
Scala Rationale

Martin Odersky

March 29, 2006

There are hundreds of programming languages in active use, and many more
are being designed each year. It is therefore hard to justify the development
of yet another language. Nevertheless, this is what we attempt to do here.
Our argument is based on two claims:

Claim 1: The raise in importance of web services and other distributed
software is a fundamental paradigm shift in programming. It is com-
parable in scale to the shift 20 years ago from character-oriented to
graphical user interfaces.

Claim 2: That paradigm shift will provide demand for new program-
ming languages, just as graphical user interfaces promoted the adop-
tion of object-oriented languages.

For the last 20 years, the most common programming model was object-
oriented: System components are objects, and computation is done by
method calls. Methods themselves take object references as parameters.
Remote method calls let one extend this programming model to distributed
systems. The problem of this model is that it does not scale up very well
to wide-scale networks where messages can be delayed and components may
fail. Web services address the message delay problem by increasing granu-
larity, using method calls with larger, structured arguments, such as XML
trees. They address the failure problem by using transparent replication
and avoiding server state. Conceptually, they are tree transformers that
consume incoming message documents and produce outgoing ones.

Why should this have an effect on programming languages? There are at
least two reasons: First, today’s object-oriented languages are not very good
at analyzing and transforming XML trees. Because such trees usually con-
tain data but no methods, they have to be decomposed and constructed
from the “outside”, that is from code which is external to the tree definition
itself. In an object-oriented language, the ways of doing so are limited. The
most common solution [W3C] is to represent trees in a generic way, where
all tree nodes are values of a common type. This makes it easy to write

1



generic traversal functions, but forces applications to operate on a very low
conceptual level, which often loses important semantic distinctions present
in the XML data. More semantic precision is obtained if different internal
types model different kinds of nodes. But then tree decompositions require
the use of run-time type tests and type casts to adapt the treatment to the
kind of node encountered. Such type tests and type casts are generally not
considered good object-oriented style. They are rarely efficient, nor easy to
use.

By contrast, tree transformation is the natural domain of functional lan-
guages. Their algebraic data types, pattern matching and higher-order
functions make these languages ideal for the task. It’s no wonder, then,
that specialized languages for transforming XML data such as XSLT are
functional.

Another reason why functional language constructs are attractive for web-
services is that mutable state is problematic in this setting. Components
with mutable state are harder to replicate or to restore after a failure. Data
with mutable state is harder to cache than immutable data. Functional
language constructs make it relatively easy to construct components without
mutable state.

Many web services are constructed by combining different languages. For
instance, a service might use XSLT to handle document transformation,
XQuery for database access, and Java for the “business logic”. The downside
of this approach is that the necessary amount of cross-language glue can
make applications cumbersome to write, verify, and maintain. A particular
problem is that cross-language interfaces are usually not statically typed.
Hence, the benefits of a static type system are missing where they are needed
most – at the join points of components written in different paradigms.

Conceivably, the glue problem could be addressed by a “multi-paradigm”
language that would express object-oriented, concurrent, as well as func-
tional aspects of an application. But one needs to be careful not to simply re-
place cross-language glue by awkward interfaces between different paradigms
within the language itself. Ideally, one would hope for a fusion which unifies
concepts found in different paradigms instead of an agglutination, which
merely includes them side by side. This fusion is what we try to achieve
with Scala 1.

Scala is both an object-oriented and functional language. It is a pure object-
oriented language in the sense that every value is an object. Types and
behavior of objects are described by classes. Classes can be composed using
mixin composition. Scala is designed to work seamlessly with mainstream
object-oriented languages, in particular Java and C#.

1Scala stands for “Scalable Language”. The term means “Stairway” in Italian

2



Scala is also a functional language in the sense that every function is a value.
Nesting of function definitions and higher-order functions are naturally sup-
ported. Scala also supports a general notion of pattern matching which can
model the algebraic types used in many functional languages. Furthermore,
this notion of pattern matching naturally extends to the processing of XML
data.

The design of Scala is driven by the desire to unify object-oriented and
functional elements. Here are three examples how this is achieved:

• Since every function is a value and every value is an object, it follows
that every function in Scala is an object. Indeed, there is a root class
for functions which is specialized in the Scala standard library to data
structures such as arrays and hash tables.

• Data structures in many functional languages are defined using al-
gebraic data types. They are decomposed using pattern matching.
Object-oriented languages, on the other hand, describe data with class
hierarchies. Algebraic data types are usually closed, in that the range
of alternatives of a type is fixed when the type is defined. By contrast,
class hierarchies can be extended by adding new leaf classes. Scala
adopts the object-oriented class hierarchy scheme for data definitions,
but allows pattern matching against values coming from a whole class
hierarchy, not just values of a single type. This can express both
closed and extensible data types, and also provides a convenient way
to exploit run-time type information in cases where static typing is
too restrictive.

• Module systems of functional languages such as SML or Caml excel
in abstraction; they allow very precise control over visibility of names
and types, including the ability to partially abstract over types. By
contrast, object-oriented languages excel in composition; they offer
several composition mechanisms lacking in module systems, includ-
ing inheritance and unlimited recursion between objects and classes.
Scala unifies the notions of object and module, of module signature
and interface, as well as of functor and class. This combines the ab-
straction facilities of functional module systems with the composition
constructs of object-oriented languages. The unification is made pos-
sible by means of a new type system based on path-dependent types
[OCRZ03].

There are several other languages that try to bridge the gap be-
tween the functional and object oriented paradigms. Smalltalk[GR83],
Python[vRD03], or Ruby[Mat01] come to mind. Unlike these languages,
Scala has an advanced static type system, which contains several innovative

3



constructs. This aspect makes the Scala definition a bit more complicated
than those of the languages above. On the other hand, Scala enjoys the
robustness, safety and scalability benefits of strong static typing. Further-
more, Scala incorporates recent advances in type inference, so that excessive
type annotations in user programs can usually be avoided.

References

[GR83] Adele Goldberg and David Robson. Smalltalk-80; The Language
and Its Implementation. Addison-Wesley, 1983. ISBN 0-201-
11371-6.

[Mat01] Yukihiro Matsumoto. Ruby in a Nutshell. O’Reilly & Associates,
nov 2001. ISBN 0-596-00214-9.

[OCRZ03] Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias
Zenger. A nominal theory of objects with dependent types. In
Proc. FOOL 10, January 2003.
http://www.cis.upenn.edu/~bcpierce/FOOL/FOOL10.html.

[vRD03] Guido van Rossum and Fred L. Drake. The Python Language
Reference Manual. Network Theory Ltd, sep 2003. ISBN 0-954-
16178-5
http://www.python.org/doc/current/ref/ref.html.

[W3C] W3C. Document object model (DOM).
http://www.w3.org/DOM/.

4


