
A Scala Tutorial
for Java programmers

Version 1.0
October 13, 2005

Michel Schinz

PROGRAMMING METHODS LABORATORY

EPFL
SWITZERLAND

2

1 Introduction

This document gives a quick introduction to the Scala language and compiler. It
is intended for people who already have some programming experience and want
an overview of what they can do with Scala. A basic knowledge of object-oriented
programming, especially in Java, is assumed.

2 A first example

As a first example, we will use the standard Hello world program. It is not very
fascinating but makes it easy to demonstrate the use of the Scala tools without
knowing too much about the language. Here is how it looks:

object HelloWorld {
def main(args: Array[String]): unit = {
System.out.println("Hello, world!");

}
}

The structure of this program should be familiar to Java programmers: it consists
of one method called main which takes the command line arguments, an array of
strings, as parameter; the body of this method consists of a single call to the println
method of the object representing the standard output, with the friendly greeting as
argument. The main method is declared as returning a value of type unit, which for
now can be seen as similar to Java’s void type.

What is less familiar to Java programmers is the object declaration containing
the main method. Such a declaration introduces what is commonly known as a
singleton object, that is a class with a single instance. The declaration above thus
declares both a class called HelloWorld and an instance of that class, also called
HelloWorld. This instance is created on demand, the first time it is used.

The astute reader might have noticed that the main method is not declared as
static here. This is because static members (methods or fields) do not exist in
Scala. Rather than defining static members, the Scala programmer declares these
members in singleton objects.

2.1 Compiling the example

To compile the example, we use scalac, the Scala compiler. scalac works like
most compilers: it takes a source file as argument, maybe some options, and pro-
duces one or several object files. The object files it produces are standard Java class
files.

If we save the above program in a file called HelloWorld.scala, we can compile
it by issuing the following command (the greater-than sign ‘>’ represents the shell
prompt and should not be typed):

> scalac HelloWorld.scala

2.2 Running the example 3

This will generate a few class files in the current directory. One of them will be called
HelloWorld.class, and contains a class which can be directly executed using the
scala command, as the following section shows.

2.2 Running the example

Once compiled, a Scala program can be run using the scala command. Its usage
is very similar to the java command used to run Java programs, and accepts the
same options. The above example can be executed using the following command,
which produces the expected output:

> scala -classpath . HelloWorld

Hello, world!

3 Interaction with Java

One of the strength of Scala is that it makes it very easy to interact with Java
code. Actually, the example of the previous section showed this: to print the mes-
sage on screen, we simply used a call to Java’s println method on the (Java) object
System.out.

All Java code is accessible as easily from Scala. Like in Java, all classes from the
java.lang package are imported by default, while others need to be imported ex-
plicitly.

Let’s look at another example to see this. The aim of this example is to compute
and print the factorial of 100 using Java big integers (i.e. the class BigInteger in
package java.math), since the result does not fit in a Java integer. This program
looks like this:

object BigFactorial {
import java.math.BigInteger, BigInteger._;

def fact(x: BigInteger): BigInteger =
if (x == ZERO) ONE
else x multiply fact(x subtract ONE);

def main(args: Array[String]): unit =
System.out.println("fact(100) = "

+ fact(new BigInteger("100")));
}

Scala’s import statement looks very similar to Java’s equivalent, but an impor-
tant difference appears here: to import all the names of a package or class, one uses
the underscore (_) character instead of the asterisk (*). That’s because the asterisk
is actually a valid Scala identifier, as we will see later.

4

The import statement above therefore starts by importing the class BigInteger,
and then all the names it contains. This makes the static fields ZERO and ONE directly
visible.

While we’re talking about ZERO, something must be said about the condition of
the if expression in method fact. Is it really correct to check that x is zero by using
the == operator? A Java programmer would say no, because in that language the ==

operator compares objects by physical equality, and this is not what we want here.
What we want to know is whether x is some big integer object representing zero, and
there might be several of them. So a Java programmer would use the equals method
to perform the comparison.

