
Scala Bazaars Manual

Alexander Spoon

March 2006

1 Overview

Scala Bazaars supports Scala enthusiasts in sharing the software they create with each other. The community
is strengthened when people can help each other out by sharing code. A programming language needs an
archive of library code to be its most useful.

Scala Bazaars has several features specialized for this kind of community:

• Since programming efforts in the community are distributed around the world, the system must al-
low loose, decoupled collaboration. Participants are not required to wait for each other nor for any
centralized authority.

• Since subgroups of the community have their own needs—just consider groups doing commercial
development!the system should support subgroup-specific access control policies.

• Since many open source projects are updated frequently, the system must allow conveniently updating
components as new versions become available.

• Since, even in the common open-source group, there are different tolerances for stable versus new
offerings, the system supports having multiple public servers with different update policies

Scala Bazaars is most closely related to Debian’s APT, though it shares spirit with systems including: YUM,
FreeBSD ports, CPAN, CTAN, SqueakMap, and Fink. The main difference from APT is that Bazaars tries
to make it not only possible, but convenient, for subgroups to run their own servers with their own access
policies.

The present document is a reference manual for Scala Bazaars. It is complete at the expense of readable.
It does include full specifications for all components of the system, including the command-line interface, all
file formats, and the network protocol. Those wanting to use the system should first check whether a tutorial
exists for the specific need. Those wanting a more philosophical look at the system, including comparisons
to other systems and to the literature, should look at the Package Universes Architecture document. It is
available at the Scala Bazaars home page:

http://lamp.epfl.ch/˜spoon/sbaz/

2 Architectural Concepts

This section describes the architecture as a whole. Each component of the architecture is described in detail
in a later section.

Users of the system have alocal managed directorythat includes content supplied by the system. In
general, users should not modify content in a managed directory except via a Scala Bazaars system tool. The
one exception is theconfig directory, which is explicitly intended for user modification and should not be
modified by the Scala Bazaars tool.

1



Sharable content is held bypackages. A package can be installed into a local managed directory, in which
case all of its included files are extracted into the managed directory. A package can also be removed from a
local managed directory, causing all of the files it installed to be removed.

Each package has a name and a version. Packages with the same name may be substituted for each other,
but packages with larger version numbers are preferable in some sense.

A bazaar is an evolving set of packages. Each managed directory is associated with one bazaar. The
system makes it convenient to choose and install packages from a managed directory’s own bazaar, but not
from other bazaars. The set of available packages evolves as the community associated with the bazaar shares
and retracts packages over time.

Packages may depend on other packages. All dependencies are resolved within a single bazaar. The
system does not allow installing or removing packages in a way that a managed directory’s dependencies
become unsatisfied.

On the whole, this approach gives convenient upgrades (simply grab the newest version of everything),
loose coupling (you can wait for a while to upgrade), and convenient dependency management (requesting
the install of a package automatically installs the packages it depends on). The cost of this approach is
that packages must be posted separately to each bazaar they are useful in, but as argued in the architecture
document, that cost appears to be ephemeral.

Bazaars may be combined in a variety of ways. Each bazaar has its own access policy, and thus combi-
nations of bazaars with different access policies can yield a wide variety of useful configurations.

Bazaars do not hold the packages themselves. Instead, a bazaar holds package advertisements, and the
packages themselves must be posted separately. Each package advertisement includes a URL referencing the
associated package.

3 Bazaar Definitions

There are a number of kinds of bazaars. They are each described here along with the XML used to formally
describe each kind.

3.1 Simple Bazaar

A simple bazaar includes the packages advertised on a single bazaar server. An example XML description of
a simple bazaar is:

<simpleuniverse>
<name>scala-dev</name>
<location>http://scala-webapps.epfl.ch/sbaz/scala-dev</location>

</simpleuniverse>

The location tag specifies which Bazaars server supplies packages for this universe. The name is used
by the command-line interface to Scala Bazaars whenever it is necessary to specify a specific simple bazaar
within a compound bazaar.

