg)) {
r = r1; r1 = r1.next

}
if (r1 != null) {
r.next = r1.next; r1.elem.msg = msg; r1.elem.notify

} else {
lastSent = insert(lastSent, msg)

}
}

The send method first checks whether a waiting receiver is applicable to the sent
message. If yes, the receiver is notified. Otherwise, the message is appended to the
linked list of sent messages.

def receive[a](f: PartialFunction[Any, a]): a = {
val msg: Any = synchronized {
var s = sent, s1 = s.next
while (s1 != null && !f.isDefinedAt(s1.elem)) {
s = s1; s1 = s1.next

}
if (s1 != null) {
s.next = s1.next; s1.elem

} else {
val r = insert(lastReceiver, new Receiver {
def isDefined(msg: Any) = f.isDefinedAt(msg)

})
lastReceiver = r
r.elem.wait()
r.elem.msg
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}
}
f(msg)

}

The receive method first checks whether the message processor function f can be
applied to a message that has already been sent but that was not yet consumed. If
yes, the thread continues immediately by applying f to the message. Otherwise, a
new receiver is created and linked into the receivers list, and the thread waits for
a notification on this receiver. Once the thread is woken up again, it continues by
applying f to the message that was stored in the receiver. The insert method on
linked lists is defined as follows.

def insert(l: LinkedList[a], x: a): LinkedList[a] = {
l.next = new LinkedList[a]
l.next.elem = x
l.next.next = l.next
l

}

The mailbox class also offers a method receiveWithinwhich blocks for only a speci-
fied maximal amount of time. If no message is received within the specified time in-
terval (given in milliseconds), the message processor argument f will be unblocked
with the special TIMEOUT message. The implementation of receiveWithin is quite
similar to receive:

def receiveWithin[a](msec: long)(f: PartialFunction[Any, a]): a = {
val msg: Any = synchronized {
var s = sent, s1 = s.next
while (s1 != null && !f.isDefinedAt(s1.elem)) {
s = s1; s1 = s1.next

}
if (s1 != null) {
s.next = s1.next; s1.elem

} else {
val r = insert(lastReceiver, new Receiver {

def isDefined(msg: Any) = f.isDefinedAt(msg)
})
lastReceiver = r
r.elem.wait(msec)
if (r.elem.msg == null) r.elem.msg = TIMEOUT
r.elem.msg

}
}
f(msg)

}
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} // end MailBox

The only differences are the timed call to wait, and the statement following it.

17.11 Actors

Chapter 3 sketched as a program example the implementation of an electronic auc-
tion service. This service was based on high-level actor processes, that work by in-
specting messages in their mailbox using pattern matching. An actor is simply a
thread whose communication primitives are those of a mailbox. Actors are hence
defined as a mixin composition extension of Java’s standard Thread class with the
MailBox class.

abstract class Actor extends Thread with MailBox
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