The Scala programmer, on the other hand, can use ==here because that operator
compares objects according to the equals method. Is == just an alias for equals

then? Well, almost, but == has one advantage over equals in that it works also when
the selector is the null constant.

The fact method also shows some characteristics of Scala’s syntax. The first one
is that the method body does not have to be surrounded by curly braces if it consists
of a single expression. The second one is that methods taking one argument can be
used with an infix syntax. That is, the expression

x subtract ONE

is just another, slightly less verbose way of writing the expression

x.subtract(ONE)

This might seem like a minor syntactic detail, but it has important consequences,
one of which will be explored in the next section.

To conclude this section about integration with Java, it should be noted that it is
also possible to inherit from Java classes and implement Java interfaces directly in
Scala.

4 Everything is an object

Scala is a pure object-oriented language in the sense that everything is an ob-
ject, including numbers or functions. It differs from Java in that respect, since Java
distinguishes numeric types from objects, and does not enable one to manipulate
functions as values.

4.1 Numbers are objects

Since numbers are objects, they also have methods. And in fact, an arithmetic
expression like the following:

1 + 2 * 3 / x

consists exclusively of method calls, because it is equivalent to the following expres-
sion, as we saw in the previous section:

4.2 Functions are objects 5

1.+(2.*(3./(x)))

This also means that +, *, etc. are valid identifiers in Scala.

4.2 Functions are objects

Perhaps more surprising for the Java programmer, functions are also objects in
Scala. It is therefore possible to pass functions as arguments, to store them in vari-
ables, and to return them from other functions. This ability to manipulate functions
as values is one of the cornerstone of a very interesting programming paradigm
called functional programming.

As a very simple example of why it can be useful to use functions as values, let’s
consider a timer function whose aim is to perform some action every second. How
do we pass it the action to perform? Quite logically, as a function. This very simple
kind of function passing should be familiar to many programmers: it is often used
in user-interface code, to register call-back functions which get called when some
event occurs.

In the following program, the timer function is called oncePerSecond, and it gets
a call-back function as argument. The type of this function is written () => unit

and is the type of all functions which have no arguments and return a value of type
unit. The main function of this program simply calls this timer function with a
call-back which prints a sentence on the terminal. In other words, this program
endlessly prints the sentence time flies like an arrow every second.

object Timer {
def oncePerSecond(callback: () => unit): unit =
while (true) { callback(); Thread sleep 1000 };

def timeFlies(): unit =
Console.println("time flies like an arrow...");

def main(args: Array[String]): unit =
oncePerSecond(timeFlies);

}

We note that in order to print the string, we used method println of class Console
instead of using the one from System.out. For now, Console can be seen as a Scala
equivalent of Java’s System.out.

4.2.1 Anonymous functions

While this program is easy to understand, it can be refined a bit. First of all, no-
tice that the function timeFlies is only defined in order to be passed later to the
oncePerSecond function. Having to name that function, which is only used once,
might seem unnecessary, and it would in fact be nice to be able to construct this
function just as it is passed to oncePerSecond. This is possible in Scala using anony-
mous functions, which are exactly that: functions without a name. The revised ver-

6

sion of our timer program using an anonymous function instead of timeFlies looks
like that:

object TimerAnonymous {
def oncePerSecond(callback: () => unit): unit =
while (true) { callback(); Thread sleep 1000 };

def main(args: Array[String]): unit =
oncePerSecond(() =>
Console.println("time flies like an arrow..."));

}

The presence of an anonymous function in this example is revealed by the right ar-
row ‘=>’ which separates the function’s argument list from its body. In this example,
the argument list is empty, as witnessed by the empty pair of parenthesis on the left
of the arrow. The body of the function is the same as the one of timeFlies above.

5 Classes

As we have seen above, Scala is an object-oriented language, and as such it has a
concept of class.1 Classes in Scala are declared using a syntax which is close to Java’s
syntax. One important difference is that classes in Scala can have parameters. This
is illustrated in the following definition of complex numbers.

class Complex(real: double, imaginary: double) {
def re() = real;
def im() = imaginary;

}

This complex class takes two arguments, which are the real and imaginary part
of the complex. These arguments must be passed when creating an instance of
class Complex, as follows: new Complex(1.5, 2.3). The class contains two meth-
ods, called re and im, which give access to these two parts.