3.2 Empty Bazaar

The empty bazaar holds no packages at all. Its XML description is simply:

<emptyuniverse/>

2



3.3 Override Bazaar

An override bazaar combines the packages from multiple other bazaars, with packages in later bazaars over-
riding packages in earlier ones. The overriding is name-based: a package in a later bazaar causesanysame-
named package in an earlier bazaar to disappear from the combined override bazaar.

An example XML description is as follows:

<overrideuniverse>
<components>

<simpleuniverse>
<name>scala-dev</name>
<location>http://scbaztmp.lexspoon.org:8006/scala-dev</location>

</simpleuniverse>
<simpleuniverse>

<name>local-hacks</name>
<location>http://localhost/sbaz/local-hacks</location>

</simpleuniverse>
</components>
</overrideuniverse>

3.4 Filter Bazaar (not yet implemented)

A filter bazaar includes those packages from some other bazaar whose name matches a designated regular
expression. Filter bazaars are thus useful for taking just a few packages from an existing server.

3.5 Literal Bazaar (not yet implemented)

A literal bazaar includes a fixed set of packages. Literal bazaars are mainly useful for testing.

4 Access Control

Many organizations that use Scala Bazaars do not want to allow arbitrary accesses from unknown users. Scala
Bazaars includes a simple access control system to limit usage as appropriate for the organization.

The approach is based onkeys. A bazaar server has a list of keys that it considers valid. Each request to a
server must either include a valid and sufficient key, or it must be in the subset of requests configured asopen
accessfor the particular server.

Each key is associated with amessage patterndenoting the subset of requests it can authorize. The
following message patterns are supported:

Read Requests that ask for the list of available packages recorded on a bazaar server. In XML, it looks like:

<read/>

Edit Requests that modify the list of available packages recorded on the server, including posting new
advertisements, removing advertisements, and updating an advertisement in place. Edit request patterns
include a regular expression that limits the request pattern to those requests involving a package whose name
matches the regular expression. The semantics of the supplied regular expression are as for Java’s regular-
expression library. In XML, it looks like:

<edit nameregex="sbaz.*"/>

3



Key Edit Requests that modify the list of valid keys known to a server. There is only one request-pattern
for key editing. Any client that knows a valid key-edit key can perform arbitrary manipulations on the set of
keys known to a server (and thus transitively has full access to the server). In XML, a key edit pattern looks
like:

<editkeys/>

A key includes three pieces of information: a request pattern, a short, descriptive text, and a string of
decimal digits. The descriptive text is human-readable and allows keys to be associated with principles in an
external access control system. Typical uses are names, email addresses, usernames, and employee ID’s. The
string of decimal digits is typically randomly generated and must be unguessable in order for the server to
remain protected.

In XML, a key looks like:

<key>
<messages>

<edit nameregex="lex-.*"/>
</messages>
<description>lex@lexspoon.org</description>
<data>26405971450520721508638067086623258803</data>

</key>

A group of keys can be stored in ankeyring, which in XML looks like:

<keyring>
<key>

<messages>
<editkeys></editkeys>

</messages>
<description>keyservlet</description>
<data>40597145052072150863806708662325880326</data>

</key>
<key>

<messages>
<edit nameregex="sbaz-.*"></edit>

</messages>
<description>lex@lexspoon.org</description>
<data>26405971450520721508638067086623258803</data>

</key>
<key>

<messages>
<editkeys></editkeys>

</messages>
<description>lamp</description>
<data>05971450520721508638067086623258803264</data>

</key>
</keyring>

The keys-based access control system of Scala Bazaars is both usable directly and supports, it is hoped,
a variety of useful access policies. For simple access policies, the server administrator (or someone to whom
they delegate) can manually manage and distribute keys. Note that key data can be transmitted via email and
web sites, thus allowing distribution of keys to piggyback on existing secured infrastructure.

For organizations that have too many users for manual management of access, the keys approach supports
writing a simple web server that can manage and distribute keys in an arbitrary fashion. For example, one

4



could write a web server that gives out keys to people who have a valid login according to an LDAP server;
nightly, the server could revoke keys for any users whose LDAP entry has disappeared.

5 Common Configurations

The available bazaar types and access-control policies described above can be combined to form a number of
useful configurations. This section outlines several of them.