It should be noted that the return type of these two methods is not given explic-
itly. It will be inferred automatically by the compiler, which looks at the right-hand
side of these methods and deduces that both return a value of type double.

The compiler is not always able to infer types like it does here, and there is unfor-
tunately no simple rule to know exactly when it will be, and when not. In practice,
this is usually not a problem since the compiler complains when it is not able to in-
fer a type which was not given explicitly. As a simple rule, beginner Scala program-
mers should try to omit type declarations which seem to be easy to deduce from the
context, and see if the compiler agrees. After some time, the programmer should
get a good feeling about when to omit types, and when to specify them explicitly.

1For the sake of completeness, it should be noted that some object-oriented languages do not
have the concept of class, but Scala is not one of them.

5.1 Methods without arguments 7

5.1 Methods without arguments

A small problem of the methods re and im is that, in order to call them, one
has to put an empty pair of parenthesis after their name, as the following example
shows:

val c = new Complex(1.2, 3.4);
Console.println("imaginary part: " + c.im());

It would be nicer to be able to access the real and imaginary parts like if they were
fields, without putting the empty pair of parenthesis. This is perfectly doable in
Scala, simply by defining them as methods without arguments. Such methods differ
from methods with zero arguments in that they don’t have parenthesis after their
name, neither in their definition nor in their use. Our Complex class can be rewritten
as follows:

class Complex(real: double, imaginary: double) {
def re = real;
def im = imaginary;

}

5.2 Inheritance and overriding

All classes in Scala inherit from a super-class. When no super-class is specified,
as in the Complex example of previous section, scala.Object is implicitly used.

It is possible to override methods inherited from a super-class in Scala. It is
however mandatory to explicitly specify that a method overrides another one using
the override modifier, in order to avoid accidental overriding. As an example, our
Complex class can be augmented with a redefinition of the toString method inher-
ited from Object.

class Complex(real: double, imaginary: double) {
def re = real;
def im = imaginary;
override def toString() =
"" + re + (if (im < 0) "" else "+") + im + "i";

}

6 Case classes and pattern matching

A kind of data structure that often appears in programs is the tree. For example,
interpreters and compilers usually represent programs internally as trees; XML doc-
uments are trees; and several kinds of containers are based on trees, like red-black
trees.

We will now examine how such trees are represented and manipulated in Scala
through a small calculator program. The aim of this program is to manipulate very

8

simple arithmetic expressions composed of sums, integer constants and variables.
Two examples of such expressions are 1+2 and (x +x)+ (7+ y).

We first have to decide on a representation for such expressions. The most nat-
ural one is the tree, where nodes are operations (here, the addition) and leaves are
values (here constants or variables).

In Java, such a tree would be represented using an abstract super-class for the
trees, and one concrete sub-class per node or leaf. In a functional programming lan-
guage, one would use an algebraic data-type for the same purpose. Scala provides
the concept of case classes which is somewhat in between the two. Here is how they
can be used to define the type of the trees for our example:

abstract class Tree;
case class Sum(l: Tree, r: Tree) extends Tree;
case class Var(n: String) extends Tree;
case class Const(v: int) extends Tree;

The fact that classes Sum, Var and Const are declared as case classes means that they
differ from standard classes in several respects:

• the new keyword is not mandatory to create instances of these classes (i.e. one
can write Const(5) instead of new Const(5)),

• getter functions are automatically defined for the constructor parameters (i.e.
it is possible to get the value of the v constructor parameter of some instance
c of class Const just by writing c.v),

• default definitions for methods equals and hashCode are provided, which work
on the structure of the instances and not on their identity,

• a default definition for method toString is provided, and prints the value in a
“source form” (e.g. the tree for expression x+1 prints as Sum(Var(x),Const(1))),

• instances of these classes can be decomposed through pattern matching as
we will see below.

Now that we have defined the data-type to represent our arithmetic expressions,
we can start defining operations to manipulate them. We will start with a function to
evaluate an expression in some environment. The aim of the environment is to give
values to variables. For example, the expression x +1 evaluated in an environment
which associates the value 5 to variable x, written {x → 5}, gives 6 as result.

We therefore have to find a way to represent environments. We could of course
use some associative data-structure like a hash table, but we can also directly use
functions! An environment is really nothing more than a function which associates
a value to a (variable) name. The environment {x → 5} given above can simply be
written as follows in Scala:

{ case "x" => 5 }

6 Case classes and pattern matching 9

This notation defines a function which, when given the string "x" as argument, re-
turns the integer 5, and fails with an exception otherwise.

Before writing the evaluation function, let us give a name to the type of the envi-
ronments. We could of course always use the type String => int for environments,
but it simplifies the program if we introduce a name for this type, and makes future
changes easier. This is accomplished in Scala with the following notation:

type Environment = (String => int);

From then on, the type Environment can be used as an alias of the type of functions
from String to int.

We can now give the definition of the evaluation function. Conceptually, it is
very simple: the value of a sum of two expressions is simply the sum of the value of
these expressions; the value of a variable is obtained directly from the environment;
and the value of a constant is the constant itself. Expressing this in Scala is not more
difficult:

def eval(t: Tree, env: Environment): int = t match {
case Sum(l, r) => eval(l, env) + eval(r, env)
case Var(n) => env(n)
case Const(v) => v

}

This evaluation function works by performing pattern matching on the tree t. Intu-
itively, the meaning of the above definition should be clear:

1. it first checks if the tree t is a Sum, and if it is, it binds the left sub-tree to a new
variable called l and the right sub-tree to a variable called r, and then pro-
ceeds with the evaluation of the expression following the arrow; this expres-
sion can (and does) make use of the variables bound by the pattern appearing
on the left of the arrow, i.e. l and r,

2. if the first check does not succeed, that is if the tree is not a Sum, it goes on and
checks if t is a Var; if it is, it binds the name contained in the Var node to a
variable n and proceeds with the right-hand expression,

3. if the second check also fails, that is if t is neither a Sum nor a Var, it checks
if it is a Const, and if it is, it binds the value contained in the Const node to a
variable v and proceeds with the right-hand side,

4. finally, if all checks fail, an exception is raised to signal the failure of the pat-
tern matching expression; this could happen here only if more sub-classes of
Tree were declared.

We see that the basic idea of pattern matching is to attempt to match a value to a
series of patterns, and as soon as a pattern matches, extract and name various parts
of the value, to finally evaluate some code which typically makes use of these named
parts.

10

A seasoned object-oriented programmer might wonder why we did not define
eval as a method of class Tree and its subclasses. We could have done it actually,
since Scala allows method definitions in case classes just like in normal classes. De-
ciding whether to use pattern matching or methods is therefore a matter of taste,
but it also has important implications on extensibility:

• when using methods, it is easy to add a new kind of node as this can be done
just by defining the sub-class of Tree for it; on the other hand, adding a new
operation to manipulate the tree is tedious, as it requires modifications to all
sub-classes of Tree,

• when using pattern matching, the situation is reversed: adding a new kind of
node requires the modification of all functions which do pattern matching on
the tree, to take the new node into account; on the other hand, adding a new
operation is easy, by just defining it as an independent function.

To explore pattern matching further, let us define another operation on arith-
metic expressions: symbolic derivation. The reader might remember the following
rules regarding this operation:

1. the derivative of a sum is the sum of the derivatives,

2. the derivative of some variable v is one if v is the variable relative to which the
derivation takes place, and zero otherwise,

3. the derivative of a constant is zero.