No restrictions Wikis have proven that effective and useful communities can be built even with no security
restrictions at all. This policy can be implemented by configuring the server with all requests as open access.

Full access, but only to community members Many open-source projects have an organization of this
form, including Debian’s “Debian Developers” and FreeBSD’s “committers.” This policy can be imple-
mented by giving a key-editing key to the membership gatekeepers. The last step of admitting a new member
to the community is to give them their own keys to manipulate the community bazaar servers.

Single provider, multiple users An individual developer wants to provide a suite of packages to be used by
a larger community—possibly the world, or possibly a limited base of subscribers. To implement this policy,
the developer can keep editing keys for personal use but publish the read key to the desired user base.

Moderation queues Sometimes it is desirable to have a large community contribute suggested packages,
but a smaller group to decide on what is actually included. A moderation queue can be implemented as a
separate bazaar where a full edit key (with regular expression “.*” is made available to whichever community
is allowed to contribute suggestions (perhaps the entire world). Moderators would have both a read key for
the moderation queue and a full edit key for the main bazaar, and could copy packages from the queue to the
main bazaar whenever they are deemed appropriate.

Private local development Individual groups can form their own bazaar for private development without
needing to coordinate with any central organization. They simply create the bazaar and share keys with
members of the group according to their own local security policy.

Public libraries plus local development The above organization can be refined by allowing developers
to use publicly available packages even as they develop packages for private use. This policy can be imple-
mented with an override bazaar combining the local bazaar with one or more public bazaars.

Localized versions of packages Local groups may want to use something similar to a widely scoped
bazaar, but override specific packages with localized versions. For example, they might prefer a different
default language settings of the packages than is used on the widely scoped bazaar. Users want to use the
localized version of a package whenever one is available, but the global version otherwise. This policy can
be implemented by creating a bazaar server holding the localized packages, and then having users operate in
an override bazaar combining this localized bazaar with the public one.

Stable versus unstable streams Projects frequently distinguish between stable and unstable streams of
development. The stable streams include packages that are heavily tested and deemed to be reliable, while
the unstable streams include packages that are more current and featureful but are not as reliable. A project
can implement this policy by having separate bazaar servers for each development stream. Users point their
managed directories to the bazaar server appropriate to their needs.

5



Freezing new stable distribution A common process for generating stable distributions of code is to take
an unstable stream, start testing it, and disallow any patches except for bug fixes. After some point, the
distribution isfrozenand considered a stable release. Such processes can be implemented by manipulating
the outstanding keys as time passes. The testing phase can be implemented by revoking all outstanding
edit keys and switching to a moderation queue process. The final, complete freeze can be implemented
by destroying the moderation queue and revoking the remaining edit keys. The frozen bazaar can then be
duplicated, with one fork hosting a new development stream while the other becomes is designated a stable
release.

6 Packages and Package Advertisements

6.1 Overview

A Scala Bazaars package is stored in a file with file-ending.sbp (Scala Bazaars Package). The file is in zip
format. It should include all of the files that are to be extracted into a managed directory when the package is
installed.

Themeta/ directory within a.sbp file does not include files to be extracted, but instead contains meta-
information about the package itself. The only defined element of that directory ismeta/description ,
which should include an XML document describing the package’s contents. All other names within themeta
subdirectory are reserved for future use.

6.2 Package Description Files

An example description file is as follows:

<package>
<name>sbaz</name>
<version>1.10</version>
<depends> </depends>
<description>The command-line interface to Scala Bazaars. Scala

Bazaars let you share Scala packages and other goodies with other
Scala users.</description>
</package>

The elements of this description are hopefully self-explanatory. This package is named “sbaz”, its version
is 1.10, it has no dependencies, and it has the given human-readable description.