These rules can be translated almost literally into Scala code, to obtain the following
definition:

def derive(t: Tree, v: String): Tree = t match {
case Sum(l, r) => Sum(derive(l, v), derive(r, v))
case Var(n) if (v == n) => Const(1)
case _ => Const(0)

}

This function introduces two new concepts related to pattern matching. First of all,
the case expression for variables has a guard, an expression following the if key-
word. This guard prevents pattern matching from succeeding unless its expression
is true. Here it is used to make sure that we return the constant 1 only if the name of
the variable being derived is the same as the derivation variable v. The second new
feature of pattern matching used here is the wild-card, written _, which is a pattern
matching any value, without giving it a name.

We did not explore the whole power of pattern matching yet, but we will stop
here in order to keep this document short. We still want to see how the two func-
tions above perform on a real example. For that purpose, let’s write a simple main

function which performs several operations on the expression (x+x)+(7+y): it first
computes its value in the environment {x → 5, y → 7}, then computes its derivative
relative to x and then y .

7 Mixins 11

def main(args: Array[String]): Unit = {
val exp: Tree = Sum(Sum(Var("x"),Var("x")),Sum(Const(7),Var("y")));
val env: Environment = { case "x" => 5 case "y" => 7 };
Console.println("Expression: " + exp);
Console.println("Evaluation with x=5, y=7: " + eval(exp, env));
Console.println("Derivative relative to x:\n " + derive(exp, "x"));
Console.println("Derivative relative to y:\n " + derive(exp, "y"));

}

Executing this program, we get the expected output:

Expression: Sum(Sum(Var(x),Var(x)),Sum(Const(7),Var(y)))

Evaluation with x=5, y=7: 24

Derivative relative to x:

Sum(Sum(Const(1),Const(1)),Sum(Const(0),Const(0)))

Derivative relative to y:

Sum(Sum(Const(0),Const(0)),Sum(Const(0),Const(1)))

By examining the output, we see that the result of the derivative should be sim-
plified before being presented to the user. Defining a basic simplification function
using pattern matching is an interesting (but surprisingly tricky) problem, left as an
exercise for the reader.

7 Mixins

Apart from inheriting code from a super-class, a Scala class can also import code
from one or several mixins.

Maybe the easiest way for a Java programmer to understand what mixins are
is to view them as interfaces which can also contain code. In Scala, when a class
inherits from a mixin, it implements that mixin’s interface, and inherits all the code
contained in the mixin.

To see the usefulness of mixins, let’s look at a classical example: ordered objects.
It is often useful to be able to compare objects of a given class among themselves,
for example to sort them. In Java, objects which are comparable implement the
Comparable interface. In Scala, we can do a bit better than in Java by defining our
equivalent of Comparable as a mixin, which we will call Ord.

When comparing objects, six different predicates can be useful: smaller, smaller
or equal, equal, not equal, greater or equal, and greater. However, defining all of
them is fastidious, especially since four out of these six can be expressed using the
remaining two. That is, given the equal and smaller predicates (for example), one
can express the other ones. In Scala, all these observations can be nicely captured
by the following mixin declaration:

abstract class Ord {
def < (that: Any): boolean;
def <=(that: Any): boolean = (this < that) || (this == that);

12

def > (that: Any): boolean = !(this <= that);
def >=(that: Any): boolean = !(this < that);

}

This definition both creates a new type called Ord, which plays the same role as
Java’s Comparable interface, and default implementations of three predicates in terms
of a fourth, abstract one. The predicates for equality and inequality do not appear
here since they are by default present in all objects.

The type Any which is used above is the type which is a super-type of all other
types in Scala. It can be seen as a more general version of Java’s Object type, since it
is also a super-type of basic types like int, float, etc.

To make objects of a class comparable, it is therefore sufficient to define the
predicates which test equality and inferiority, and mix in the Ord class above. As
an example, let’s define a Date class representing dates in the Gregorian calendar.
Such dates are composed of a day, a month and a year, which we will all represent
as integers. We therefore start the definition of the Date class as follows:

class Date(y: int, m: int, d: int) with Ord {
def year = y;
def month = m;
def day = d;

override def toString(): String = year + "-" + month + "-" + day;

The important part here is the with Ord declaration which follows the class name
and parameters. It declares that the Date class inherits from the Ord class as a mixin.

Then, we redefine the equals method, inherited from Object, so that it correctly
compares dates by comparing their individual fields. The default implementation
of equals is not usable, because as in Java it compares object physically. We arrive
at the following definition:

override def equals(that: Any): boolean = {
that.isInstanceOf[Date] && {
val o = that.asInstanceOf[Date];
o.day == day && o.month == month && o.year == year

}
}

This method makes use of the predefined methods isInstanceOf and asInstanceOf.
The first one, isInstanceOf, corresponds to Java’s instanceof operator, and returns
true if and only if the object on which it is applied is an instance of the given type.
The second one, asInstanceOf, corresponds to Java’s cast operator: If the object is
an instance of the given type, it is viewed as such, otherwise a ClassCastException

is thrown.
Finally, the last method to define is the predicate which tests for inferiority, as

follows. It makes use of another predefined method, error, which throws an excep-
tion with the given error message.

8 Genericity 13

def <(that: Any): boolean = {
if (!that.isInstanceOf[Date])
error("cannot compare " + that + " and a Date");

val o = that.asInstanceOf[Date];
(year < o.year)
|| (year == o.year && (month < o.month

|| (month == o.month && day < o.day)))
}

}

This completes the definition of the Date class. Instances of this class can be seen
either as dates or as comparable objects. Moreover, they all define the six compari-
son predicates mentioned above: equals and < because they appear directly in the
definition of the Date class, and the others because they are inherited from the Ord

mixin.
Mixins are useful in other situations than the one shown here, of course, but

discussing their applications in length is outside the scope of this document.

8 Genericity

The last characteristic of Scala we will explore in this tutorial is genericity. Java
programmers should be well aware of the problems posed by the lack of genericity
in their language, a shortcoming which is addressed in Java 1.5.

Genericity is the ability to write code parametrised by types. For example, a
programmer writing a library for linked lists faces the problem of deciding which
type to give to the elements of the list. Since this list is meant to be used in many
different contexts, it is not possible to decide that the type of the elements has to be,
say, int. This would be completely arbitrary and overly restrictive.

Java programmers resort to using Object, which is the super-type of all objects.
This solution is however far from being ideal, since it doesn’t work for basic types
(int, long, float, etc.) and it implies that a lot of dynamic type casts have to be
inserted by the programmer.

Scala makes it possible to define generic classes (and methods) to solve this
problem. Let us examine this with an example of the simplest container class pos-
sible: a reference, which can either be empty or point to an object of some type.

class Reference[a] {
private var contents: a = _;

def set(value: a): Unit = { contents = value; }
def get: a = contents;

}

The class Reference is parametrised by a type, called a, which is the type of its ele-
ment. This type is used in the body of the class as the type of the contents variable,

14

the argument of the set method, and the return type of the get method.
The above code sample introduces variables in Scala, which should not require

further explanations. It is however interesting to see that the initial value given to
that variable is _, which represents a default value. This default value is 0 for nu-
meric types, false for the boolean type, () for the unit type and null for all object
types.

To use this Reference class, one needs to specify which type to use for the type
parameter a, that is the type of the element contained by the cell. For example, to
create and use a cell holding an integer, one could write the following:

object IntegerReference {
def main(args: Array[String]): Unit = {
val cell = new Reference[Int];
cell.set(13);
Console.print("Reference contains the half of " + (cell.get * 2));

}
}

As can be seen in that example, it is not necessary to cast the value returned by the
get method before using it as an integer. It is also not possible to store anything but
an integer in that particular cell, since it was declared as holding an integer.

9 Conclusion

This document gave a quick overview of the Scala language and presented some
basic examples. The interested reader can go on by reading the companion docu-
ment Scala By Example, which contains much more advanced examples, and con-
sult the Scala Language Specification when needed.

	Introduction
	A first example
	Compiling the example
	Running the example

	Interaction with Java
	Everything is an object
	Numbers are objects
	Functions are objects
	Anonymous functions

	Classes
	Methods without arguments
	Inheritance and overriding

	Case classes and pattern matching
	Mixins
	Genericity
	Conclusion