6.3 Package Advertisements

A package advertisement is simply a package description plus a URL where the package file can be down-
loaded from. An example of the XML format for a package advertisement is:

<availablePackage>
<package>

<name>sbaz</name>
<version>1.10</version>
<depends> </depends>
<description>The command-line interface to Scala Bazaars. Scala

Bazaars let you share Scala packages and other goodies with other
Scala users.</description>

</package>
<link>http://lamp.epfl.ch/˜spoon/scbaztmp/sbaz-1.10.sbp</link>

</availablePackage>

6



7 Versions and Dependencies

Every package has a version. A version is a string that may contain ASCII numbers, digits, and the following
symbolic characters:

.-+/?,&!@#$%ˆ&*

Versions are totally ordered by the following algorithm. To compare two versions, first break them into a
number of subsequences, each maximally long, where each subsequence only contains decimal digits, only
contains alphabetic characters, or only contains symbolic characters. Compare the two sequences lexico-
graphically. Two numeric subsequences are compared numerically, two alphabetic subsequences are com-
pared in ASCII order, and two symbolic subsequences are compared in ASCII order as well. For two subse-
quences with different kinds of characters, the order is: alphabetic, then numeric, then symbolic. For some
examples, the following versions are sorted in order:

1. (empty string)

2. abc

3. abcd

4. abd

5. 1

6. 1.1

7. 1.1a

8. 1.1a2

9. 1.1a100

10. 1.1.5

11. 1.2

12. 1.2.

13. 2

14. 12

A package dependencies can currently only have hard dependencies to specific other package names. For
those dependencies to be satisfied, a package must be installed for each of the package names specified. Here
is package description for a package that depends on package “scala2-library” and “sbaz”

<availablePackage>
<package>

<name>base</name>
<version>1.7</version>
<depends>

<name>scala2-library</name>
<name>sbaz</name>

</depends>
<description>This package depends on the basic packages that all

managed directories must include. Each of these packages is either

7



essential or is very commonly used. </description>
</package>
<link>http://lamp.epfl.ch/˜spoon/scbaztmp/base-1.7.sbp</link>

</availablePackage>

A somewhat richer set of dependencies is planned, including provides, suggests, alternative dependencies,
and minimum version numbers.

8 Command-Line Interface

8.1 Overview

The command-line interface to Scala Bazaars is thesbaz tool. It is run as follows:

sbaz [-n] [-ddir] command arguments...

It always operates on one managed directory. That directory can be specified explicitly with the -d option.
If it is not specified, and thesbaz binary is located within a managed directory, thensbaz operates on the
managed directory the binary is in. If neither of these cases hold, thensbaz will as a last resort operate
on the current directory. In all cases, the tool checks whether the specified directory appears in fact to be a
managed directory; if it does not, then it aborts.

If -n is specified, then the tool does not perform any work. Instead, it only prints out what it would have
done without the -n option.

If no commandis specified, then the tool prints out a help message. Otherwise, it runs the specified
command with the specified arguments.

8.2 Command Reference

This section will eventually include the entire command reference of the command-line tool. It does not yet.
Refer to “sbaz help ” to see the tool’s built-in documentation.

9 Suggested Directory Layout

Each sbaz repository has its own informal standards for the directory layout within a managed directory. This
section documents the emerging layout used in the main Scala bazaar. It is the standard for that repository,
and it might serve as a guideline for other repositories.

• lib — Any jar file(s) associated with the package, especially those that are meant as libraries to be
usable by other programs in the bazaar. Jars placed in this directory are particularly easy to access,
because both the genericscala script and most of the tool-running scripts inbin will automatically
load classes from any jars inlib . Normally, jar filenames in this directory do not include any version
number. A typical filename issbaz.jar .

• src — Source code for the package. This source code should be presented in a way that IDE’s can
find the code easily. Thus far, packages install directories undersrc that parallel the dotted package
paths from the Scala code. For example, classsbaz.clui.CommandLine is found in a file named
src/sbaz/clui/CommandLine.scala .

• bin — Command-line runnable scripts. These are most easily created via the Scala ant tasks. As a
special case, thesbaz tool will make files withinbin be executable on platforms where that makes
sense.

8



• config — Configuration files. Packages should not include any files in this directory! They should
look in this directory for optional user configuration. If there is a single configuration file, it can be
included directly in theconfig directory, e.g. with a name likeconfig/sbaz.properties . If
there is more than one configuration file for a package, then the files should be located in a subdirec-
tory of config named after the package name. For example, thesbaz package could include its
configuration files in a directory namedconfig/sbaz/ .

• misc — Arbitrary files not included in any of the above. All such files for a package should be included
in a directory named after the package. For example, thesbaz package includes miscellaneous files
in the directorymisc/sbaz/ .

• doc — Documentation files. All such files for a package should be included in a directory named after
the package. For example, thesbaz package includes documentation files in the directorydoc/sbaz .

• man— Unix man pages, with the usual man1, etc., subdirectories.

10 The scala.home property

By convention, thescala.home system property is used to point at the root of the current managed direc-
tory. Command-line scripts installed inbin directories should normally set this variable. The conventional
choice is to setscala.home to theSCALAHOMEenvironment variable if it set, or otherwise to the parent
directory of thebin directory the script is located in.

Programs intended to run within a sbaz directory can use this property to locate any files they may need.
For example,sbaz itself uses the following code to find a user-specified settings file:

val home = System.getProperty("scala.home", ".")
val propFile = new File(new File(new File(home),

"config"), "sbaz.properties")

11 Managed Directory Layout

Most of a managed directory is populated by the contents of packages. The single directorymeta is reserved
for the system to track information about the managed directory. Themeta directory has the following
contents:

• universe — a file holding the XML description of the bazaar.

• available — a list of package advertisements available within the bazaar. The file is an XML docu-
ment whose top level node is<availableList> and whose subnodes are package advertisements.

• cached — a subdirectory holding a cache of package files that the tool has downloaded.

• installed — information about installed files. The format is described below.

• keyring. name— the keyring holding known keys for the universe namedname. There is one keyring
file for each universe with locally known keys.

Theinstalled file holds information about the packages that are currently installed in the managed direc-
tory. Its format is mostly straightforward:

<installedlist>
<installedpackage>

<package>

9



<name>base</name>
<version>1.7</version>
<depends>

<name>sbaz</name>
<name>scala2-library</name>

</depends>
<description>A package that depends on

the basic, necessary packages</description>
</package>
<files>

<filename isAbsolute="true" isFile="true">
<pathcomp>lib</pathcomp>

</filename>
</files>

</installedpackage>

<installedpackage>
<package>

<name>sbaz</name>
<version>1.10</version>
<depends></depends>
<description>The command-line interface to Scala Bazaars.</description>

</package>
<files>

<filename isAbsolute="true" isFile="true">
<pathcomp>bin</pathcomp>
<pathcomp>sbaz</pathcomp>

</filename>

<filename isAbsolute="true" isFile="true">
<pathcomp>bin</pathcomp>
<pathcomp>sbaz.bat</pathcomp>

</filename>

<filename isAbsolute="true" isFile="true">
<pathcomp>misc</pathcomp>
<pathcomp>sbaz</pathcomp>
<pathcomp>scala2-library.jar</pathcomp>

</filename>

<filename isAbsolute="true" isFile="true">
<pathcomp>misc</pathcomp>
<pathcomp>sbaz</pathcomp>
<pathcomp>smartrun.mswin.template</pathcomp>

</filename>

<filename isAbsolute="true" isFile="true">
<pathcomp>misc</pathcomp>
<pathcomp>sbaz</pathcomp>
<pathcomp>smartrun.unix.template</pathcomp>

</filename>

10



<filename isAbsolute="true" isFile="true">
<pathcomp>lib</pathcomp>
<pathcomp>sbaz.jar</pathcomp>

</filename></files>
</installedpackage>

<installedpackage>
</installedist>

Notice that an installed package is the combination of a package plus a list of files. Each file in the list
of files is represented with afilename whose attributes determine whether it is an absolute file (never) and
whether it is a file (versus a directory). The contents of thefilename are the sequence of path components
of the file, relative to the managed directory’s root.

12 Common Problems

12.1 Firewalls and HTTP Proxies

Scala Bazaars uses HTTP to communicate with universe servers. If your network blocks HTTP access, then,
you need to configure sbaz to use an HTTP proxy. To do this, create a file namedconfig/sbaz.properties
in your managed directory and give it the appropriate proxy settings, something like:

http.proxySet=true
http.proxyHost=localhost
http.proxyPort=3128

11


